Papers Appeared Simultaneously in 1987 Those Considering Its Use
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Safety Data Sheet
SAFETY DATA SHEET According to JIS Z 7253:2019 Revision Date 14-Jan-2021 Version 1.03 Section 1: PRODUCT AND COMPANY IDENTIFICATION Product name Potassium Nitrite Product code 165-27322,169-27325 Manufacturer FUJIFILM Wako Pure Chemical Corporation 1-2 Doshomachi 3-Chome Chuo-ku, Osaka 540-8605, Japan Phone: +81-6-6203-3741 Fax: +81-6-6203-5964 Supplier FUJIFILM Wako Pure Chemical Corporation 1-2 Doshomachi 3-Chome, Chuo-ku, Osaka 540-8605, Japan Phone: +81-6-6203-3741 Fax: +81-6-6203-2029 Emergency telephone number +81-6-6203-3741 / +81-3-3270-8571 Recommended uses and For research use only restrictions on use Section 2: HAZARDS IDENTIFICATION GHS classification Classification of the substance or mixture Oxidizing solids Category 2 Reproductive Toxicity Category 2 (additional) Specific target organ toxicity (single exposure) Category 1 Category 1 blood Short-term (acute) hazardous to the aquatic environment Category 2 Long-term (chronic) hazardous to the aquatic environment Category 2 Pictograms Signal word Danger Hazard statements H272 - May intensify fire; oxidizer H361 - Suspected of damaging fertility or the unborn child H362 - May cause harm to breast-fed children H401 - Toxic to aquatic life H411 - Toxic to aquatic life with long lasting effects H370 - Causes damage to the following organs: blood Precautionary statements-(Prevention) • Keep away from heat/sparks/open flames/hot surfaces. — No smoking • Keep/Store away from clothing/combustible materials • Obtain special instructions before use • Do not handle until all safety precautions -
Pneumocystis Pneumonia and Disseminated
1614 BRITISH MEDICAL JOURNAL VOLUmE 286 21 MAY 1983 Br Med J (Clin Res Ed): first published as 10.1136/bmj.286.6378.1614-a on 21 May 1983. Downloaded from Pneumocystis pneumonia and discussions, and Dr B Jameson and Dr D G Fleck for their valuable assistance disseminated toxoplasmosis in a with the pneumocystis and toxoplasma serology. Ammann A, Cowan M, Wara D, et al. Possible transfusion-associated male homosexual acquired immune deficiency syndrome (AIDS)-California. Morbidity and Mortality Weekly Report 1982;31 :652-4. 2 Du Bois RM, Branthwaite MA, Mikhail JR, et al. Primary pneumocystis Within the past two years 788 cases of the apparently new and carinii and cytomegalovirus infections. Lancet 1981 ;ii: 1339. potentially lethal syndrome of acquired immune deficiency have been Oswald GA, Theodossi A, Gazzard BG, et al. Attempted immune stimula- reported in the United States.' Only three cases have been reported in tion in the "gay compromise syndrome." Br MedJ' 1982;285:1082. the United Kingdom.2-4 We report a case in a previously healthy 37 4 Maurice PDL, Smith NP, Pinching AJ. Kaposi's sarcoma with benign course in a homosexual. Lancet 1982;i:571. year old male homosexual who was initially diagnosed and treated for Task force on acquired immune deficiency syndrome, Centers for Disease pneumocystis pneumonia and subsequently died of widespread Control. Update on acquired immune deficiency syndrome (AIDS)- toxoplasmosis. United States. Morbidity and Mortality Weekly Report 1982;31:507-14. (Accepted 4 March 1983) Case report The patient presented with an eight week history of malaise, non-produc- Departments of Microbiology and Medicine, St Thomas's Hospital, tive cough, night sweats, diarrhoea, anorexia, and weight loss. -
ATSDR Case Studies in Environmental Medicine Nitrate/Nitrite Toxicity
ATSDR Case Studies in Environmental Medicine Nitrate/Nitrite Toxicity Agency for Toxic Substances and Disease Registry Case Studies in Environmental Medicine (CSEM) Nitrate/Nitrite Toxicity Course: WB2342 CE Original Date: December 5, 2013 CE Expiration Date: December 5, 2015 Key • Nitrate toxicity is a preventable cause of Concepts methemoglobinemia. • Infants younger than 4 months of age are at particular risk of nitrate toxicity from contaminated well water. • The widespread use of nitrate fertilizers increases the risk of well-water contamination in rural areas. About This This educational case study document is one in a series of and Other self-instructional modules designed to increase the primary Case Studies care provider’s knowledge of hazardous substances in the in environment and to promote the adoption of medical Environmen- practices that aid in the evaluation and care of potentially tal Medicine exposed patients. The complete series of Case Studies in Environmental Medicine is located on the ATSDR Web site at URL: http://www.atsdr.cdc.gov/csem/csem.html In addition, the downloadable PDF version of this educational series and other environmental medicine materials provides content in an electronic, printable format. Acknowledgements We gratefully acknowledge the work of the medical writers, editors, and reviewers in producing this educational resource. Contributors to this version of the Case Study in Environmental Medicine are listed below. Please Note: Each content expert for this case study has indicated that there is no conflict of interest that would bias the case study content. CDC/ATSDR Author(s): Kim Gehle MD, MPH CDC/ATSDR Planners: Charlton Coles, Ph.D.; Kimberly Gehle, MD; Sharon L. -
A Review of the Patents and Literature on the Manufacture of Potassium Nitrate with Notes on Its Occurrence and Uses
UNITED STATES DEPARTMENT OF AGRICULTURE Miscellaneous Publication No. 192 Washington, D.C. July 1934 A REVIEW OF THE PATENTS AND LITERATURE ON THE MANUFACTURE OF POTASSIUM NITRATE WITH NOTES ON ITS OCCURRENCE AND USES By COLIN W. WHITTAKER. Associate Chemist and FRANK O. LUNDSTROM, Assistant Chemist Division of Fertilizer Technology, Fertilizer Investigationa Bureau of Chemistry and Soils For sale by the Superintendent of Documents, Washington, D.C. .....-..- Price 5 cents UNITED STATES DEPARTMENT OF AGRICULTURE Miscellaneous Publication No. 192 Washington, D.C. July 1934 A REVIEW OF THE PATENTS AND LITERATURE ON THE MANUFACTURE OF POTASSIUM NITRATE WITH NOTES ON ITS OCCURRENCE AND USES By COLIN W. WHITTAKER, associate chemist, and FRANK O. LUNDSTROM, assistant chemist, Division of Fertilizer Technology, Fertilizer Investigations, Bureau oj Chemistry and Soils CONTENTS Page Production of potassium nitrate —Contd. Page Processes involving dilute oxides of Introduction } nitrogen 22 Historical sketch 3 Absorption in carbonates, bicarbon- Statistics of the saltpeter industry 4 ates, or hydroxides 22 Potassium nitrate as a plant food 8 Conversion of nitrites to nitrates 23 Occurrence of potassium nitrate 9 Processes involving direct action of nitric Production of potassium nitrate 11 acid or oxides of nitrogen on potassium Saltpeter from the soil 11 compounds 23 In East India 11 Potassium bicarbonate and nitric In other countries 12 acid or ammonium nitrate 23 Chilean high-potash nitrate 13 Potassium hydroxide or carbonate Composting and -
Safety Data Sheet According to 29CFR1910/1200 and GHS Rev
Safety Data Sheet according to 29CFR1910/1200 and GHS Rev. 3 Effective date : 02.12.2015 Page 1 of 7 Potassium Nitrite, Reagent SECTION 1 : Identification of the substance/mixture and of the supplier Product name : Potassium Nitrite, Reagent Manufacturer/Supplier Trade name: Manufacturer/Supplier Article number: S25495A Recommended uses of the product and uses restrictions on use: Manufacturer Details: AquaPhoenix Scientific 9 Barnhart Drive, Hanover, PA 17331 Supplier Details: Fisher Science Education 15 Jet View Drive, Rochester, NY 14624 Emergency telephone number: Fisher Science Education Emergency Telephone No.: 800-535-5053 SECTION 2 : Hazards identification Classification of the substance or mixture: Oxidizing Oxidizing solids, category 2 Irritant Acute toxicity (oral, dermal, inhalation), category 3 Environmentally Damaging Acute hazards to the aquatic environment, category 1 Chronic hazards to the aquatic environment, category 1 Oxid. Sol 2 AcTox. Oral 3 Aq. AcTox. 1 Aq. ChrTox. 1 Signal word :Danger Hazard statements: May intensify fire; oxidizer Toxic if swallowed Very toxic to aquatic life with long lasting effects Precautionary statements: If medical advice is needed, have product container or label at hand Keep out of reach of children Read label before use Keep away from heat/sparks/open flames/hot surfaces. No smoking Keep/Store away from clothing/combustible materials Take any precaution to avoid mixing with combustibles Created by Global Safety Management, Inc. -Tel: 1-813-435-5161 - www.gsmsds.com Safety Data Sheet -
Toxicological Profile for Nitrate and Nitrite
NITRATE AND NITRITE 9 2. RELEVANCE TO PUBLIC HEALTH 2.1 BACKGROUND AND ENVIRONMENTAL EXPOSURES TO NITRATE AND NITRITE IN THE UNITED STATES Nitrate and nitrite can be organic or inorganic chemicals depending on their chemical structures. This profile pertains to inorganic nitrate and nitrite, specifically the nitrate anion and the nitrite anion. Nitrate and nitrite occur naturally in the environment as part of the nitrogen cycle, and are produced both endogenously and exogenously. Ammonia-oxidizing bacteria convert ammonia into nitrite; nitrite- oxidizing bacteria convert nitrite into nitrate in aerobic environments. This two-stage process is known as nitrification. Main sources of ammonia in the environment are decaying organic matter and human and animal wastes. Nitrification, atmospheric fixation, and nitrogen fertilizers contribute to nitrite and nitrate concentrations in the environment. In nature, salts of nitrate and nitrite completely dissociate and these anions typically exist as ionic species. In the environment, nitrite is readily oxidized to nitrate. Nitrate is generally stable in the environment; however, it may be reduced through biotic (living systems; plants, microbes, etc.) processes to nitrite under anerobic conditions. Nitrate and nitrite are ubiquitous in the environment and people are exposed to them primarily through the ingestion of food and drinking water. Significant uptake of nitrate and nitrite occurs in all varieties of plants; internal storage of nitrate (rather than metabolic conversion to ammonium and amino acids) can occur in some plants, especially leafy vegetables such as lettuce and spinach. Vegetables account for about 80% of the nitrate in a typical human diet. Nitrate and nitrite are also produced in the body as part of the natural nitrate-nitrite-nitric oxide cycle. -
SAFETY DATA SHEET 114751-Potassium Nitrite
SAFETY DATA SHEET (in accordance with Regulation (EU) 2015/830) 114751-Potassium nitrite, FCC Version: 3 Page 1 of 8 Revision date: 24/11/2020 Print date: 09/02/2021 SECTION 1: IDENTIFICATION OF THE SUBSTANCE AND OF THE COMPANY/UNDERTAKING. 1.1 Product identifier. Product Name: Potassium nitrite, FCC Product Code: 114751 Chemical Name: Potassium nitrite FCC Index No: 007-011-00-X CAS No: 7758-09-0 EC No: 231-832-4 Registration No: N/D 1.2 Relevant identified uses of the substance and uses advised against. For manufacturing, processing, laboratory or repacking use only Uses advised against: Uses other than those recommended. 1.3 Details of the supplier of the safety data sheet. Company: DC FINE CHEMICALS Ltd. Address: Hill Top, 88 City: NW11 6DY London (United Kingdom) Telephone: +44 (20) 7586 6800 Fax: +44 (20) 7504 1701 E-mail: [email protected] Web: www.dcfinechemicals.com 1.4 Emergency telephone number: (Only available during office hours; Monday-Friday; 08:00-18:00) SECTION 2: HAZARDS IDENTIFICATION. 2.1 Classification of the substance. In accordance with Regulation (EU) No 1272/2008: Acute Tox. 3 : Toxic if swallowed. Aquatic Acute 1 : Very toxic to aquatic life. Ox. Sol. 2 : May intensify fire; oxidiser. 2.2 Label elements. Labelling in accordance with Regulation (EU) No 1272/2008: Pictograms: Signal Word: Danger H statements: H272 May intensify fire; oxidiser. H301 Toxic if swallowed. H400 Very toxic to aquatic life. P statements: P210 Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. P264 Wash thoroughly after handling. -
Project Note Weston Solutions, Inc
PROJECT NOTE WESTON SOLUTIONS, INC. To: Canadian Radium & Uranium Corp. Site File Date: June 5, 2014 W.O. No.: 20405.012.013.2222.00 From: Denise Breen, Weston Solutions, Inc. Subject: Determination of Significant Lead Concentrations in Sediment Samples References 1. New York State Department of Environmental Conservation. Technical Guidance for Screening Contaminated Sediments. March 1998. [45 pages] 2. U.S. Environmental Protection Agency (EPA) Office of Emergency Response. Establishing an Observed Release – Quick Reference Fact Sheet. Federal Register, Volume 55, No. 241. September 1995. [7 pages] 3. International Union of Pure and Applied Chemistry, Inorganic Chemistry Division Commission on Atomic Weights and Isotopic Abundances. Atomic Weights of Elements: Review 2000. 2003. [120 pages] WESTON personnel collected six sediment samples (including one environmental duplicate sample) from five locations along the surface water pathway of the Canadian Radium & Uranium Corp. (CRU) site in May 2014. The sediment samples were analyzed for Target Analyte List (TAL) Metals and Stable Lead Isotopes. 1. TAL Lead Interpretation: In order to quantify the significance for Lead, Thallium and Mercury the following was performed: 1. WESTON personnel tabulated all available TAL Metal data from the May 2014 Sediment Sampling event. 2. For each analyte of concern (Lead, Thallium, and Mercury), the highest background concentration was selected and then multiplied by three. This is the criteria to find the significance of site attributable release as per Hazard Ranking System guidelines. 3. One analytical lead result (2222-SD04) of 520 mg/kg (J) was qualified with an unknown bias. In accordance with US EPA document “Using Data to Document an Observed Release and Observed Contamination”, 2222-SD03 lead concentration was adjusted by dividing by the factor value for lead of 1.44 to equal 361 mg/kg. -
Nitrocompounds, Aliphatic: Physical & Chemical Properties
Nitrocompounds, Aliphatic: Physical & Chemical Properties, Encyclopaedia of Occupational Health and Safety, Jeanne Mager Stellman, Editor-in-Chief. International Labor Organization, Geneva. 2011 Chemical Name Colour/Form Boiling Point Melting Molecular Solubility in Relative Density Relative Vapour Inflam. Flash Auto CAS-Number (°C) Point (°C) Weight Water (water=1) Vapour Pressure/ Limits Point (ºC) Ignition Density (Kpa) Point (º C) (air=1) AMYL NITRITE yellowish, transparent 99 117.1 sl sol 0.8828 4.0 110-46-3 liquid 1-CHLORO-1-NITRO- 124.5 109.51 insol 1.2837 ETHANE 598-92-5 2-CHLORO-2-NITRO- liquid 133.6 123.55 0.5 ml sol in 1.197 4.3 8.5 mm Hg 57 ° C oc PROPANE 100 ml @ 20 ° C/20 ° @ 25 ° C 594-71-8 @ 20 ° C C 1-CHLORO-1-NITRO- liquid 143 123.54 0.5ml/100 ml 1.209 0.3 5.8 mm Hg 62 oc PROPANE @ 25 ºC 600-25-9 CHLOROPICRIN slightly oily liquid; 112 -69.2 164.4 sol 1.6558 5.7 5.7 mm Hg 76-06-2 colourless; faint yellow @ 0 º C liquid. 1,1-DICHLORO-1-NI- colourless liquid 124 143.9 0.25 ml/100 m 1.4271 5.0 16.0 mm Hg 76 oc TROETHANE l @ 25 ºC 594-72-9 DIETHYLENE GLYCOL liquid 161 -11.6 sl sol 1.377 DINITRATE @ 25 ºC 693-21-0 ETHYLENE GLYCOL yellowish, oily liquid; 197-200 -22.3 152.06 insol 1.4918 5.24 7 Pa 215 cc 114 DINITRATE colourless 628-96-6 ETHYLENE GLYCOL pale yellow, viscous liquid 197-200 -22.3 152.06 sl sol 1.4978 218 DINITRATE mixed with NITROGLYCERIN (1:1) 53569-64-5 ETHYL NITRATE colourless liquid 87.2 ° C at 762 94.6 ° C 91.07 1.3 g in 100 1.1084 at 20 ° 3.1 lower, 4.0% 10 625-58-1 mm Hg ml C/4 ° C by vol @ 55 ° C ETHYL -
Potassium Nitrite Safety Data Sheet
Hummel Croton Inc. In Case Of Emergency Call 10 Harmich Rd. (U.S.) 800-424-9300 South Plainfield, NJ 07080 (International) +1-813-248-3924 www.HummelCroton.com Phone: 908-754-1800 Fax: 908-754-1815 Potassium Nitrite Safety Data Sheet 1. Product and Company Product name: Potassium Nitrite HMIS Rating Synonym: None Health 1 Flammabilitiy 0 CAS-No.: 7758-09-0 Reactivity 3 Company: Hummel Croton Inc. Personal Protection F 10 Harmich Rd. South Plainfield, NJ 07080 Telephone: 908-754-1800 Fax: 908-754-1815 Emergency telephone number Emergency Phone #: Chemtrec US: 800-424-9300 ChemTel International: +1-813-248-0585 2. Hazards GHS Classification Oxidizing solids (Category 2), H272 Acute toxicity, Oral (Category 3), H301 Acute aquatic toxicity (Category 1), H400 Chronic aquatic toxicity (Category 1), H410 GHS Label elements Pictogram(s) Signal word DANGER Hazard statement(s) H272 May intensify fire; oxidizer. H301 Toxic if swallowed. H410 Very toxic to aquatic life with long lasting effects. Precautionary statement(s) P210 Keep away from heat. P220 Keep/Store away from clothing/ combustible materials. P221 Take any precaution to avoid mixing with combustibles. P264 Wash skin thoroughly after handling. P270 Do not eat, drink or smoke when using this product. P273 Avoid release to the environment. P280 Wear protective gloves/ eye protection/ face protection. P301 + P310 + P330 IF SWALLOWED: Immediately call a POISON CENTER or doctor/ physician. Rinse mouth. P370 + P378 In case of fire: Use dry sand, dry chemical or alcohol-resistant foam for extinction. P391 Collect spillage. P405 Store locked up. P501 Dispose of contents/ container to an approved waste disposal plant. -
Prohibited and Restricted Chemical List
School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List PROHIBITED AND RESTRICTED CHEMICAL LIST Introduction After incidents of laboratory chemical contamination at several schools, DCPS, The American Association for the Advancement of Science (AAAS) and DC Fire and Emergency Management Services developed an aggressive program for chemical control to eliminate student and staff exposure to potential hazardous chemicals. Based upon this program, all principals are required to conduct a complete yearly inventory of all chemicals located at each school building to identify for the removal and disposal of any prohibited/banned chemicals. Prohibited chemicals are those that pose an inherent, immediate, and potentially life- threatening risk, injury, or impairment due to toxicity or other chemical properties to students, staff, or other occupants of the school. These chemicals are prohibited from use and/or storage at the school, and the school is prohibited from purchasing or accepting donations of such chemicals. Restricted chemicals are chemicals that are restricted by use and/or quantities. If restricted chemicals are present at the school, each storage location must be addressed in the school's written emergency plan. Also, plan maps must clearly denote the storage locations of these chemicals. Restricted chemicals—demonstration use only are a subclass in the Restricted chemicals list that are limited to instructor demonstration. Students may not participate in handling or preparation of restricted chemicals as part of a demonstration. If Restricted chemicals—demonstration use only are present at the school, each storage location must be addressed in the school's written emergency plan. Section 7: Appendices – October 2009 37 School Emergency Response Plan and Management Guide Prohibited and Restricted Chemical List Following is a table of chemicals that are Prohibited—banned, Restricted—academic curriculum use, and Restricted—demonstration use only. -
180 Isotope Shift in 15N NMR Analysis of Biological N-Oxidations
Proc. Natl. Acad. Sci. USA Vol. 79, pp. 5871-5875, October 1982 Biochemistry 180 isotope shift in 15N NMR analysis of biological N-oxidations: H20-N02 exchange in the ammonia-oxidizing bacterium Nitrosomonas (hydroxylamine/nitrite/oxygen exchange) KRiSTOFFER K. ANDERSSON*, STEPHEN B. PHILSONt, AND ALAN B. HOOPER*t *Department of Genetics and Cell Biology, University of Minnesota, St. Paul, Minnesota 55108; and tDepartment of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455 Communicated by W. D. McElroy, July 12, 1982 ABSTRACT The 180/160 shifts in '5N NMR were deter- hydrazine (an inhibitor of hydroxylamine oxidation) has recent- mined for nitrite (0.13 ppm or 4.2 Hz at 7.05 T) and nitrate (0.056 ly been demonstrated by Dua et aL (4) and Hollocher et aL (6) ppm or 1.7 Hz at 7.05 T) at neutral pH. The technique, which utilizing mass spectrometric analysis. allows clear differentiation between 160 and 180 derivatives of 15N NMR is an ideal technique for identifying the origin of '5N, was used to assess the source of oxygens in nitrite produced the two oxygens ofnitrite. The great potential of 15N NMR spec- by oxidation ofammonia in Nitrosomonas. The two oxygens of ni- troscopy-until recently obscured by the low abundance of15N trite produced by cell-catalyzed oxidation of ammonia or hydrox- (0.365%) and low sensitivity ("5N has a nuclear moment only ylamine had the 160/180 isotope composition of water. Nitroso- 1/10 that of the proton)-has become realizable with the in- monas is shown to catalyze the rapid exchange ofoxygen between Fourier nitrite and water.