Genome-Wide Association Study of Perioperative Myocardial Infarction After Coronary Artery Bypass Surgery

Total Page:16

File Type:pdf, Size:1020Kb

Genome-Wide Association Study of Perioperative Myocardial Infarction After Coronary Artery Bypass Surgery Open Access Research BMJ Open: first published as 10.1136/bmjopen-2014-006920 on 6 May 2015. Downloaded from Genome-wide association study of perioperative myocardial infarction after coronary artery bypass surgery Miklos D Kertai,1 Yi-Ju Li,2,3 Yen-Wei Li,2 Yunqi Ji,2 John Alexander,4,5 Mark F Newman,1,5 Peter K Smith,6 Diane Joseph,5 Joseph P Mathew,1 Mihai V Podgoreanu,1,5 for the Duke Perioperative Genetics and Safety Outcomes (PEGASUS) Investigative Team To cite: Kertai MD, Li Y-J, ABSTRACT et al Strengths and limitations of this study Li Y-W, . Genome-wide Objectives: Identification of patient subpopulations association study susceptible to develop myocardial infarction (MI) or, ▪ of perioperative myocardial This is the first genome-wide association study conversely, those displaying either intrinsic infarction after coronary of perioperative myocardial infarction, using pro- artery bypass surgery. BMJ cardioprotective phenotypes or highly responsive to spective cohorts of cardiac surgical patients, Open 2015;5:e006920. protective interventions remain high-priority knowledge standard definitions of the primary phenotype doi:10.1136/bmjopen-2014- gaps. We sought to identify novel common genetic and full adjustment for non-genetic risk factors. 006920 variants associated with perioperative MI in patients ▪ We conducted comprehensive and complemen- undergoing coronary artery bypass grafting using tary single marker and pathway-based genome- ▸ Prepublication history and genome-wide association methodology. wide association analyses. supplementary files are Setting: 107 secondary and tertiary cardiac surgery ▪ The study is powered to detect relatively large available. To view please visit centres across the USA. effect sizes. the journal (http://dx.doi.org/ Participants: We conducted a stage I genome-wide ▪ Rare genetic variant effects not analysed. 10.1136/bmjopen-2014- association study (GWAS) in 1433 ethnically diverse ▪ Predominantly Caucasian cohort, thus findings 006920). patients of both genders (112 cases/1321 controls) cannot be generalised to other populations. from the Genetics of Myocardial Adverse Outcomes and Received 14 October 2014 Graft Failure (GeneMAGIC) study, and a stage II analysis Revised 10 March 2015 http://bmjopen.bmj.com/ Accepted 12 March 2015 in an expanded population of 2055 patients (225 cases/ Conclusions: Using a two-stage GWAS and pathway 1830 controls) combined from the GeneMAGIC and analysis, we identified and prioritised several potential Duke Perioperative Genetics and Safety Outcomes susceptibility loci for perioperative MI. (PEGASUS) studies. Patients undergoing primary non- emergent coronary bypass grafting were included. Primary and secondary outcome measures: INTRODUCTION The primary outcome variable was perioperative MI, Despite advances in surgical techniques and defined as creatine kinase MB isoenzyme (CK-MB) pharmacological therapy, the incidence of values ≥10× upper limit of normal during the first on September 26, 2021 by guest. Protected copyright. postoperative day, and not attributable to preoperative myocardial infarction (MI) after coronary MI. Secondary outcomes included postoperative CK-MB artery bypass grafting (CABG) remains as as a quantitative trait, or a dichotomised phenotype high as 19%, and is associated with increased 1 based on extreme quartiles of the mortality and long-term morbidity. Strategies CK-MB distribution. to identify subpopulations of patients at risk Results: Following quality control and adjustment for for developing large myocardial infarcts on clinical covariates, we identified 521 single nucleotide the one hand, or those displaying an intrinsic polymorphisms in the stage I GWAS analysis. Among cardioprotective state on the other hand, these, 8 common variants in 3 genes or intergenic remain high-priority knowledge gaps and −5 regions met p<10 in stage II. A secondary analysis could inform selection of more specificpro- using CK-MB as a quantitative trait (minimum tective agents.2 p=1.26×10−3 for rs609418), or a dichotomised The evidence for heritability of MI is strik- phenotype based on extreme CK-MB values (minimum −6 ing, supported both by family studies and, For numbered affiliations see p=7.72×10 for rs4834703) supported these findings. end of article. Pathway analysis revealed that genes harbouring top- recently, by a number of well powered and scoring variants cluster in pathways of biological replicated genome-wide association studies Correspondence to relevance to extracellular matrix remodelling, (GWAS), which primarily implicate common Dr Mihai V Podgoreanu; endoplasmic reticulum-to-Golgi transport and genetic variants at the 9p21 locus in multiple 3–6 [email protected] inflammation. racial groups. However, although family- Kertai MD, et al. BMJ Open 2015;5:e006920. doi:10.1136/bmjopen-2014-006920 1 Open Access BMJ Open: first published as 10.1136/bmjopen-2014-006920 on 6 May 2015. Downloaded from based methods are not practical for studying periopera- discovery data set, leading to a total of 2055 patients. tive MI (PMI), its genetic basis is strongly suggested by The additional patients underwent CABG with cardio- several observations, including wide variability in inci- pulmonary bypass between 1997 and 2006 as part of the dence and severity that is poorly explained by clinical Perioperative Genetics and Safety Outcomes Study, an and procedural risk factors, different racial susceptibility IRB-approved longitudinal study at the Duke University profiles and results from preclinical animal models. Medical Center.11 12 Indeed, extensive genetic variability has been found in biological pathways implicated in the pathophysiology of Definition of PMI postoperative MI, such as the complex acute inflamma- PMI was defined according to the universal definition of tory response to cardiac surgery. Mounting evidence for MI19 as an elevation in the plasma level of creatine heritability of a proinflammatory state suggests that indi- kinase MB isoenzyme (CK-MB) that was >10 times the vidual genetic history may also significantly modulate the upper limit of normal, as measured by a core laboratory magnitude of postoperative inflammatory response after within 24 h after surgery, and that was not attributable to cardiac surgery.7 Yet only a few studies have identified an intervening clinical event or preoperative MI (adjudi- allelic associations with altered susceptibility to myocardial cated by the PREVENT-IV Clinical Events Committee).18 ischaemia-reperfusion injury in cardiac surgical popula- tions, all based on a candidate gene association Genotyping and quality controls – approach.8 12 Thus, the overall influence of common Genomic DNA was isolated from whole blood or saliva genetic variation on the incidence of PMI remains poorly using standard procedures. Genotyping in both cohorts understood. was performed on the Illumina Human610-Quad Recently, integrated testing of genes involved in the BeadChip at the Duke Genomic Analysis Facility. Sample same biological pathway has emerged as an alternative and genotype quality control of data flow included strategy for evaluating the combined effects of multiple assessment of call rates, gender check, cryptic related- genetic variants with small effect size on a disease ness, SNP missingness and the Hardy-Weinberg equilib- – phenotype.13 15 Given the polygenic nature of disease rium, as previously described.20 We used principal susceptibility, this approach is increasingly being used to components derived from the EIGENSTRAT21 method identify groups of gene variants with shared cellular to control for population stratification (see online sup- function that are enriched for disease, while also improv- plementary methods). ing the statistical power of GWAS. In this study, we adopted this strategy by first employing genome-wide Statistical analysis association methodology to identify common genetic Univariate regression analysis was performed to test dif- variants associated with PMI after CABG, followed by ferences in demographic, clinical and procedural http://bmjopen.bmj.com/ pathway-based analyses to uncover biological mechan- characteristics between patients with and without post- isms of relevance to PMI. operative MI; statistically significant covariates were sub- sequently used to adjust genetic association tests. Genome-wide association analyses performed in the METHODS stage I cohort used multivariable logistic regression The study design and reporting of the results follow the models implemented in PLINK 1.07, assuming an addi- ‘ recommendations by Strengthening the Reporting of tive genetic model, and including significant clinical cov- ’ 16 Genetic Association Studies (STREGA). We per- ariates and the top 10 principal components to adjust on September 26, 2021 by guest. Protected copyright. 17 formed a joint two-stage GWAS combined with a for population stratification (see online supplementary pathway analysis approach. table S1). Statistical significance for stage I analyses was a priori arbitrarily defined as a two-tailed p<0.001, to Patient populations balance between the overly conservative Bonferroni cor- The stage I cohort (discovery cohort) comprised 1493 rection and type II error, given that we had an a priori ethnically diverse subjects who underwent an isolated defined replication data set to obviate type I error. In CABG with cardiopulmonary bypass for the first time stage II analyses, the same clinical covariate and princi- and were enrolled between 2002 and 2003 in the pal component
Recommended publications
  • Mea6 Controls VLDL Transport Through the Coordinated Regulation of COPII Assembly
    Cell Research (2016) 26:787-804. npg © 2016 IBCB, SIBS, CAS All rights reserved 1001-0602/16 $ 32.00 ORIGINAL ARTICLE www.nature.com/cr Mea6 controls VLDL transport through the coordinated regulation of COPII assembly Yaqing Wang1, *, Liang Liu1, 2, *, Hongsheng Zhang1, 2, Junwan Fan1, 2, Feng Zhang1, 2, Mei Yu3, Lei Shi1, Lin Yang1, Sin Man Lam1, Huimin Wang4, Xiaowei Chen4, Yingchun Wang1, Fei Gao5, Guanghou Shui1, Zhiheng Xu1, 6 1State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; 2University of Chinese Academy of Sciences, Beijing 100101, China; 3School of Life Science, Shandong University, Jinan 250100, China; 4Institute of Molecular Medicine, Peking University, Beijing 100871, China; 5State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; 6Translation- al Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China Lipid accumulation, which may be caused by the disturbance in very low density lipoprotein (VLDL) secretion in the liver, can lead to fatty liver disease. VLDL is synthesized in endoplasmic reticulum (ER) and transported to Golgi apparatus for secretion into plasma. However, the underlying molecular mechanism for VLDL transport is still poor- ly understood. Here we show that hepatocyte-specific deletion of meningioma-expressed antigen 6 (Mea6)/cutaneous T cell lymphoma-associated antigen 5C (cTAGE5C) leads to severe fatty liver and hypolipemia in mice. Quantitative lip- idomic and proteomic analyses indicate that Mea6/cTAGE5 deletion impairs the secretion of different types of lipids and proteins, including VLDL, from the liver.
    [Show full text]
  • Analysis of Trans Esnps Infers Regulatory Network Architecture
    Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation.
    [Show full text]
  • Essential Genes and Their Role in Autism Spectrum Disorder
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Essential Genes And Their Role In Autism Spectrum Disorder Xiao Ji University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, and the Genetics Commons Recommended Citation Ji, Xiao, "Essential Genes And Their Role In Autism Spectrum Disorder" (2017). Publicly Accessible Penn Dissertations. 2369. https://repository.upenn.edu/edissertations/2369 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2369 For more information, please contact [email protected]. Essential Genes And Their Role In Autism Spectrum Disorder Abstract Essential genes (EGs) play central roles in fundamental cellular processes and are required for the survival of an organism. EGs are enriched for human disease genes and are under strong purifying selection. This intolerance to deleterious mutations, commonly observed haploinsufficiency and the importance of EGs in pre- and postnatal development suggests a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication and repetitive behavior. More and more genetic evidence points to a polygenic model of ASD and it is estimated that hundreds of genes contribute to ASD. The central question addressed in this dissertation is whether genes with a strong effect on survival and fitness (i.e. EGs) play a specific oler in ASD risk. I compiled a comprehensive catalog of 3,915 mammalian EGs by combining human orthologs of lethal genes in knockout mice and genes responsible for cell-based essentiality.
    [Show full text]
  • Gene Expression Profiling of Corpus Luteum Reveals the Importance Of
    bioRxiv preprint doi: https://doi.org/10.1101/673558; this version posted February 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Gene expression profiling of corpus luteum reveals the 2 importance of immune system during early pregnancy in 3 domestic sheep. 4 Kisun Pokharel1, Jaana Peippo2 Melak Weldenegodguad1, Mervi Honkatukia2, Meng-Hua Li3*, Juha 5 Kantanen1* 6 1 Natural Resources Institute Finland (Luke), Jokioinen, Finland 7 2 Nordgen – The Nordic Genetic Resources Center, Ås, Norway 8 3 College of Animal Science and Technology, China Agriculture University, Beijing, China 9 * Correspondence: MHL, [email protected]; JK, [email protected] 10 Abstract: The majority of pregnancy loss in ruminants occurs during the preimplantation stage, which is thus 11 the most critical period determining reproductive success. While ovulation rate is the major determinant of 12 litter size in sheep, interactions among the conceptus, corpus luteum and endometrium are essential for 13 pregnancy success. Here, we performed a comparative transcriptome study by sequencing total mRNA from 14 corpus luteum (CL) collected during the preimplantation stage of pregnancy in Finnsheep, Texel and F1 15 crosses, and mapping the RNA-Seq reads to the latest Rambouillet reference genome. A total of 21,287 genes 16 were expressed in our dataset. Highly expressed autosomal genes in the CL were associated with biological 17 processes such as progesterone formation (STAR, CYP11A1, and HSD3B1) and embryo implantation (eg.
    [Show full text]
  • Murine SEC24D Can Substitute Functionally for SEC24C in Vivo
    bioRxiv preprint doi: https://doi.org/10.1101/284398; this version posted March 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Functional Overlap Between Mouse SEC24C and SEC24D Murine SEC24D Can Substitute Functionally for SEC24C in vivo Elizabeth J. Adams1,2, Rami Khoriaty2,3, Anna Kiseleva1, Audrey C. A. Cleuren1,7, Kärt Tomberg1,4, Martijn A. van der Ent3, Peter Gergics4, K. Sue O’Shea5, Thomas L. Saunders3, David Ginsburg1-4,6,7 1From the Life Sciences Institute, 2Program in Cellular and Molecular Biology, 3Department of Internal Medicine, 4Departement of Human Genetics, 5Department of Cell and Developmental Biology, 6Department of Pediatrics and the 7Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109 ABSTRACT The COPII component SEC24 mediates the recruitment of transmembrane cargoes or cargo adaptors into newly forming COPII vesicles on the ER membrane. Mammalian genomes encode four Sec24 paralogs (Sec24a-d), with two subfamilies based on sequence homology (SEC24A/B and C/D), though little is known about their comparative functions and cargo-specificities. Complete deficiency for Sec24d results in very early embryonic lethality in mice (before the 8 cell stage), with later embryonic lethality (E 7.5) observed in Sec24c null mice. To test the potential overlap in function between SEC24C/D, we employed dual recombinase mediated cassette exchange to generate a Sec24cc-d allele, in which the C-terminal 90% of SEC24C has been replaced by SEC24D coding sequence. In contrast to the embryonic lethality at E7.5 of SEC24C-deficiency, Sec24cc-d/c-d pups survive to term, though dying shortly after birth.
    [Show full text]
  • Consequences of Mutations in the Genes of the ER Export Machinery COPII in Vertebrates
    Biomedical Sciences Publications Biomedical Sciences 1-22-2020 Consequences of mutations in the genes of the ER export machinery COPII in vertebrates Chung-Ling Lu Iowa State University, [email protected] Jinoh Kim Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/bms_pubs Part of the Cellular and Molecular Physiology Commons, Molecular Biology Commons, and the Molecular Genetics Commons The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ bms_pubs/81. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Biomedical Sciences at Iowa State University Digital Repository. It has been accepted for inclusion in Biomedical Sciences Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Consequences of mutations in the genes of the ER export machinery COPII in vertebrates Abstract Coat protein complex II (COPII) plays an essential role in the export of cargo molecules such as secretory proteins, membrane proteins, and lipids from the endoplasmic reticulum (ER). In yeast, the COPII machinery is critical for cell viability as most COPII knockout mutants fail to survive. In mice and fish, homozygous knockout mutants of most COPII genes are embryonic lethal, reflecting the essentiality of the COPII machinery in the early stages of vertebrate development. In humans, COPII mutations, which are often hypomorphic, cause diseases having distinct clinical features. This is interesting as the fundamental cellular defect of these diseases, that is, failure of ER export, is similar.
    [Show full text]
  • ER-To-Golgi Trafficking and Its Implication in Neurological Diseases
    cells Review ER-to-Golgi Trafficking and Its Implication in Neurological Diseases 1,2, 1,2 1,2, Bo Wang y, Katherine R. Stanford and Mondira Kundu * 1 Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; [email protected] (B.W.); [email protected] (K.R.S.) 2 Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA * Correspondence: [email protected]; Tel.: +1-901-595-6048 Present address: School of Life Sciences, Xiamen University, Xiamen 361102, China. y Received: 21 November 2019; Accepted: 7 February 2020; Published: 11 February 2020 Abstract: Membrane and secretory proteins are essential for almost every aspect of cellular function. These proteins are incorporated into ER-derived carriers and transported to the Golgi before being sorted for delivery to their final destination. Although ER-to-Golgi trafficking is highly conserved among eukaryotes, several layers of complexity have been added to meet the increased demands of complex cell types in metazoans. The specialized morphology of neurons and the necessity for precise spatiotemporal control over membrane and secretory protein localization and function make them particularly vulnerable to defects in trafficking. This review summarizes the general mechanisms involved in ER-to-Golgi trafficking and highlights mutations in genes affecting this process, which are associated with neurological diseases in humans. Keywords: COPII trafficking; endoplasmic reticulum; Golgi apparatus; neurological disease 1. Overview Approximately one-third of all proteins encoded by the mammalian genome are exported from the endoplasmic reticulum (ER) and transported to the Golgi apparatus, where they are sorted for delivery to their final destination in membrane compartments or secretory vesicles [1].
    [Show full text]
  • Gene Ontology Functional Annotations and Pleiotropy
    Network based analysis of genetic disease associations Sarah Gilman Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2013 Sarah Gilman All Rights Reserved ABSTRACT Network based analysis of genetic disease associations Sarah Gilman Despite extensive efforts and many promising early findings, genome-wide association studies have explained only a small fraction of the genetic factors contributing to common human diseases. There are many theories about where this “missing heritability” might lie, but increasingly the prevailing view is that common variants, the target of GWAS, are not solely responsible for susceptibility to common diseases and a substantial portion of human disease risk will be found among rare variants. Relatively new, such variants have not been subject to purifying selection, and therefore may be particularly pertinent for neuropsychiatric disorders and other diseases with greatly reduced fecundity. Recently, several researchers have made great progress towards uncovering the genetics behind autism and schizophrenia. By sequencing families, they have found hundreds of de novo variants occurring only in affected individuals, both large structural copy number variants and single nucleotide variants. Despite studying large cohorts there has been little recurrence among the genes implicated suggesting that many hundreds of genes may underlie these complex phenotypes. The question
    [Show full text]
  • Vesicular and Uncoated Rab1-Dependent Cargo Carriers Facilitate ER to Golgi Transport Laura M
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs239814. doi:10.1242/jcs.239814 RESEARCH ARTICLE Vesicular and uncoated Rab1-dependent cargo carriers facilitate ER to Golgi transport Laura M. Westrate1,*, Melissa J. Hoyer2,3,*, Michael J. Nash2 and Gia K. Voeltz2,3,‡ ABSTRACT next recruits the heterodimer ‘inner coat’ complex Sec23/Sec24, Secretory cargo is recognized, concentrated and trafficked from which stabilizes membrane curvature and recruits cargo through the endoplasmic reticulum (ER) exit sites (ERES) to the Golgi. Cargo cargo binding sites on Sec24 (Bi et al., 2002; Kuehn et al., 1998; export from the ER begins when a series of highly conserved COPII Miller et al., 2002, 2003). The inner coat recruits the heterotetramer ‘ ’ coat proteins accumulate at the ER and regulate the formation of outer coat complex composed of Sec13/Sec31, resulting in the cargo-loaded COPII vesicles. In animal cells, capturing live de novo formation of a fully formed COPII-coated transport vesicle that cargo trafficking past this point is challenging; it has been difficult to delivers incorporated cargo to the Golgi complex via anterograde discriminate whether cargo is trafficked to the Golgi in a COPII-coated trafficking from the ER (Kirk and Ward, 2007; Lederkremer et al., vesicle. Here, we describe a recently developed live-cell cargo export 2001; Lee et al., 2004; Rossanese et al., 1999; Stagg et al., 2006). system that can be synchronously released from ERES to illustrate de Many of these studies have been performed in yeast cells because of novo trafficking in animal cells.
    [Show full text]
  • Single Cell Derived Clonal Analysis of Human Glioblastoma Links
    SUPPLEMENTARY INFORMATION: Single cell derived clonal analysis of human glioblastoma links functional and genomic heterogeneity ! Mona Meyer*, Jüri Reimand*, Xiaoyang Lan, Renee Head, Xueming Zhu, Michelle Kushida, Jane Bayani, Jessica C. Pressey, Anath Lionel, Ian D. Clarke, Michael Cusimano, Jeremy Squire, Stephen Scherer, Mark Bernstein, Melanie A. Woodin, Gary D. Bader**, and Peter B. Dirks**! ! * These authors contributed equally to this work.! ** Correspondence: [email protected] or [email protected]! ! Supplementary information - Meyer, Reimand et al. Supplementary methods" 4" Patient samples and fluorescence activated cell sorting (FACS)! 4! Differentiation! 4! Immunocytochemistry and EdU Imaging! 4! Proliferation! 5! Western blotting ! 5! Temozolomide treatment! 5! NCI drug library screen! 6! Orthotopic injections! 6! Immunohistochemistry on tumor sections! 6! Promoter methylation of MGMT! 6! Fluorescence in situ Hybridization (FISH)! 7! SNP6 microarray analysis and genome segmentation! 7! Calling copy number alterations! 8! Mapping altered genome segments to genes! 8! Recurrently altered genes with clonal variability! 9! Global analyses of copy number alterations! 9! Phylogenetic analysis of copy number alterations! 10! Microarray analysis! 10! Gene expression differences of TMZ resistant and sensitive clones of GBM-482! 10! Reverse transcription-PCR analyses! 11! Tumor subtype analysis of TMZ-sensitive and resistant clones! 11! Pathway analysis of gene expression in the TMZ-sensitive clone of GBM-482! 11! Supplementary figures and tables" 13" "2 Supplementary information - Meyer, Reimand et al. Table S1: Individual clones from all patient tumors are tumorigenic. ! 14! Fig. S1: clonal tumorigenicity.! 15! Fig. S2: clonal heterogeneity of EGFR and PTEN expression.! 20! Fig. S3: clonal heterogeneity of proliferation.! 21! Fig.
    [Show full text]
  • Craniofacial Diseases Caused by Defects in Intracellular Trafficking
    G C A T T A C G G C A T genes Review Craniofacial Diseases Caused by Defects in Intracellular Trafficking Chung-Ling Lu and Jinoh Kim * Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-515-294-3401 Abstract: Cells use membrane-bound carriers to transport cargo molecules like membrane proteins and soluble proteins, to their destinations. Many signaling receptors and ligands are synthesized in the endoplasmic reticulum and are transported to their destinations through intracellular trafficking pathways. Some of the signaling molecules play a critical role in craniofacial morphogenesis. Not surprisingly, variants in the genes encoding intracellular trafficking machinery can cause craniofacial diseases. Despite the fundamental importance of the trafficking pathways in craniofacial morphogen- esis, relatively less emphasis is placed on this topic, thus far. Here, we describe craniofacial diseases caused by lesions in the intracellular trafficking machinery and possible treatment strategies for such diseases. Keywords: craniofacial diseases; intracellular trafficking; secretory pathway; endosome/lysosome targeting; endocytosis 1. Introduction Citation: Lu, C.-L.; Kim, J. Craniofacial malformations are common birth defects that often manifest as part of Craniofacial Diseases Caused by a syndrome. These developmental defects are involved in three-fourths of all congenital Defects in Intracellular Trafficking. defects in humans, affecting the development of the head, face, and neck [1]. Overt cranio- Genes 2021, 12, 726. https://doi.org/ facial malformations include cleft lip with or without cleft palate (CL/P), cleft palate alone 10.3390/genes12050726 (CP), craniosynostosis, microtia, and hemifacial macrosomia, although craniofacial dys- morphism is also common [2].
    [Show full text]
  • Novel Targets of Apparently Idiopathic Male Infertility
    International Journal of Molecular Sciences Review Molecular Biology of Spermatogenesis: Novel Targets of Apparently Idiopathic Male Infertility Rossella Cannarella * , Rosita A. Condorelli , Laura M. Mongioì, Sandro La Vignera * and Aldo E. Calogero Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; [email protected] (R.A.C.); [email protected] (L.M.M.); [email protected] (A.E.C.) * Correspondence: [email protected] (R.C.); [email protected] (S.L.V.) Received: 8 February 2020; Accepted: 2 March 2020; Published: 3 March 2020 Abstract: Male infertility affects half of infertile couples and, currently, a relevant percentage of cases of male infertility is considered as idiopathic. Although the male contribution to human fertilization has traditionally been restricted to sperm DNA, current evidence suggest that a relevant number of sperm transcripts and proteins are involved in acrosome reactions, sperm-oocyte fusion and, once released into the oocyte, embryo growth and development. The aim of this review is to provide updated and comprehensive insight into the molecular biology of spermatogenesis, including evidence on spermatogenetic failure and underlining the role of the sperm-carried molecular factors involved in oocyte fertilization and embryo growth. This represents the first step in the identification of new possible diagnostic and, possibly, therapeutic markers in the field of apparently idiopathic male infertility. Keywords: spermatogenetic failure; embryo growth; male infertility; spermatogenesis; recurrent pregnancy loss; sperm proteome; DNA fragmentation; sperm transcriptome 1. Introduction Infertility is a widespread condition in industrialized countries, affecting up to 15% of couples of childbearing age [1]. It is defined as the inability to achieve conception after 1–2 years of unprotected sexual intercourse [2].
    [Show full text]