Problems Related to the Taxonomic Placement Of

Total Page:16

File Type:pdf, Size:1020Kb

Problems Related to the Taxonomic Placement Of Foss. Rec., 20, 147–157, 2017 www.foss-rec.net/20/147/2017/ doi:10.5194/fr-20-147-2017 © Author(s) 2017. CC Attribution 3.0 License. Problems related to the taxonomic placement of incompletely preserved amber fossils: transfer of the Paleogene liverwort Cylindrocolea dimorpha (Cephaloziellaceae) to the extant Odontoschisma sect. Iwatsukia (Cephaloziaceae) Kathrin Feldberg1, Jiríˇ Vánaˇ 2, Alfons Schäfer-Verwimp3, Michael Krings4, Carsten Gröhn5, Alexander R. Schmidt6, and Jochen Heinrichs1 1Ludwig-Maximilians-Universität München, Department für Biologie I, Systematische Botanik und Mykologie, Geobio-Center, Menzinger Straße 67, 80638 Munich, Germany 2Department of Botany, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic 3Mittlere Letten 11, 88634 Herdwangen-Schönach, Germany 4Department für Geo- und Umweltwissenschaften, Paläontologie und Geobiologie, Ludwig-Maximilians-Universität, and SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 Munich, Germany 5Amber Study Group, c/o Geological-Palaeontological Museum of the University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany 6Georg-August-Universität Göttingen, Abteilung Geobiologie, Goldschmidtstraße 3, 37077 Göttingen, Germany Correspondence to: Jochen Heinrichs ([email protected]) Received: 2 March 2017 – Accepted: 20 March 2017 – Published: 12 April 2017 Abstract. A revision of the Baltic and Bitterfeld amber fos- 1 Introduction sils assigned to Cylindrocolea dimorpha (Cephaloziellaceae) has yielded evidence of the presence of multicellular, bifid Liverworts belong to the oldest lineages of plants on land underleaves, which have not previously been reported for and date back to the early Paleozoic (Taylor et al., 2009). this species and conflict with the current circumscription of They are characterized by a life cycle with a prominent leafy the family. We transfer the fossil species to Odontoschisma or thalloid gametophyte, an unbranched sporophyte, and the (sect. Iwatsukia) and propose the new combination O. di- frequent presence of oil bodies and elaters (Renzaglia et al., morpha of the Cephaloziaceae. Characteristics of the fossil 2007). Liverwort diversity today includes some 7000 species include an overall small size of the plant, entire-margined, in ∼ 400 genera; however, both species level and supraspe- bifid leaves and underleaves, more or less equally thickened cific classifications remain unstable despite considerable re- leaf cell walls, ventral branching that includes stoloniform cent efforts to record the global diversity (Söderström et al., branches with reduced leaves, and the lack of a stem hyalo- 2016). Accordingly, taxonomic studies still identify incon- dermis and gemmae. Placement of the fossil in Cephalozi- gruences between morphology-based taxonomic hypotheses aceae profoundly affects divergence time estimates for liver- and DNA-based phylogenies and, consequently, genus and worts based on DNA sequence variation with integrated in- family concepts are frequently revised (e.g., Bechteler et al., formation from the fossil record. Our reclassification concurs 2016; Long et al., 2016; Patzak et al., 2016). Taking the con- with hypotheses on the divergence times of Cephaloziaceae siderable difficulties into account that hamper the classifi- derived from DNA sequence data that provide evidence of cation of the present-day liverwort diversity (Renner et al., a late Early Cretaceous to early Eocene age of the Odon- 2017), it comes as no surprise that fossils of liverworts of- toschisma crown group and an origin of O. sect. Iwatsukia in ten have an even complexer and more confusing taxonomic the Late Cretaceous to Oligocene. history (Grolle and Meister, 2004), especially if only frag- ments, rather than entire plants, are preserved (Heinrichs et Published by Copernicus Publications on behalf of the Museum für Naturkunde Berlin. 148 K. Feldberg et al.: Taxonomic placement of incompletely preserved amber fossils al., 2016). These fragments often do not display the whole Naturkunde at Berlin were previously published under complement of relevant taxonomic characters, and thus the BHU-Palaeo collection numbers (e.g., Grolle and Meister, classification of these forms often needs to be revised when 2004). However, this acronym has recently been replaced by additional, more completely preserved specimens become “MB.Pb”. available. The surface of some of the amber pieces was polished Jungermannia dimorpha Casp. was initially described by manually with a series of wet silicon carbide abrasive pa- Caspary (1887) based on a single inclusion of an unbranched, pers (grit size from FEPA P 600–4000 (particle size: 25.8 male shoot enshrined in a piece of Baltic amber that is today to 5 µm), Struers) to minimize light scattering during anal- kept in the Museum für Naturkunde Berlin. Baltic amber is ysis and photographic documentation. Specimens were then considered Eocene in age (35 to 47 Myr old; Standke, 1998). placed on a glass microscope slide with a drop of water added The shoot lacks a hyalodermis and underleaves, and has two to the upper surface and covered with a coverslip. The am- rows of bifid, entire-margined leaves consisting of relatively ber inclusions were studied under a Leica M50 incident-light thin-walled cells lacking trigones, and an apical androecium microscope and a Carl Zeiss AxioScope A1 compound mi- with 5 pairs of shallowly bifid bracts (Grolle, 1980). Caspary croscope, the latter equipped with a Canon 60D digital cam- and Klebs (1907) noted similarities of the fossil to the ex- era. Incident and transmitted light were used simultaneously. tant Jungermannia divaricata Sm. (D Cephaloziella divar- The images compiled in Figs. 1 and 2 are digitally stacked icata (Sm.) Schiffn.; Söderström et al., 2016), and Grolle photomicrographic composites of up to 145 individual focal (1980) subsequently transferred the species to Cephaloziella planes obtained by using the software package HeliconFocus (Spruce) Schiffn. (as Cephaloziella dimorpha (Casp.) Grolle) 5.0. of the Cephaloziellaceae. Grolle and Meister (2004) de- scribed additional inclusions supposed to belong to this 2.2 Divergence time estimates species from Baltic and Bitterfeld amber. However, no gem- mae, which are a characteristic feature of most Cephaloziella Divergence time estimates based on the DNA sequence vari- species, were detected by these authors. As a result, they ation obtained from extant representatives of cephalozioid suggested that the fossils belong to the genus Cylindrocolea liverworts were conducted to assess the level of con- R.M.Schust., rather than Cephaloziella and, consequently, gruence with our taxonomic placement of Cylindro- proposed the name Cylindrocolea dimorpha (Casp.) Grolle colea/Odontoschisma dimorpha. The DNA dataset that was for the taxon. used included 67 accessions of the family Cephaloziaceae Using the geological age of Cylindrocolea dimorpha as a and 2 outgroup species from Adelanthaceae (see Supple- minimum age constraint for Cylindrocolea in DNA-based di- ment). Sequences of the chloroplast rbcL gene and trnL- vergence time estimates of liverworts results in estimates that trnF-region, as well as the nuclear ITS1-5.8S-ITS2 region, indicate roughly 3 times older ages than analyses conducted were extracted from GenBank (https://www.ncbi.nlm.nih. without this fossil constraint (Feldberg et al., 2013, 2014; gov/genbank/), and were published previously in Feldberg Laenen et al., 2014). This observation led us to reinvestigate et al. (2010, 2016) and Vilnet et al. (2010, 2012). Se- the type material and additional fossils of Cylindrocolea di- quences were aligned manually in Bioedit version 7.0.5.2 morpha. We found that bifid underleaves occur in ascending (Hall, 1999); missing data were coded as missing. shoots, while they are usually missing in prostrate shoots. jModelTest 2.1.7 (Guindon and Gascuel, 2003; Darriba The results from thorough re-analysis of the specimens, to- et al., 2012) was employed to choose a nucleotide substi- gether with additional evidence from DNA-based divergence tution model for both nuclear and plastid DNA datasets. time estimates, are used in this study to transfer Cylindro- With regard to the nuclear marker, the Bayesian informa- colea dimorpha to Odontoschisma sect. Iwatsukia (N.Kitag.) tion criterion (BIC) supported the TIM3 C0C I model; re- Gradst., S.C.Aranda & Vanderp. (Cephaloziaceae). garding the combined chloroplast markers, BIC supported the TPM1uf C 0C I model. Bayesian divergence time estimates were generated in 2 Materials and methods BEAST 1.8.4 (Drummond et al., 2012). The DNA dataset was split into a nuclear and a chloroplast partition, with 2.1 Investigation of amber inclusions unlinked substitution and clock models, and linked trees. An uncorrelated relaxed (lognormal) clock was employed The amber inclusions (12 from Baltic and 6 from Bit- for both partitions and the substitution models were imple- terfeld amber) used in this study are housed at the Mu- mented according to the results of the jModelTest analyses. seum für Naturkunde at Berlin, the Georg August Univer- A birth–death model for incomplete sampling was employed. sity of Göttingen (numbers preceded by GZG.BST), the The root of the tree was calibrated at 202.01 Ma based on es- SNSB-Bavarian State Collection for Palaeontology and Ge- timates in Laenen et al. (2014) for the split between the Ade- ology (numbers preceded by SNSB-BSPG), and the Carsten lanthaceae and Cephaloziaceae in an analysis not factoring
Recommended publications
  • Early Land Plants Today: Index of Liverworts & Hornworts 2015–2016
    Phytotaxa 350 (2): 101–134 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.350.2.1 Early Land Plants Today: Index of Liverworts & Hornworts 2015–2016 LARS SÖDERSTRÖM1, ANDERS HAGBORG2 & MATT VON KONRAT2 1 Department of Biology, Norwegian University of Science and Technology, N-7491, Trondheim, Norway; lars.soderstrom@ ntnu.no 2 Department of Research and Education, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605–2496, U.S.A.; [email protected], [email protected] Abstract A widely accessible list of known plant species is a fundamental requirement for plant conservation and has vast uses. An index of published names of liverworts and hornworts between 2015 and 2016 is provided as part of a continued effort in working toward maintaining an updated world checklist of these groups. The list herein includes 64 higher taxon names, 225 specific names, 35 infraspecific names, two infrageneric autonyms and 21 infraspecific autonyms for 2015 and 2016, including also names of fossils and invalid and illegitimate names. Thirty-three older names omitted in the earlier indices are included. Key words: Liverworts, hornworts, index, nomenclature, fossils, new names Introduction Under the auspices of the Early Land Plants Today project, there has been a strong community-driven effort attempting to address the critical need to synthesize the vast nomenclatural, taxonomic and global distributional data for liverworts (Marchantiophyta) and hornworts (Anthocerotophyta) (von Konrat et al. 2010a). These endeavors, building on decades of previous efforts, were critical in providing the foundation to develop a working checklist of liverworts and hornworts worldwide published in 2016 (Söderström et al.
    [Show full text]
  • On the Distributional Pattern of Cephaloziella Hampeana (Nees) Schiffn
    Cryptogamie, Bryologie, 2017, 38 (1): 53-59 © 2017 Adac. Tous droits réservés Disjunct or Continuous? On the Distributional Pattern of Cephaloziella hampeana (Nees) Schiffn. ex Loeske (Cephaloziellaceae, Marchantiophyta) in South America Jorge R. FLOREs a,b*, Matt VON KONRAT c, Juan LARRAÍN d & Guillermo M. sUÁREZ a,b aUnidad Ejecutora Lillo (CONICET-FML), Miguel Lillo 251, (4000) san Miguel de Tucumán, Tucumán, Argentina bFacultad de Ciencias Naturales e Instituto Miguel Lillo – Universidad Nacional de Tucumán; Miguel Lillo 205, (4000) san Miguel de Tucumán, Tucumán, Argentina cGantz Family Collections Center, science & Education, The Field Museum, 1400 south Lake shore drive, Chicago, IL 60605-2496 dInstituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Chile Abstract – Cephaloziella hampeana (Nees) Schiffn. ex Loeske is recorded for the first time in South America. This record considerably extends the distributional range of C. hampeana and raises the question on the role that high mountain environments play in dispersing species along the continent. The morphological differences of C. hampeana with its purportedly allied species are discussed. Additionally, its disjunct distributional pattern is briefly compared with those of other liverworts. Photomicrographs and a distributional map are provided. Distribution / Marchantiophyta / South America It is widely recognised that distributional patterns of some bryophytes groups are scarcely known, owing to either bias sampling or intrinsic features (Matteri, 2000). Nevertheless, some biogeographic patterns are clearly established (Shaw, 2001; Ochyra et al., 2008). Among these, Ochyra et al. (2008) identified the bipolar intermediate pattern as a remarkable distribution type reportedly found in only a few species. This type of distribution involves a disjunction between circumboreal and circumantarctic areas, with an intermediate location at high mountains within the tropics (Ochyra et al., 2008).
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • North American H&A Names
    A very tentative and preliminary list of North American liverworts and hornworts, doubtless containing errors and omissions, but forming a basis for updating the spreadsheet of recognized genera and numbers of species, November 2010. Liverworts Blasiales Blasiaceae Blasia L. Blasia pusilla L. Fossombroniales Calyculariaceae Calycularia Mitt. Calycularia crispula Mitt. Calycularia laxa Lindb. & Arnell Fossombroniaceae Fossombronia Raddi Fossombronia alaskana Steere & Inoue Fossombronia brasiliensis Steph. Fossombronia cristula Austin Fossombronia foveolata Lindb. Fossombronia hispidissima Steph. Fossombronia lamellata Steph. Fossombronia macounii Austin Fossombronia marshii J. R. Bray & Stotler Fossombronia pusilla (L.) Dumort. Fossombronia longiseta (Austin) Austin Note: Fossombronia longiseta was based on a mixture of material belonging to three different species of Fossombronia; Schuster (1992a p. 395) lectotypified F. longiseta with the specimen of Austin, Hepaticae Boreali-Americani 118 at H. An SEM of one spore from this specimen was previously published by Scott and Pike (1988 fig. 19) and it is clearly F. pusilla. It is not at all clear why Doyle and Stotler (2006) apply the name to F. hispidissima. Fossombronia texana Lindb. Fossombronia wondraczekii (Corda) Dumort. Fossombronia zygospora R.M. Schust. Petalophyllum Nees & Gottsche ex Lehm. Petalophyllum ralfsii (Wilson) Nees & Gottsche ex Lehm. Moerckiaceae Moerckia Gottsche Moerckia blyttii (Moerch) Brockm. Moerckia hibernica (Hook.) Gottsche Pallaviciniaceae Pallavicinia A. Gray, nom. cons. Pallavicinia lyellii (Hook.) Carruth. Pelliaceae Pellia Raddi, nom. cons. Pellia appalachiana R.M. Schust. (pro hybr.) Pellia endiviifolia (Dicks.) Dumort. Pellia endiviifolia (Dicks.) Dumort. ssp. alpicola R.M. Schust. Pellia endiviifolia (Dicks.) Dumort. ssp. endiviifolia Pellia epiphylla (L.) Corda Pellia megaspora R.M. Schust. Pellia neesiana (Gottsche) Limpr. Pellia neesiana (Gottsche) Limpr.
    [Show full text]
  • Article ISSN 1179-3163 (Online Edition)
    Phytotaxa 63: 21–68 (2012) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2012 Magnolia Press Article ISSN 1179-3163 (online edition) Early Land Plants Today: Index of Liverworts & Hornworts 2009–2010 LARS SÖDERSTRÖM1, ANDERS HAGBORG2, MARSHALL R. CROSBY3 & MATT VON KONRAT2 1 Department of Biology, Norwegian University of Science and Technology, N-7491, Trondheim, Norway; [email protected] 2 Department of Botany, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605–2496, U.S.A.;[email protected], [email protected] 3 Missouri Botanical Garden, P. O. Box 299, St. Louis, MO 63166–0299 U.S.A.; [email protected] Abstract A widely accessible list of known plant species is a fundamental requirement for plant conservation and has vast applications. An index of published names of liverworts and hornworts between 2009 and 2010 is provided as part of a continued effort in working toward producing a world checklist of this group. Included in the list are also names overlooked by earlier indices. The list includes 30 higher taxa, 250 species, 52 infraspecific taxa, 31 autonyms, and two fossils for 2009 and 2010. A number of taxa not covered by the earlier indices for 2000-2008 are also included. Key words: Liverworts, hornworts, index, nomenclature Introduction Under the auspices of the Early Land Plants Today project, there has been a strong community-driven effort attempting to address the critical need to synthesize the vast nomenclatural, taxonomic and global distributional data for liverworts (Marchantiophyta) and hornworts (Anthocerotophyta) (von Konrat et al. 2010a). These endeavours are critical in providing the foundation to develop a working checklist of liverworts and hornworts worldwide; the first version is projected to be published in 2012.
    [Show full text]
  • Bryophyte Ecology Table of Contents
    Glime, J. M. 2020. Table of Contents. Bryophyte Ecology. Ebook sponsored by Michigan Technological University 1 and the International Association of Bryologists. Last updated 15 July 2020 and available at <https://digitalcommons.mtu.edu/bryophyte-ecology/>. This file will contain all the volumes, chapters, and headings within chapters to help you find what you want in the book. Once you enter a chapter, there will be a table of contents with clickable page numbers. To search the list, check the upper screen of your pdf reader for a search window or magnifying glass. If there is none, try Ctrl G to open one. TABLE OF CONTENTS BRYOPHYTE ECOLOGY VOLUME 1: PHYSIOLOGICAL ECOLOGY Chapter in Volume 1 1 INTRODUCTION Thinking on a New Scale Adaptations to Land Minimum Size Do Bryophytes Lack Diversity? The "Moss" What's in a Name? Phyla/Divisions Role of Bryology 2 LIFE CYCLES AND MORPHOLOGY 2-1: Meet the Bryophytes Definition of Bryophyte Nomenclature What Makes Bryophytes Unique Who are the Relatives? Two Branches Limitations of Scale Limited by Scale – and No Lignin Limited by Scale – Forced to Be Simple Limited by Scale – Needing to Swim Limited by Scale – and Housing an Embryo Higher Classifications and New Meanings New Meanings for the Term Bryophyte Differences within Bryobiotina 2-2: Life Cycles: Surviving Change The General Bryobiotina Life Cycle Dominant Generation The Life Cycle Life Cycle Controls Generation Time Importance Longevity and Totipotency 2-3: Marchantiophyta Distinguishing Marchantiophyta Elaters Leafy or Thallose? Class
    [Show full text]
  • PLANT SCIENCE Bulletin SUMMER 2015 Volume 61 Number 2
    PLANT SCIENCE Bulletin SUMMER 2015 Volume 61 Number 2 1st place triarch botanical images student travel awards Jennifer dixon, iowa state university Flowers from eragrostis cilianensis (stinkgrass) In This Issue.............. Post-doc unionization at the Naomi Volain honored as a Award winners announced for University of California... p. 40 top 10 nominee for the Global Botany 2015.... p. 30 Teacher Prize.... p. 58 From the Editor PLANT SCIENCE As the Summer 2015 Plant Science Bulletin goes to press, many of us are transitioning from the spring BULLETIN semester into the summer. I find this an especially Editorial Committee bittersweet time of year as I wrap up classes and say goodbye to Creighton’s graduating seniors. It is a time Volume 61 to reflect on the past academic year, celebrate achieve- ments, and eat University-catered petit fours. Carolyn M. Wetzel Fortunately, this time of year also means honoring (2015) members of the Botanical Society with well-earned Biology Department awards. In this issue, we are proud to announce the Division of Health and winners of the Kaplan Memorial Lecture and Public Natural Sciences Policy Awards. We also present the winners of sev- Holyoke Community College eral student awards, including the Karling and BSA 303 Homestead Ave Graduate Student Research, Undergraduate Stu- Holyoke, MA 01040 dent Research, Cheadle Travel, and Young Botanist [email protected] Awards. You can find the winning Triarch images on pages 33-34 and I encourage you to view all the Tri- arch submissions at http://botany.org/PlantImages/ ConantSTA2015.php. Lindsey K. Tuominen Congratulations to all of these commendable (2016) botanists! The Society will be considering many ad- Warnell School of Forestry & ditional awards over the next few months and we will Natural Resources profile more winners in the Fall issue.
    [Show full text]
  • Cephaloziella Konstantinovae (Cephaloziellaceae, Marchantiophyta), a New Leafy Liverwort Species from Russia and Mongolia Identified by Integrative Taxonomy
    Polish Botanical Journal 62(1): 1–19, 2017 e-ISSN 2084-4352 DOI: 10.1515/pbj-2017-0001 ISSN 1641-8190 CEPHALOZIELLA KONSTANTINOVAE (CEPHALOZIELLACEAE, MARCHANTIOPHYTA), A NEW LEAFY LIVERWORT SPECIES FROM RUSSIA AND MONGOLIA IDENTIFIED BY INTEGRATIVE TAXONOMY 1 Yuriy S. Mamontov & Anna A. Vilnet Abstract. In the course of a taxonomic study of the genus Cephaloziella (Spruce) Schiffn. (Cephaloziellaceae, Marchantiophyta) in Asia, the new species Cephaloziella konstantinovae Mamontov & Vilnet, sp. nov., from the eastern regions of Russia and from the Republic of Mongolia was discovered. The new species is formally described and illustrated here. Morphologically it is similar to C. divaricata var. asperifolia (Taylor) Damsh., but differs in its leaf shape and thin-walled, inflated stem and leaf cells. The new species can be distinguished from other Cephaloziella taxa by the following characters: (i) female bracts entirely free from each other and from bracteole, (ii) perianth campanulate, (iii) cells of perianth mouth subquadrate, (iv) capsule spherical, (v) seta with 8–10 + 4–6-seriate morphology, and (vi) elaters with 1–2 spiral bands. Molecular phylogenetic analyses of nrITS1-5.8S-ITS2 and chloroplast trnL-F sequences from 63 samples (34 species, 23 genera) confirm the taxonomical status of the new species. Five specimens of C. konstantinovae form a clade placed sister to a clade of C. elachista (J. B. Jack) Schiffn. and C. rubella (Nees) Warnst. Key words: Cephaloziella konstantinovae, distribution, ecology, new species, Hepaticae, taxonomy, ITS1-2 nrDNA, trnL-F cpDNA Yuriy S. Mamontov, Polar-Alpine Botanical Garden-Institute, Kola Scientific Centre, Russian Academy of Sciences, 184256, Kirovsk, Russia; Komarov Botanical Institute, Russian Academy of Sciences, 2 Prof.
    [Show full text]
  • Integrative Taxonomy Resolves the Cryptic and Pseudo-Cryptic Radula Buccinifera Complex (Porellales, Jungermanniopsida), Including Two Reinstated and Five New Species
    A peer-reviewed open-access journal PhytoKeys 27:Integrative 1–113 (2013) taxonomy resolves the cryptic and pseudo-cryptic Radula buccinifera... 1 doi: 10.3897/phytokeys.27.5523 RESEARCH ARTICLE www.phytokeys.com Launched to accelerate biodiversity research Integrative taxonomy resolves the cryptic and pseudo-cryptic Radula buccinifera complex (Porellales, Jungermanniopsida), including two reinstated and five new species Matt A.M. Renner1, Nicolas Devos2, Jairo Patiño3, Elizabeth A. Brown1, Andrew Orme1, Michael Elgey1, Trevor C. Wilson1, Lindsey J. Gray4, Matt J. von Konrat5 1 Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia 2 Department of Biology, Duke University, Box 90388, Durham NC 27708, U.S.A. 3 Institute of Botany, University of Liège, Liège, Belgium 4 School of Biological Sciences, The University of Sydney, NSW 2006, Australia 5 The ieldF Mu- seum of Natural History, 1400 South Lake Shore Drive, Chicago, Illinois, USA Corresponding author: Matt A.M. Renner ([email protected]) Academic editor: Lyubomir Penev | Received 15 May 2013 | Accepted 20 August 2013 | Published 30 October 2013 Citation: Renner MAM, Devos N, Patiño J, Brown EA, Orme A, Elgey M, Wilson TC, Gray LJ, von Konrat MJ (2013) Integrative taxonomy resolves the cryptic and pseudo-cryptic Radula buccinifera complex (Porellales, Jungermanniopsida), including two reinstated and five new species. PhytoKeys 27: 1–113. doi: 10.3897/phytokeys.27.5523 Abstract Molecular data from three chloroplast markers resolve individuals attributable to Radula buccinifera in six lineages belonging to two subgenera, indicating the species is polyphyletic as currently circumscribed. All lineages are morphologically diagnosable, but one pair exhibits such morphological overlap that they can be considered cryptic.
    [Show full text]
  • ANNALES New Interesting Localities of Cladopodiella Fluitans And
    10.2478/v10067-010-0005-x A N N A L E S U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A L U B L I N – P O L O N I A VOL. LXIV,1 SECTIO C 2009 ROBERT ZUBEL Department of Botany and Mycology, Institute of Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland New interesting localities of Cladopodiella fluitans and Geocalyx graveolens (Marchantiophyta, Jungermanniales) in SE Poland against the background of their distribution in the country Nowe interesujące stanowiska Cladopodiella fluitans i Geocalyx graveolens (Marchantiophyta, Jungermanniales) w południowo-wschodniej Polsce na tle ich rozmieszczenia w kraju SUMMARY Important new data on the occurrence of two liverworts, Cladopodiella fluitans (Ness) H. Buch and Geocalyx graveolens (Schrad.) Ness., in Poland are discussed. Both species are strictly protec- ted by law and endangered (V) in Poland. A detailed description of the localities discovered in the Roztocze National Park (SE Poland) is provided and the geographical distribution of the species in Poland is given and mapped. The importance of the present localities is briefly outlined as the new findings shift the range ofCladopodiella fluitans and Geocalyx graveolens eastwards and shed a new light on the current distribution of the species in Poland. STRESZCZENIE W pracy przedstawiono nowe, istotne dane na temat występowania wątrobowców Cladopo- diella fluitans (Ness) H. Buch i Geocalyx graveolens (Schrad.) Ness. w Polsce. Obydwa taksony są ściśle chronione i narażone na wyginięcie (kategoria V) w naszym kraju.
    [Show full text]
  • Article ISSN 2381-9685 (Online Edition)
    Bry. Div. Evo. 043 (1): 284–306 ISSN 2381-9677 (print edition) DIVERSITY & https://www.mapress.com/j/bde BRYOPHYTEEVOLUTION Copyright © 2021 Magnolia Press Article ISSN 2381-9685 (online edition) https://doi.org/10.11646/bde.43.1.20 Advances in understanding of mycorrhizal-like associations in bryophytes SILVIA PRESSEL1*, MARTIN I. BIDARTONDO2, KATIE J. FIELD3 & JEFFREY G. DUCKETT1 1Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; �[email protected]; https://orcid.org/0000-0001-9652-6338 �[email protected]; https://orcid.org/0000-0001-7101-6673 2Imperial College London and Royal Botanic Gardens, Kew TW9 3DS, UK; �[email protected]; https://orcid.org/0000-0003-3172-3036 3 Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK; �[email protected]; https://orcid.org/0000-0002-5196-2360 * Corresponding author Abstract Mutually beneficial associations between plants and soil fungi, mycorrhizas, are one of the most important terrestrial symbioses. These partnerships are thought to have propelled plant terrestrialisation some 500 million years ago and today they play major roles in ecosystem functioning. It has long been known that bryophytes harbour, in their living tissues, fungal symbionts, recently identified as belonging to the three mycorrhizal fungal lineages Glomeromycotina, Ascomycota and Basidiomycota. Latest advances in understanding of fungal associations in bryophytes have been largely driven by the discovery, nearly a decade ago, that early divergent liverwort clades, including the most basal Haplomitriopsida, and some hornworts, engage with a wider repertoire of fungal symbionts than previously thought, including endogonaceous members of the ancient sub-phylum Mucoromycotina.
    [Show full text]
  • Notes on Early Land Plants Today. 37. Towards a Stable, Informative Classification of the Lepidoziaceae (Marchantiophyta)
    Phytotaxa 97 (2): 44–51 (2013) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2013 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.97.2.4 Notes on Early Land Plants Today. 37. Towards a stable, informative classification of the Lepidoziaceae (Marchantiophyta) ENDYMION D. COOPER CMNS-Cell Biology and Molecular Genetics, 2107 Bioscience Research Building, University of Maryland, College Park, MD 20742- 4451, USA; [email protected]. Abstract Recent molecular phylogenies of the Lepidoziaceae indicate that the current classification is incongruent with the phylogeny. Although substantial uncertainties remain, an interim classification is needed. The classification proposed includes a broader definition of the Lembidioideae, reinstatement of Neolepidozia and Tricholepidozia and the recognition of the new genus Ceramanus. While the Zoopsidoideae are unlikely to represent a monophyletic group, it is not yet possible to provide a phylogenetically accurate revision of this subfamily. Introduction The Lepidoziaceae are a species-rich cosmopolitan family of leafy liverworts. Although estimates of total species number for liverworts are notoriously variable (von Konrat et al. 2010), the number of accepted species is c. 860 (ELPT database), perhaps as much as 9–10% of the total liverwort species diversity. Taxonomic diversity is highest in cool, wet areas of post-gondwanan land fragments, but the family is cosmopolitan in distribution. In addition to being species-rich
    [Show full text]