Use Style: Paper Title

Total Page:16

File Type:pdf, Size:1020Kb

Use Style: Paper Title DOI 10.4010/2016.1309 ISSN 2321 3361 © 2016 IJESC Research Article Volume 6 Issue No. 5 Integral Solutions of the Non-Homogeneous Heptic Equation with Five Unknowns 6(x2 y2 ) 11xy 3x 3y 9 72z2 G.Janaki1, C.Saranya2 Assistant Professors1, 2 Department of Mathematics Cauvery College for Women, Tiruchirappalli, Tamil Nadu, India [email protected], [email protected] Abstract: The non-homogeneous Diophantine equation of degree seven with five unknowns represented by 5(x3 y3) 7(x2 y2 ) 4(z3 w3 3wz xy 1) 972 p7 is analyzed for its non-zero distinct integer solutions. A few interesting relations between the solutions and some special numbers are presented. Keywords: Non-homogeneous heptic, heptic equation with five unknowns, Integral solutions. 2010 Mathematics Subject Classification: 11D 41 I. INTRODUCTION j = Jacobsthal-Lucas number of rank ‘n’. Mathematics is the language of patterns and relationships and n TT = Truncated tetrahedral number of rank ‘n’. is used to describe anything that can be quantified. n Diophantine equations has been matter of interest to various CH = Centered Hexagonal number of rank ‘n’. mathematicians. The problem of finding all integer solutions n of a diophantine equation with three or more variables and J = Jacobsthal number of rank ‘n’. n equations of degree at least three, in general presents a good deal of difficulties. A lot is known about equations in two III. METHOD OF ANALYSIS variables in higher degrees. There is vast general theory of The heptic equation to be solved for its non-zero integral homogeneous quadratic equations with three variables. In [1- solution is 3], theory of numbers were discussed. In [4,5], a special (1) Pythagorean triangle problem have been discussed for its integral solutions. In [6-10], higher order equations are On substitution of the transformations, considered for integral solutions. x u 1, y u 1, z v 1,w v 1 (2) In this communication a seventh degree non-homogeneous in (1) leads to, equation, with five variables represented by 2 2 7 u 3 v 81 p (3) We illustrate below four different patterns of non-zero distinct is considered and in particular a few interesting relations integer solutions to (1). among the solutions are presented. Pattern: 1 II. NOTATIONS Assume p p (a,b) a2 3 b2 (4) Obl = Oblong number of rank ‘n’. n where a and b are non-zero integers. T = Polygonal number of rank ‘n’ with sides ‘m’. Substituting (4) in (3), and using factorization method, m,n (u i 3v) (u i 3v) 81 (a i 3b)7 (a i 3b)7 (5) CSn = Centered Square number of rank ‘n’. Equating the like terms and comparing real and imaginary SOn = Stella octangula number of rank ‘n’. parts, we get 7 5 2 3 4 6 On = Octahedral number of rank ‘n’. u u (a,b) 9a 567 a b 2835 a b 1701 a b Gno = Gnomonic number of rank ‘n’. 6 4 3 2 5 7 n v v (a,b) 63 a b 945 a b 1701 a b 243 b Star = Star number of rank ‘n’. n Tha = Thabit-ibn-kurrah number of rank ‘n’. Substituting the above values of u &v in equation (2), the n corresponding integer solutions of (1) are given by Carln = Carol number of rank ‘n’. K n = Kynea number of rank ‘n’. International Journal of Engineering Science and Computing, May 2016 5347 http://ijesc.org/ 7 5 2 3 4 6 Properties: x x (a,b) 9a 567 a b 2835 a b 1701 a b 1 7 5 2 3 4 6 1. y(A, A) x (A, A) p (A, A) StarA T8, A T12, A y y (a,b) 9a 567 a b 2835 a b 1701 a b 1 6 4 3 2 5 7 2 Obl 5 Gno 0 (mod 6) z z (a,b) 63 a b 945 a b 1701 a b 243 b 1 (6) A A 2. z (A, 1) w (A, 1) p (A, 1) 3O SO 2 CS Gno 0 (mod 13) 6 4 3 2 5 7 A A A A w w (a,b) 63 a b 945 a b 1701 a b 243 b 1 2 2 3. y (A, 1) x (A, 1) p (A, 1) CH 2 T Gno 0 (mod 14) p p (a,b) a 3 b A 3, A A n n n Properties: 4. x (2 , 1) y (2 , 1) p (2 , 1) 4K n 4 jn 12 J n 0 (mod 18) 1. z (a,a) w (a,a) p (a,a) CS a 4 T3, a 0 (mod 3) 5. z (A, A) w (A, A) p (A, A) T30, A 2 OblA T10, A 9 Gno 0 (mod 7) 2. x (a,a) y (a,a) p (a,a) CS a 2 Obla 0 (mod 3) A Pattern: 3 3. x (2n , 1) y (2n , 1) 2p (2n , 1) 2K 2 j n n (1 4i 3) (1 4i 3) 6 J 0 (mod 10) Instead of (7), Write 1 (8) n 49 n 4. 3p (2 , 1) 2 Than 3 Carln 0 (mod 14) Substituting (8) and (4) in (6) and employing the method of 5. x (a,a) y (a,a) p (a,a) Star T factorization, following the procedure presented in pattern 2, a 6, a the corresponding integer solutions of (1) are represented by 7 6 5 2 4 3 T14, a 6 Obla 3 Gnoa 0 (mod 2) A 84 A B 63 A B 1260 A B x x (A, B) 32. 76 1 3 4 2 5 6 7 315 A B 2268 A B 189 AB 324 B Pattern: 2 A7 84 A6B 63 A5B2 1260 A4B3 The equation (3) can be written as y y (A, B) 32. 76 1 3 4 2 5 6 7 2 2 7 315 A B 2268 A B 189 AB 324 B u 3 v 81 p 1 (6) 4 A7 7 A6B 252 A5B2 105 A4B3 z z (A, B) 32. 76 1 (9) (1 i 3) (1 i 3) 3 4 2 5 6 7 and write 1 1260 A B 189 A B 756 AB 27 B (7) 4 7 6 5 2 4 3 2 6 4 A 7 A B 252 A B 105 A B Substituting (4) and (7) in (6), and using factorization w w (A, B) 3 . 7 1 1260 A3B4 189 A2B5 756 AB 6 27 B7 method, 2 2 (1 i 3) (1 i 3) p p (A, B) 49 A 147 B 7 7 (u i 3v) (u i 3v) 81 (a i 3b) (a i 3b) 4 Equating the like terms and comparing real and imaginary Properties: parts, we get 1. y(A, A) x (A, A) p (A, A) 32 StarA 4 OblA 9 a7 21 a6b 63 a5b2 315 a 4b3 315 a3b4 u u (a,b) 94 GnoA 0 (mod 64) 2 2 5 6 7 567 a b 189 ab 81 b 2. z (A, A) w (A, A) p (A, A) 64CH A 9 a7 7 a6b 63 a5b2 105 a 4b3 315 a3b4 v v (a,b) 2 CS A 98GnoA 0 (mod 30) 2 5 6 7 2 189 a b 189 ab 27 b 3. 2 6 TTA p (A, 1) 2 T28, A 51 GnoA 0 (mod 325) n n n Since our interest is on finding integer solutions, we have 4. x (2 , 1) y (2 , 1) p (2 , 1) choose and suitably so that and are integers. Let us a b u v 49 ( jn 3 J n K n ) 0 (mod 198) take a 2A and b 2B , n n n 5. z (2 , 1) w (2 , 1) 3p (2 , 1) 98 Than In view of (2), the integer solutions of (1) are given by 147 Carln 0 (mod 684) Pattern: 4 A7 21 A6 B 63 A5B2 315 A4B3 315 A3B4 x x (A, B) 32. 26 1 Instead of (7), write 2 5 6 7 567 A B 189 AB 81 B A7 21 A6 B 63 A5B2 315 A4 B3 315 A3B4 y y (A, B) 32. 26 1 (13 3i 3) (13 3i 3) 567 A2 B5 189 AB 6 81 B7 1 (10) 196 A7 7 A6B 63 A5B2 105 A4B3 315 A3B4 z z (A, B) 32. 26 1 2 5 6 7 Substituting (9) and (4) in (6) and employing the method of 189 A B 189 AB 27 B factorization, following the procedure presented in pattern 2, A7 7 A6B 63 A5B2 105 A4B3 315 A3B4 w w (A, B) 32. 26 1 the corresponding integer solutions of (1) are represented by 2 5 6 7 189 A B 189 AB 27 B p p (A, B) 4 A2 12 B2 International Journal of Engineering Science and Computing, May 2016 5348 http://ijesc.org/ 13A7 63 A6 B 819 A5B2 945 A4 B3 V. REFERENCES x x (A, B) 32. 146 1 3 4 2 5 6 7 [1] Carmichael, R.D., The theory of numbers and 4095 A B 1701 A B 2457 AB 243 B Diophantine Analysis, Dover Publications,New York, 13A7 63 A6 B 819 A5B2 945 A4 B3 y y (A, B) 32. 146 1 1959. 4095 A3B4 1701 A2 B5 2457 AB 6 243 B7 3 A7 91 A6 B 189 A5B2 1365 A4 B3 [2] Dickson L.E, History of Theory of Numbers, Vol.11, z z (A, B) 32.
Recommended publications
  • On the Non-Homogeneous Quintic Equation with Seven Unknowns
    International Journal of Innovative Science and Modern Engineering (IJISME) ISSN: 2319-6386, Volume-3 Issue-6, May 2015 On the Non-Homogeneous Quintic Equation with Seven Unknowns S. Vidhyalakshmi, M. A. Gopalan, K. Lakshmi by . A few Abstract— We obtain infinitely many non-zero integer solutions (,,,,,,)x y z w X Y T satisfying the non- homogeneous relations between the solutions and the special numbers are presented quintic equation with seven unknowns given by Initially, the following two sets of solutions in 2 2 2 2 2 2 3 . Various xyx()()() y zwz w X YT (,,,,,,)x y z w X Y T satisfy the given equation: interesting relations between the solutions and special numbers, 2 2 2 namely, polygonal numbers, Pyramidal numbers, Stella (2k k p ,2 k k p , p 2 k k , , Octangular numbers, Octahedral numbers,, Jacobsthal number, 22 Jacobsthal-Lucas number, keynea number, Centered pyramidal p2 k k ,2 k ,4 k ,2 k ) numbers are presented (2k2 3 k p 1,2 k 2 3 k p 1,2 p k 2 k , Index Terms— Centered pyramidal numbers, Integral p2 k22 k ,2 k 1,4 k 4 k 1,2 k 1) solutions, Non-homogeneous Quintic equation, Polygonal numbers, Pyramidal numbers However we have other patterns of solutions, which are MSC 2010 Mathematics subject classification: 11D41. illustrated below: Notations: II. METHOD OF ANALYSIS Tmn, - Polygonal number of rank n with size m The Diophantine equation representing the non- SO - Stella Octangular number of rank n homogeneous quintic equation is given by n (1) Jn - Jacobsthal number of rank of Introduction of the transformations KY - Keynea number of rank n xupyupz ,,,, pvwpv CP - Centered hexagonal pyramidal number of rank n,6 X u v, Y u v (2) m in (1) leads to Pn - Pyramidal number of rank with size u2 v 2 T 3 (3) OH - Octahedral number of rank n The above equation (3) is solved through different approaches j - Jacobsthal-Lucas number of rank and thus, one obtains different sets of solutions to (1) n A.
    [Show full text]
  • VOLUME III ISSUE III VOLUME III ISSUE III December 2020 ISSN 2636-8692
    JOURNAL OF MATHEMATICAL SCIENCES AND MODELLING ISSN: 2636-8692 VOLUME III ISSUE III VOLUME III ISSUE III December 2020 ISSN 2636-8692 http://dergipark.gov.tr/jmsm JOURNAL OF MATHEMATICAL SCIENCES AND MODELLING Editors Editor in Chief Editor in Chief Mahmut Akyi˘git Merve Ilkhan˙ Department of Mathematics, Department of Mathematics, Faculty of Science and Arts, Sakarya University, Faculty of Science and Arts, D¨uzce University, Sakarya-TURK¨ IYE˙ D¨uzce-TURK¨ IYE˙ [email protected] [email protected] Editor in Chief Managing Editor Soley Ersoy Fuat Usta Department of Mathematics, Department of Mathematics, Faculty of Science and Arts, Sakarya University, Faculty of Science and Arts, D¨uzce University, Sakarya-TURK¨ IYE˙ D¨uzce-TURK¨ IYE˙ [email protected] [email protected] Editorial Board of Journal of Mathematical Sciences and Modelling Murat Tosun Hari Mohan Srivastava Sakarya University, University of Victoria, TURK¨ IYE˙ CANADA George D. Magoulas James F. Peters University of London, University of Manitoba, UNITED KINGDOM CANADA Florentin Smarandache Mujahid Abbas University of New Mexico, University of Pretoria, USA SOUTH AFRICA Syed Abdul Mohiuddine Emrah Evren Kara King Abdulaziz University, D¨uzce University, SAUDI ARABIA TURK¨ IYE˙ Wei Gao G¨ul¸sah Akt¨ure, School of Information Science and Technology, D¨uzce University P. R. CHINA TURK¨ IYE˙ F. G. Lupianez Khrisnan Balasubramanian Complutense University of Madrid, Arizona State University, SPAIN USA Ismat Beg Murat Kiri¸s¸ci Lahor School of Economics, Istanbul˙
    [Show full text]
  • Second Grade Unit 1: Extending Base Ten Understanding
    Georgia Standards of Excellence Curriculum Frameworks Mathematics GSE Second Grade Unit 1: Extending Base Ten Understanding These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. Georgia Department of Education Georgia Standards of Excellence Framework GSE Extending Base Ten Understanding Unit 1 Unit 1: Extending Base Ten Understanding TABLE OF CONTENTS Overview……………………………………………………………………………..... 3 Standards for Mathematical Practice …………………………………………………. 5 Standards for Mathematical Content …………………………………………………. 6 Big Ideas ………………………………………………………………………………. 6 Essential Questions ……………………………………………………………………….. 7 Concepts and Skills to Maintain ………………………………………………………. 7 Strategies for Teaching and Learning ……………………………………………. 8 Selected Terms and Symbols ………………………………………………..………… 10 Task Types ………………………………………………………………...………….. 12 Task Descriptions …………………………………………………………………….. 13 Intervention Table………………….………………………………………………….. 15 Straws! Straws! Straws!.........................................................................… 16 Where Am I on the Number Line? …………………………………… 23 I Spy a Number ………………………………………………………. 31 Number Hop …………………………………………………………… 38 Place Value Play …………………………………………………….... 44 The Importance of Zero ………………………………………………. 51 Base Ten Pictures …………………………………………………….. 62 Building Base Ten Numbers …………………………………………. 69 What's My Number? …………………………………………………. 74 Capture the Caterpillar ……………………………………………….. 79 Formative Assessment Lesson ……………………………………….. 88 Fill the Bucket ………………………………………………………..
    [Show full text]
  • Geometric Mean Sequences
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UDORA - University of Derby Online Research Archive ON THE JACOBSTHAL, HORADAM AND GEOMETRIC MEAN SEQUENCES PETER J. LARCOMBE AND JULIUS FERGY T. RABAGO Abstract. This paper, in considering aspects of the geometric mean sequence, offers new results connecting Jacobsthal and Horadam num- bers which are established and then proved independently. 1. Introduction 1 Consider the (scaled) geometric mean sequence fgn(a; b; c)gn=0 = fgn(a; 1 b; c)g0 defined, given g0 = a, g1 = b, through the recurrence p (1.1) gn+1 = c gngn−1; n ≥ 1; where c 2 Z+ is a scaling constant. Shiu and Yerger [7], on imposing a = b = 1, introduced the c = 2 instance of (1.1) as the recursion generating the 1 geometric Fibonacci sequence fgn(1; 1; 2)g0 , giving its growth rate along with that of an equivalent harmonic Fibonacci sequence (together with growth rates of integer valued versions). In this paper we assume c = 1 and begin by finding the growth rate of the sequence 1 1 1 1 2 3 4 3 5 8 fgn(a; b; 1)g0 = fa; b; (ab) ; (ab ) ; (a b ) ; 5 11 1 11 21 1 (1.2) (a b ) 16 ; (a b ) 32 ;:::g using three alternative approaches, two of which are routine with the other based on a connection between this sequence and the Jacobsthal sequence [6, Sequence No. A001045] discernible in the powers of a; b in (1.2). Other results follow accordingly, with Jacobsthal numbers expressed in terms of families of parameterized Horadam numbers in two particular identities that are established in different ways.
    [Show full text]
  • International Journal of Engineering Research-Online a Peer Reviewed International Journal Vol.1., Issue.3., 2013 Articles Available Online
    International journal of Engineering Research-Online A Peer Reviewed International Journal Vol.1., Issue.3., 2013 Articles available online http://www.ijoer.in RESEARCH ARTICLE ISSN: 2321-7758 AN INTERESTING TRANSCENDENTAL EQUATION WITH SIX UNKNOWNS 3 2 x2 y 2 xy X 2 Y 2 z 2 w 2 M.A.GOPALAN, S.VIDHYALAKSHMI, K.LAKSHMI Department of Mathematics, Shrimati Indira Gandhi College,Trichy-620002. Article Received: 11/11/2013 Article Revised on: 21/11/2013 Article Accepted on: 22/11/2013 ABSTRACT The transcendental equation with six unknowns involving surds represented by the 3 equation 2 x2 y 2 xy X 2 Y 2 z 2 w 2 is analyzed for its patterns of non-zero distinct integral solutions. Infinitely many non-zero integer sextuple (,,,,,)x y X Y z w satisfying the above equation are obtained. Three different patterns for finding the solution to the above problem are discussed. The relations between the solutions and the Polygonal numbers, Pyramidal numbers, Pronic number, Jacobsthal number, Jacobsthal-Lucas number, Octahedral number, kynea K.LAKSHMI number, Centered pyramidal numbers and Four Dimensional Figurative numbers are presented. KEYWORDS: Transcendental equation, integral solutions, the Polygonal numbers, Pyramidal numbers, Pronic number, Jacobsthal number, Jacobsthal-Lucas number, Octahedral number, kynea number, Centered pyramidal numbers and Four Dimensional Figurative numbers. M.Sc 2000 mathematics subject classification: 11D99 NOTATIONS: KYn -kynea number of rank Tmn, -Polygonal number of rank n with size m CPn,3 - Centered Triangular pyramidal number of m Pn - Pyramidal number of rank with size rank CP - Centered hexagonal pyramidal number of PRn - Pronic number of rank n n,6 rank OHn - Octahedral number of rank n F4,n ,3 - Four Dimensional Figurative number of SOn -Stella octangular number of rank rank whose generating polygon is a triangle S -Star number of rank n F4,n ,5 - Four Dimensional Figurative number of Jn -Jacobsthal number of rank of rank whose generating polygon is a pentagon.
    [Show full text]
  • Triangle Geometry and Jacobsthal Numbers
    Irish Math. Soc. Bulletin 51 (2003), 45–57 45 Triangle Geometry and Jacobsthal Numbers PAUL BARRY Abstract. The convergence properties of certain triangle centres on the Euler line of an arbitrary triangle are studied. Properties of the Jacobsthal numbers, which appear in this process, are examined, and a new formula is given. A Ja- cobsthal decomposition of Pascal’s triangle is presented. This review article takes as its motivation a simple problem in ele- mentary triangle geometry to study some properties of the Jacobs- thal numbers, defined by the recurrence relation an+2 = an+1 + 2an; a0 = 0; a1 = 1 (1) These numbers form the sequence 0; 1; 1; 3; 5; 11; 21; 43;::: [Sloane, A001045]. We let J(n) or Jn stand for the nth Jacobsthal number, starting with J(0)=0. These numbers are linked to the binomial co- efficients in a number of ways. Traditional formulas for J(n) include floor((n+1)=2) 1 X J(n) = C(n; 2k ¡ 1)32k¡1 (2) 3:2n¡1 k=1 floorX(n=2) J(n) = C(n ¡ 1 ¡ j; j)2j (3) j=0 To simplify expressions, we shall not normally give upper summation bounds in what follows, using the fact that C(n; k) = 0 for k > n to ensure that all summations are finite. The investigation of this article leads to another formula, namely X X J(n) = C(n; k) = C(n; k) (4) (n+k) mod 3=1 (n+k) mod 3=2 which emphasizes how the Jacobsthal numbers provide an interesting decomposition property of Pascal’s triangle.
    [Show full text]
  • REPRESENTING GENERALIZED LUCAS NUMBERS in TERMS of THEIR A-VALUES Piero Filipponi Fondazione Ugo Bordoni, Via B
    REPRESENTING GENERALIZED LUCAS NUMBERS IN TERMS OF THEIR a-VALUES Piero Filipponi Fondazione Ugo Bordoni, Via B. Castiglione 59,1-00142 Rome, Italy e-mail: [email protected] (Submitted April 1997) 1. INTRODUCTION The elements of the sequences {Ak} obeying the second-order recurrence relation Jo, Ax arbitrary real numbers, and Ak = PAk_t - QAk_2 for k > 2 (1.1) are commonly referred to as generalized Lucas numbers with generating parameters P and Q (e.g., see [7], p. 41 ff.), and the equation x2-Px + Q = 0 (1.2) is usually called the characteristic equation of {Ak}. In what follows, the root 2 aPtQ = (P + JP -4Q)/2 (1.3) of (1.2) will be referred to as the a-value of {Ak}. Here, we shall confine ourselves to consider- ing the well-known sequences {Ak} that have (4), A) = (2, P) or (0,1) as initial conditions, and (P, 0 = (m9 -1) or (1, -m) (m a natural number) (1.4) as generating parameters (e.g., see [2] and [3]). The aim of this note is to find the representation of the elements of these sequences in terms of their a-values. More precisely, we shall express Ak as 00 4fe = lLcraP,Q icr ~ ° o r mS(r)> s(r) nonnegative integers] (1.5) r=-oo with crcr+l = 0, and with at most finitely many nonzero cr. The special case m = 1, for which, depending on the initial conditions, Ak equals the k^ Lucas number Lk or the k^ Fibonacci number Fk, is perhaps the most interesting (see Section 4).
    [Show full text]
  • Integer Sequences
    UHX6PF65ITVK Book > Integer sequences Integer sequences Filesize: 5.04 MB Reviews A very wonderful book with lucid and perfect answers. It is probably the most incredible book i have study. Its been designed in an exceptionally simple way and is particularly just after i finished reading through this publication by which in fact transformed me, alter the way in my opinion. (Macey Schneider) DISCLAIMER | DMCA 4VUBA9SJ1UP6 PDF > Integer sequences INTEGER SEQUENCES Reference Series Books LLC Dez 2011, 2011. Taschenbuch. Book Condition: Neu. 247x192x7 mm. This item is printed on demand - Print on Demand Neuware - Source: Wikipedia. Pages: 141. Chapters: Prime number, Factorial, Binomial coeicient, Perfect number, Carmichael number, Integer sequence, Mersenne prime, Bernoulli number, Euler numbers, Fermat number, Square-free integer, Amicable number, Stirling number, Partition, Lah number, Super-Poulet number, Arithmetic progression, Derangement, Composite number, On-Line Encyclopedia of Integer Sequences, Catalan number, Pell number, Power of two, Sylvester's sequence, Regular number, Polite number, Ménage problem, Greedy algorithm for Egyptian fractions, Practical number, Bell number, Dedekind number, Hofstadter sequence, Beatty sequence, Hyperperfect number, Elliptic divisibility sequence, Powerful number, Znám's problem, Eulerian number, Singly and doubly even, Highly composite number, Strict weak ordering, Calkin Wilf tree, Lucas sequence, Padovan sequence, Triangular number, Squared triangular number, Figurate number, Cube, Square triangular
    [Show full text]
  • Observations on Icosagonal Pyramidal Number
    International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 2, Issue 7 (July 2013), PP. 32-37 www.irjes.com Observations On Icosagonal Pyramidal Number 1M.A.Gopalan, 2Manju Somanath, 3K.Geetha, 1Department of Mathematics, Shrimati Indira Gandhi college, Tirchirapalli- 620 002. 2Department of Mathematics, National College, Trichirapalli-620 001. 3Department of Mathematics, Cauvery College for Women, Trichirapalli-620 018. ABSTRACT:- We obtain different relations among Icosagonal Pyramidal number and other two, three and four dimensional figurate numbers. Keyword:- Polygonal number, Pyramidal number, Centered polygonal number, Centered pyramidal number, Special number MSC classification code: 11D99 I. INTRODUCTION Fascinated by beautiful and intriguing number patterns, famous mathematicians, share their insights and discoveries with each other and with readers. Throughout history, number and numbers [2,3,7-15] have had a tremendous influence on our culture and on our language. Polygonal numbers can be illustrated by polygonal designs on a plane. The polygonal number series can be summed to form “solid” three dimensional figurate numbers called Pyramidal numbers [1,4,5 and 6] that can be illustrated by pyramids. In this communication we 32 20 65n n n deal with Icosagonal Pyramidal numbers given by p and various interesting relations n 2 among these numbers are exhibited by means of theorems involving the relations. Notation m pn = Pyramidal number of rank n with sides m tmn, = Polygonal number of rank n with sides m jaln = Jacobsthal Lucas number ctmn, = Centered Polygonal number of rank n with sides m m cpn = Centered Pyramidal number of rank n with sides m gn = Gnomonic number of rank n with sides m pn = Pronic number carln = Carol number mern = Mersenne number, where n is prime culn = Cullen number Than = Thabit ibn kurrah number II.
    [Show full text]
  • On the Third-Order Jacobsthal and Third-Order Jacobsthal-Lucas
    ON THE THIRD-ORDER JACOBSTHAL AND THIRD-ORDER JACOBSTHAL-LUCAS SEQUENCES AND THEIR MATRIX REPRESENTATIONS GAMALIEL CERDA-MORALES Abstract. In this paper, we first give new generalizations for third-order Ja- (3) (3) cobsthal {Jn }n∈N and third-order Jacobsthal-Lucas {jn }n∈N sequences for Jacobsthal and Jacobsthal-Lucas numbers. Considering these sequences, we (3) (3) define the matrix sequences which have elements of {Jn }n∈N and {jn }n∈N. Then we investigate their properties. 2010 Mathematics Subject Classification. 11B37, 11B39, 15A15. Keywords and phrases. Third-order Jacobsthal number, third-order Jacobsthal- Lucas number, matrix representation, matrix methods, generalized Jacobsthal number. 1. Introduction The Jacobsthal numbers have many interesting properties and applications in many fields of science (see, e.g., [1]). The Jacobsthal numbers Jn are defined by the recurrence relation (1.1) J =0, J =1, Jn = Jn +2Jn− , n 1. 0 1 +1 1 ≥ Another important sequence is the Jacobsthal-Lucas sequence. This sequence is defined by the recurrence relation j0 =2, j1 =1, jn+1 = jn +2jn−1, n 1. (see, [7]). ≥ In [6] the Jacobsthal recurrence relation (1.1) is extended to higher order re- currence relations and the basic list of identities provided by A. F. Horadam [7] is expanded and extended to several identities for some of the higher order cases. In (3) particular, third order Jacobsthal numbers, Jn n≥0, and third order Jacobsthal- (3) { } Lucas numbers, jn n≥ , are defined by { } 0 (1.2) J (3) = J (3) + J (3) +2J (3), J (3) =0, J (3) = J (3) =1, n 0, n+3 n+2 n+1 n 0 1 2 ≥ arXiv:1806.03709v1 [math.CO] 10 Jun 2018 and (1.3) j(3) = j(3) + j(3) +2j(3), j(3) =2, j(3) =1, j(3) =5, n 0, n+3 n+2 n+1 n 0 1 2 ≥ respectively.
    [Show full text]
  • On Non-Homogeneous Sextic Equation with Five Unknowns
    Asian Journal of Applied Science and Technology (AJAST) Page | 45 Volume 1, Issue 6, Pages 45-47, July 2017 On Non-Homogeneous Sextic Equation with Five Unknowns 2x yx3 y3 39z2 w2 T4 1 2 3 S.Vidhyalakshmi , M.A.Gopalan and S.Aarthy Thangam 1Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy, Tamil Nadu, India. 2Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy, Tamil Nadu, India. 3Research Scholar, Department of Mathematics, Shrimati Indira Gandhi College, Trichy, Tamil Nadu, India. Article Received: 27 June 2017 Article Accepted: 10 July 2017 Article Published: 16 July 2017 ABSTRACT The non-homogeneous sextic equation with five unknowns given by 2x yx3 y3 39z2 w2 T4 is considered and analysed for its non-zero distinct integer solutions. Employing the linear transformations x u v,y u v,z 2u v,w 2u v,(u v 0) and applying the method of factorization, three different patterns of non-zero distinct integer solutions are obtained. A few interesting relations between the solutions and special numbers namely Four dimensional numbers, Polygonal numbers, Octahedral numbers, Centered Pyramidal numbers, Jacobsthal numbers, Jacobsthal-Lucas numbers, Kynea numbers and Star numbers are presented. Keywords: Integer solutions, Non-homogeneous sextic equation and Sextic equation with five unknowns. 1. INTRODUCTION Four dimensional Figurate number of rank n whose The theory of Diophantine equations offers a rich variety of generating polygon is a pentagon fascinating problems [1-4] particularly, in [5, 6] Sextic 3n4 10n3 9n2 2n F equations with three unknowns are studied for their integral 4,n,5 4! solutions.
    [Show full text]
  • Jacobsthal Numbers and Alternating Sign Matrices
    1 2 Journal of Integer Sequences, Vol. 3 (2000), 3 Article 00.2.3 47 6 23 11 Jacobsthal Numbers and Alternating Sign Matrices Darrin D. Frey and James A. Sellers Department of Science and Mathematics Cedarville College Cedarville, OH 45314 Email addresses: [email protected] and [email protected] Abstract th Let A(n) denote the number of n × n alternating sign matrices and Jm the m Jacobsthal number. It is known that n−1 (3` + 1)! A(n) = : (n + `)! ` Y=0 The values of A(n) are in general highly composite. The goal of this paper is to prove that A(n) is odd if and only if n is a Jacobsthal number, thus showing that A(n) is odd infinitely often. 2000 Mathematics Subject Classification: 05A10, 15A15 Keywords: alternating sign matrices, Jacobsthal numbers 1 Introduction In this paper we relate two seemingly unrelated areas of mathematics: alternating sign matrices and Jacob- sthal numbers. We begin with a brief discussion of alternating sign matrices. An n × n alternating sign matrix is an n × n matrix of 1s, 0s and −1s such that • the sum of the entries in each row and column is 1, and • the signs of the nonzero entries in every row and column alternate. Alternating sign matrices include permutation matrices, in which each row and column contains only one nonzero entry, a 1. For example, the seven 3 × 3 alternating sign matrices are 1 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 ; 0 0 1 ; 1 0 0 ; 0 1 0 ; 0 0 1 ! 0 1 0 ! 0 1 0 ! 1 0 0 ! 0 1 0 0 1 0 0 1 0 1 0 0 ; 0 0 1 ; 1 −1 1 : 0 0 1 ! 1 0 0 ! 0 1 0 ! The determination of a closed formula for A(n) was undertaken by a variety of mathematicians over the last 25 years or so.
    [Show full text]