Thermal Stability.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Thermal Stability.Pdf Thermochimica Acta 566 (2013) 137–148 Contents lists available at SciVerse ScienceDirect Thermochimica Acta jo urnal homepage: www.elsevier.com/locate/tca The effect of molecular structure on thermal stability, decomposition kinetics and reaction models of nitric esters a a a,∗ Qi-Long Yan , Martin Künzel , Svatopluk Zeman , b c Roman Svoboda , Monika Bartoskovᡠa Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic b Department of Physical Chemistry, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic c Department of Environment, Faculty of Chemistry, Brno University of Technology, CZ-612 00, Brno, Czech Republic a r t i c l e i n f o a b s t r a c t Article history: In this paper, the thermal stability and decomposition mechanism functions of 10 nitric esters including Received 8 March 2013 nitroglycerine (NG), pentaerythritol tetranitrate (PETN), trimethylolethane trinitrate (TMETN), dipen- Received in revised form 21 May 2013 taerythritol hexanitrate (DiPEHN), trimethylolpropane trinitrate (TMPTN), erythritol tetranitrate (ETN), Accepted 22 May 2013 xylitol pentanitrate (XPN), sorbitol hexanitrate (SHN), mannitol hexanitrate (MHN) and nitroisobutyl- Available online 31 May 2013 glycerol trinitrate (NIBGT) are determined by means of non-isothermal TG and DSC techniques. It has been found that the mean activation energies for most nitric esters are comparable at constant heating Keywords: −1 rate (around 145 kJ mol ), indicating that their main decomposition pathways might be the same. The Nitric esters −1 mass loss activation energies of NG, TMETN and TMPTN are less than 100 kJ mol due to partial evap- Thermal stability oration. Based on the critical temperature of thermal decomposition, the order of molecular stability Critical temperature Reaction models for involved nitric esters is found to be MHN < XPN < TMPTN < SHN < NIBGT < ETN < PETN < DiPEHN. The Kinetic compensation effect introduction of function groups to the tertiary carbon is in favor of increasing thermal stability due to increase of symmetry and rigidity of the molecule. The decomposition kinetics was described in terms of the Johnson-Mehl-Avrami and Sesták-Berggrenˇ models. Two types of kinetic behavior were observed and most nitrate esters followed typical decomposition kinetics close to the first order reaction. However, cer- tain materials showed complex behavior caused by overlapping of more mechanisms/processes, which were represented either by simultaneous evaporation and decomposition or by different decomposition mechanisms originating from varying morphology and structure of the samples. © 2013 Elsevier B.V. All rights reserved. 1. Introduction powerful explosives used mainly for military purposes due to greater compatibility and higher performance than other nitric Nitric esters have been used as plasticizers or energetic fillers esters [4–7]. In particular, with regard to spark detonators, PETN in detonators, propellants and explosives for mining, artillery, and can be used to avoid the need for primary explosives due to its lower engineering since hundreds years ago [1,2]. In the past decades, electric spark initiation energy (10–60 mJ). On the other hand, some considerable interest in nitric esters has been expressed by not only nitric esters could be used as drugs in medical treatment. In fact, the specialists but also the amateurs and terrorists due to require- nitroester drugs have been shown to relax the smooth muscle of ments of little synthetic expertise and availability of cheap raw blood vessels, and hence were widely accepted for the treatment materials from the shops [3]. There has been growth in use of those of angina pectoris [8]. nitric esters such as erythritol tetranitrate (ETN), most of which are Because of growing practical demands on nitric esters, more and so-called “homemade” explosives (HME). On the one hand, a num- more investigations are carried out with regard to their synthe- ber of polynitroesters, including nitrocellulose (NC), nitroglycerin sis and physiochemical properties. On the purpose of utilization (NG), the nitroester of pentaerythritol (PETN), trimethanolethane as energetic ingredients, recent studies have been concentrated trinitrate (TMETN), and bis(2-nitroxyethyl)nitramine (DINA) are mainly on their detailed thermal decomposition mechanisms, com- bustion and detonation performances [9–11]. For instance, density function theory (DFT) has been employed to study the geometric ∗ and electronic structures of trinitrate esters including NG, TMETN, Corresponding author. Tel.: +420 466038503; fax: +420 466038024. butanetriol trinitrate (BTTN), and trimethylolpropane trinitrate E-mail addresses: [email protected] (Q.-L. Yan), [email protected], [email protected] (S. Zeman). (TMPTN) at the B3LYP/6-31G* level [12]. It has been found that 0040-6031/$ – see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.tca.2013.05.032 138 Q.-L. Yan et al. / Thermochimica Acta 566 (2013) 137–148 the oxygen balance, volume, density, detonation velocity and pres- 3. Results and discussions sure of trinitrate esters linearly decrease with the increase of methylene group’s number. In order to clarify the initial decompo- 3.1. Thermal responses during heating sition mechanism for nitric esters, T-Jump/FTIR and T-jump/Raman spectroscopies were used to analyze the gaseous products of The thermal responses (heat flow) for involved 10 nitric esters several aliphatic nitric esters [13]. Kimura [14] also used chemi- were recorded by DSC under pressure of 0.1 MPa as shown in Fig. 1. luminescence (CL) method to determine the light-emitting species The DSC curves for most of the studied nitric esters are not avail- ◦ ◦ during low temperature decomposition (between 40 C and 90 C) able in the literature. It has been shown that the melting points of of PETN and NC. It has been shown that the thermal decomposi- nitric esters are much lower than those of secondary explosives, and tion of nitric esters is accompanied by some oxidation reactions, some of them are liquid at room temperature. There is a big differ- which could be generated in the course of recombination of per- ence with regard to melting point due to discrepancy in molecular oxy radicals. On this basis, Chen and Brill [15] further studied structure. For instance, MHN and PETN have melting point higher ◦ the fast thermal decomposition kinetics and mechanism of some than 110 C, while those of TMETN, NG, and NIBGT are less than polymeric nitric esters by SMATCH/FTIR technique (heating rate: zero. With regard to heat release process, it has been observed that, ◦ −1 100–150 C s ), and their activation energies were obtained as the exothermic peaks for NG and TMETN are not well formed due −1 −1 around 129.8–142.4 kJ mol with log(A) values of 14.7–16.9 s . to strong evaporation. In order to make a quantitative view of the Agrawal [16] synthesized some aromatic nitric esters, among thermal responses, the corresponding parameters are summarized which the compound 1,3,5-tris(2-nitroxyethylnitramino)-2,4,6- in Table 1. The density and detonation velocity parameters are also trinitrobenzene was found to be the potential alternative of PETN. In included in this table. addition, quantum chemical calculations are used to compute the As shown in Table 1, the density of these nitric esters is around −3 heats of formation for 24 nitric esters among which only 5 com- 1.4–1.8 g cm with theoretical detonation velocity of between −1 pounds have the available experimental values [17]. As a result, 7000 and 9000 m s . As it could be seen, all of the nitric esters considerable progress toward an understanding of the decompo- decompose in liquid state, and for the solid nitric esters, there sition mechanism for nitric esters has been achieved. However, are obvious endothermic heat change before decomposition due undoubtedly, the effect of molecular structure on the performances to fusion. It is interesting that the peak temperature of SHN and and physiochemical properties of nitric esters could not be clearly XPN is the same while their onset temperature is very different, identified due to discrepancy in principles and physical condi- and this might be caused by their very similar carbon chain struc- tions of corresponding measurements carried out by different ture. NG, ETN and TMETN are comparable. PETN has the highest researchers. In this paper, the non-isothermal behavior, isocon- fusion energy (H1), and melting point due to its highly symmet- versional decomposition kinetics, reaction models and thermal ric molecule and great molecular rigidity. For NG, there is also one stability for 10 typical nitric esters will be systematically inves- endothermic peak before decomposition due to evaporation, and tigated, based on which the effect of molecular structure on these under dynamic nitrogen atmosphere the NG could partially decom- parameters will be expounded. pose. With regard to heat of decomposition H2, DiPEHN has the highest heat release due to higher hydrogen and carbon content with sufficient oxygen balance. The heat release from decomposi- 2. Experimental tion depends not only on the energy content of the compound, but also on the experimental condition. Here the nitric esters decom- 2.1. Materials pose under 0.1 MPa dynamic nitrogen atmospheres with relatively slow heating rate. The heat change is also slow and could be well There are 10 nitric esters
Recommended publications
  • Tolerance and Resistance to Organic Nitrates in Human Blood Vessels
    \ö-\2- Tolerance and Resistance to Organic Nitrates in Human Blood Vessels Peter Radford Sage MBBS, FRACP Thesis submit.ted for the degree of Doctor of Philosuphy Department of Medicine University of Adelaide and Cardiology Unit The Queen Elizabeth Hospital I Table of Gontents Summary vii Declaration x Acknowledgments xi Abbreviations xil Publications xtil. l.INTRODUCTION l.L Historical Perspective I i.2 Chemical Structure and Available Preparations I 1.3 Cellular/biochemical mechanism of action 2 1.3.1 What is the pharmacologically active moiety? 3 1.3.2 How i.s the active moiety formed? i 4 1.3.3 Which enzyme system(s) is involved in nitrate bioconversi<¡n? 5 1.3.4 What is the role of sulphydryl groups in nitrate action? 9 1.3.5 Cellular mechanism of action after release of the active moiety 11 1.4 Pharmacokinetics t2 1.5 Pharmacological Effects r5 1.5.1 Vascular effects 15 l.5.2Platelet Effects t7 1.5.3 Myocardial effects 18 1.6 Clinical Efhcacy 18 1.6.1 Stable angina pectoris 18 1.6.2 Unstable angina pectoris 2t 1.6.3 Acute myocardial infarction 2l 1.6.4 Congestive Heart Failure 23 ll 1.6.5 Other 24 1.7 Relationship with the endothelium and EDRF 24 1.7.1 EDRF and the endothelium 24 1.7.2 Nitrate-endothelium interactions 2l 1.8 Factors limiting nitrate efficacy' Nitrate tolerance 28 1.8.1 Historical notes 28 1.8.2 Clinical evidence for nitrate tolerance 29 1.8.3 True/cellular nitrate tolerance 31 1.8.3.1 Previous studies 31 | .8.3.2 Postulated mechanisms of true/cellular tolerance JJ 1.8.3.2.1 The "sulphydryl depletion" hypothesis JJ 1.8.3.2.2 Desensitization of guanylate cyclase 35 1 8.i.?..3 Impaired nitrate bioconversion 36 1.8.3.2.4'Ihe "superoxide hypothesis" 38 I.8.3.2.5 Other possible mechanisms 42 1.8.4 Pseudotolerance ; 42 1.8.4.
    [Show full text]
  • Nitric Oxide Releasing Chelating Agents and Their
    Europäisches Patentamt *EP001060174B1* (19) European Patent Office Office européen des brevets (11) EP 1 060 174 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C07D 401/12, A61K 31/44 of the grant of the patent: 22.09.2004 Bulletin 2004/39 (86) International application number: PCT/GB1998/003840 (21) Application number: 98962567.8 (87) International publication number: (22) Date of filing: 18.12.1998 WO 1999/033823 (08.07.1999 Gazette 1999/27) (54) NITRIC OXIDE RELEASING CHELATING AGENTS AND THEIR THERAPEUTIC USE STICKSTOFFOXID FREISETZENDE CHELATBILDNER UND IHRE THERAPEUTISCHE VERWENDUNG CHELATEURS LIBERANT DE L’OXYDE NITRIQUE ET LEUR EMPLOI A DES FINS THERAPEUTIQUES (84) Designated Contracting States: (74) Representative: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU Hammett, Audrey Grace Campbell et al MC NL PT SE Amersham plc Amersham Place (30) Priority: 23.12.1997 GB 9727226 Little Chalfont, Bucks. HP7 9NA (GB) 13.03.1998 GB 9805450 (56) References cited: (43) Date of publication of application: EP-A- 0 292 761 WO-A-93/20806 20.12.2000 Bulletin 2000/51 WO-A-95/12394 WO-A-96/31217 WO-A-96/39409 WO-A-97/49390 (73) Proprietor: Amersham Health AS US-A- 5 250 550 0401 Oslo (NO) • MOORADIAN D L ET AL: "NITRIC OXIDE (NO) (72) Inventors: DONOR MOLECULES: EFFECT OF NO • TOWART, Robertson RELEASE RATE ON VASCULAR SMOOTH Stoke Poges SL2 4PT (GB) MUSCLE CELL PROLIFERATION IN VITRO" • KARLSSON, Jan, Olof, Gustav JOURNAL OF CARDIOVASCULAR N-1450 Nesoddtangen (NO) PHARMACOLOGY, vol.
    [Show full text]
  • Prediction of the Crystalline Densities of Aliphatic Nitrates by Quantum Chemistry Methods
    Central European Journal of Energetic Materials ISSN 1733-7178; e-ISSN 2353-1843 Copyright © 2019 Sieć Badawcza Łukasiewicz – Institute of Industrial Organic Chemistry, Poland Cent. Eur. J. Energ. Mater. 2019, 16(3): 412-432; DOI 10.22211/cejem/112306 Article is available in PDF-format, in colour, at: http://www.wydawnictwa.ipo.waw.pl/cejem/Vol-16-Number3-2019/CEJEM_00978.pdf Article is available under the Creative Commons Attribution-Noncommercial-NoDerivs 3.0 license CC BY-NC-ND 3.0. Research paper Prediction of the Crystalline Densities of Aliphatic Nitrates by Quantum Chemistry Methods Guixiang Wang,* Yimin Xu, Chuang Xue, Zhiyuan Ding, Yan Liu, Hui Liu, Xuedong Gong** Computation Institute for Molecules and Materials, Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, China E-mails: * [email protected]; ** [email protected] Abstract: Crystal density is a basic and important parameter for predicting the detonation performance of explosives, and nitrate esters are a type of compound widely used in the military context. In this study, thirty-one aliphatic nitrates were investigated using the density functional theory method (B3LYP) in combination with six basis sets (3-21G, 6-31G, 6-31G*, 6-31G**, 6-311G* and 6-31+G**) and the semiempirical molecular orbital method (PM3). Based on the geometric optimizations at various theoretical levels, the molecular volumes and densities were calculated. Compared with the available experimental data, the densities calculated by various methods are all overestimated, and the errors of the PM3 and B3LYP/3-21G methods are larger than those of other methods. Considering the results and the computer resources required by the calculations, the B3LYP/6-31G* method is recommended for predicting the crystalline densities of organic nitrates using a fitting equation.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,391,895 B1 Towart Et Al
    USOO639 1895B1 (12) United States Patent (10) Patent No.: US 6,391,895 B1 Towart et al. (45) Date of Patent: May 21, 2002 (54) NITRICOXIDE RELEASING CHELATING FOREIGN PATENT DOCUMENTS AGENTS AND THER THERAPEUTIC USE WO O 292 761 A 11/1988 WO WO 93 20806 A 10/1993 (75) Inventors: Robertson Towart, Stoke Poges (GB); WO WO 95 12394 A 5/1995 Jan Olof Gustav Karlsson, WO WO 96 31217 A 10/1996 Nesoddtangen (NO); Lars Goran WO WO 96 394O9 A 12/1996 Wistrand; Hakan Malmgren, both of WO WO 97.49390 A 12/1997 Lund (SE) WO 97/494.09 12/1997 ................. 514/335 (73) Assignee: Amersham Health AS, Oslo (NO) OTHER PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this Mooradian D.L. et al., “Nitric Oxide (No) Donor Molecules: patent is extended or adjusted under 35 Effect of No Release Rate on Vascular Smooth Muscle Cell U.S.C. 154(b) by 0 days. Proliferation in Vitro’, Journal of Cardiovascular Pharma cology, Jan. 1, 1995, XP000563583. (21) Appl. No.: 09/599,862 Lefer D.J.: “Myocardial Protective Actions of Nitric Oxide Doors. After Myocardial Ischemia and Reperfusion”, New (22) Filed: Jun. 23, 2000 Horizons, Feb. 1, 1995, XP000575669. Related U.S. Application Data * cited by examiner (63) Continuation of application No. PCT/GB98/03804, filed on Dec. 18, 1998. Primary Examiner-Charanjit S. Aulakh (60) Provisional application No. 60/076.793, filed on Mar. 4, (74) Attorney, Agent, or Firm-Royal N. Ronning, Jr. 1998. (57) ABSTRACT (30) Foreign Application Priority Data Chelating agents, in particular dipyridoxyl and aminopoly Dec.
    [Show full text]
  • Commerce in Explosives; 2020 Annual Those on the Annual List
    Federal Register / Vol. 85, No. 247 / Wednesday, December 23, 2020 / Notices 83999 inspection at the Office of the Secretary or synonyms in brackets. This list Black powder substitutes. and on EDIS.3 supersedes the List of Explosive *Blasting agents, nitro-carbo-nitrates, This action is taken under the Materials published in the Federal including non-cap sensitive slurry and authority of section 337 of the Tariff Act Register on January 2, 2020 (Docket No. water gel explosives. of 1930, as amended (19 U.S.C. 1337), 2019R–04, 85 FR 128). Blasting caps. and of §§ 201.10 and 210.8(c) of the The 2020 List of Explosive Materials Blasting gelatin. Commission’s Rules of Practice and is a comprehensive list, but is not all- Blasting powder. Procedure (19 CFR 201.10, 210.8(c)). inclusive. The definition of ‘‘explosive BTNEC [bis (trinitroethyl) carbonate]. materials’’ includes ‘‘[e]xplosives, BTNEN [bis (trinitroethyl) nitramine]. By order of the Commission. BTTN [1,2,4 butanetriol trinitrate]. Issued: December 18, 2020. blasting agents, water gels and detonators. Explosive materials, Bulk salutes. William Bishop, include, but are not limited to, all items Butyl tetryl. Supervisory Hearings and Information in the ‘List of Explosive Materials’ Officer. C provided for in § 555.23.’’ 27 CFR Calcium nitrate explosive mixture. [FR Doc. 2020–28458 Filed 12–22–20; 8:45 am] 555.11. Accordingly, the fact that an BILLING CODE 7020–02–P Cellulose hexanitrate explosive explosive material is not on the annual mixture. list does not mean that it is not within Chlorate explosive mixtures. coverage of the law if it otherwise meets DEPARTMENT OF JUSTICE Composition A and variations.
    [Show full text]
  • Federal Register/Vol. 79, No. 194/Tuesday, October 7, 2014
    60496 Federal Register / Vol. 79, No. 194 / Tuesday, October 7, 2014 / Notices Commission rules 210.21(a)(2), (b)(1). DEPARTMENT OF JUSTICE are regulated explosive materials The ALJ also found that there is no regardless of their size or specific indication that termination of the Bureau of Alcohol, Tobacco, Firearms, energetic composition. The addition of investigation in view of the settlement and Explosives this term will not expand the list to agreement would have an adverse [Docket No. 2014R–25T] include any materials not already impact on the public interest. No party covered under other names. ATF petitioned for review of the ID. The Commerce in Explosives; 2014 Annual generally classifies pyrotechnic fuse as Commission has determined not to List of Explosive Materials low explosives subject to the Federal explosives laws and implementing review the ID and has terminated the AGENCY: Bureau of Alcohol, Tobacco, investigation. explosives regulations at 27 CFR Part Firearms, and Explosives (ATF); 555—Commerce in Explosives and the The authority for the Commission’s Department of Justice. U.S. Department of Transportation determination is contained in section ACTION: Notice of list of explosive classifies them as Class 1 explosives. 337 of the Tariff Act of 1930, as materials. External burning pyrotechnic fuses that amended, 19 U.S.C. 1337, and in Part are components of small arms 210 of the Commission’s Rules of SUMMARY: Pursuant to 18 U.S.C. 841(d) ammunition will remain exempt Practice and Procedure, 19 CFR part and 27 CFR 555.23, the Department pursuant to 18 U.S.C.
    [Show full text]
  • Endothelial Dysfunction in Heart Failure and Ischemic Heart Disease: Rationale for the Clinical Use of Mononitrates
    Heart International / Vol. 3 no. 3-4, 2007 / pp. 86-97 © Wichtig Editore, 2007 Endothelial dysfunction in heart failure and ischemic heart disease: rationale for the clinical use of mononitrates OBERDAN PARODI, RENATA DE MARIA, ELÈNA ROUBINA CNR Clinical Physiology Institute of Milan, Cardiology Department, Niguarda Cà Granda Hospital, Milan - Italy ABSTRACT: The clinical observation that heart failure can progress independently of the pa- tient’s hemodynamic status has focused interest on new, potential mechanisms underlying the progression of cardiac insufficiency. It has been shown that in both ischemic and non-ischemic heart failure, endothelial dysfunction and reduced bioavailability of NO can contribute to the process of left ventricular remodelling. The endothelial dysfunction contributes to increasing pe- ripheral vascular resistance, limiting blood flow to skeletal muscles, particularly during exercise, and compromising the regulation of pulmonary blood flow, leading to a flow-perfusion mis- match. The nitroderivates are a heterogeneous class of compounds that have in common their pharmacodynamic action, which is mediated through the production of NO. Isosorbide-2-mononitrate (IS-2-MN) and isosorbide-5-mononitrate (IS-5-MN) are the two main metabolites of isosorbide dinitrate (ISDN) and both act on the smooth muscle cells of vessel walls, causing generalized peripheral vasodilation, which is more marked in the venous system, reduced venous return to the heart and a reduction in peripheral resistance. The shorter half-life of IS-2-MN compared to that of IS-5-MN allows greater fluctuation of the blood levels of the drug; it can, therefore, be hypothesized that tolerance would develop more slowly.
    [Show full text]
  • Characterization and Analysis of Tetranitrate Esters Jimmie C
    Characterization and Analysis of Tetranitrate Esters Jimmie C. Oxley; James, L. Smith; Joseph E. Brady, IV; Austin C. Brown University of Rhode Island, Chemistry Dept; Kingston, RI 02881 Abstract Thermal behaviors, vapor pressures, densities, and drop weight impact results, as well as analytical protocols, are reported for three tetranitrate esters: erythritol tetranitrate (ETN), 1,4‐ dinitrato‐2,3‐dinitro‐2,3bis(nitratomethylene) butane (DNTN), and pentaerythritol tetranitrate (PETN). ETN and DNTN both melt below 100oC and have ambient vapor pressures comparable to TNT. While LC/MS was shown to be a viable technique for analysis of all three tetranitrate esters, only ETN was successfully analyzed by GC/MS. Performance of these nitrate esters as evaluated in lab using the small-scale explosivity device (SSED) suggested RDX >> DNTN > PETN > ETN. Detonation velocities were calculated using Cheetah 6.0. Since the starting material is now widely available, it is likely that law enforcement will find ETN in future improvised explosive devices. This paper with its analytical schemes should prove useful in identification of this homemade explosive. Keywords: erythritol tetranitrate, ETN, 1,4‐dinitrato‐2,3‐dinitro‐2,3bis(nitratomethylene) butane, DNTN, pentaerythritol tetranitrate, PETN, vapor pressure, densities, drop weight impact, thermal behavior, HPLC‐HRMS 1. Introduction In recent years there has been growth in use of so-called “homemade” explosives (HME). Preparation of HME can require little synthetic expertise. It can be as simple as mixing oxidizers and fuels as opposed to the preparation and isolation of discrete compounds. When specific characteristics are required terrorists do engage in more complex synthetic procedures.
    [Show full text]
  • Characterization of Explosives & Precursors
    Appendix A: Project Reports ALERT Thrust R1: Characterization & Elimination of Illicit Explosives Phase 2 Year 4 Annual Report Project R1-A.1 R1-A.1: Characterization of Explosives & Precursors I. PARTICIPANTS Faculty/Staff Name Title Institution Email Jimmie Oxley Co-PI URI [email protected] Jim Smith Co-PI URI [email protected] Gerald Kagan Post-Doc URI [email protected] Graduate, Undergraduate and REU Students Name Degree Pursued Institution Month/Year of Graduation Matt Porter PhD URI 5/2017 Austin Brown PhD URI 5/2017 Kevin Colizza PhD URI 5/2018 Lindsay McLennan PhD URI 5/2018 Devon Swanson PhD URI 5/2017 Jamie Butalewich BS URI 5/2021 II. PROJECT DESCRIPTION A. Project Overview All new materials require characterization. In the case of explosives, complete characterization is a matter of safety as well as performance. Most homemade explosives (HMEs) are not new, with some having been reported in the late 1800s. However, common handling of these explosives and resulting accidents caused by those involved in the homeland security enterprise (HSE) demand a thorough understanding of their proper- ties. Admittedly, this mission is too big to cover without more researchers, funding, and time. Therefore, we have chosen areas considered most urgent or reachable by our present experience and instrument capabil- ities. We have examined triacetone triperoxide (TATP) in detail. Presently, we are examining hexamethylene triperoxide diamine (HMTD), erythritol tetranitrate (ETN), and other nitrated sugars and fuel/oxidizer (FOX) mixtures. Characterization has included a detailed study of the thermal decomposition of ETN. Our work has highlight- ed a hazardous operation that many in the HSE perform.
    [Show full text]
  • Explosive Properties of Melt Cast Erythritol Tetranitrate (ETN)
    Central European Journal of Energetic Materials ISSN 1733-7178; e-ISSN 2353-1843 Copyright © 2017 Institute of Industrial Organic Chemistry, Poland Cent. Eur. J. Energ. Mater. 2017, 14(2): 418-429 DOI: 10.22211/cejem/68471 Explosive Properties of Melt Cast Erythritol Tetranitrate (ETN) Martin Künzel,* Robert Matyáš, Ondřej Vodochodský, Jiri Pachman Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Studentska 95, Pardubice, 532 10, Czech Republic *E-mail: [email protected] Abstract: Erythritol tetranitrate (ETN) is a low melting, solid, nitrate ester with significant explosive properties. The increased availability of its precursor (erythritol), which is now used as a sweetener, has attracted attention to the possible misuse of ETN as an improvised explosive. However, ETN also has some potential to be used as a component of military explosives or propellants. This article focuses on the properties of melt-cast ETN. The sensitivity of the compound towards impact and friction was tested. The explosive performance was evaluated, based on cylinder expansion tests and detonation velocity measurements. The impact energy and friction force required for 50% probability of initiation was 3.79 J and 47.7 N, respectively. A Gurney velocity value of G = 2771 m·s−1 and a detonation velocity of 8027 m·s−1 at a charge density of 1.700 g·cm−3, were found for the melt-cast material. The sensitivity characteristics of melt-cast ETN does not differ significantly from either literature values or the authors’ data measured using the crystalline material. The explosive performance properties were found to be close to those of PETN.
    [Show full text]
  • Quantifying the Stability of Trace Explosives Under Different
    Talanta 165 (2017) 10–17 Contents lists available at ScienceDirect Talanta journal homepage: www.elsevier.com/locate/talanta ff Quantifying the stability of trace explosives under di erent environmental MARK conditions using electrospray ionization mass spectrometry☆ ⁎ Edward Siscoa, , Marcela Najarroa, Daniel Samarovb,Jeffrey Lawrencea a National Institute of Standards and Technology, Materials Measurement Science Division, Gaithersburg, MD, USA b National Institute of Standards and Technology, Statistical Engineering Division, Gaithersburg, MD, USA ARTICLE INFO ABSTRACT Keywords: This work investigates the stability of trace (tens of nanograms) deposits of six explosives: erythritol tetranitrate Trace explosives (ETN), pentaerythritol tetranitrate (PETN), cyclotrimethylenetrinitramine (RDX), cyclotetramethylenetetrani- Mass spectrometry tramine (HMX), 2,4,6-trinitrotoluene (TNT), and 2,4,6-trinitrophenylmethylnitramine (tetryl) to determine Degradation environmental stabilities and lifetimes of trace level materials. Explosives were inkjet printed directly onto Environmental stability substrates and exposed to one of seven environmental conditions (Laboratory, −4 °C, 30 °C, 47 °C, 90% relative humidity, UV light, and ozone) up to 42 days. Throughout the study, samples were extracted and quantified using electrospray ionization mass spectrometry (ESI-MS) to determine the stability of the explosive as a function of time and environmental exposure. Statistical models were then fit to the data and used for pairwise comparisons of the environments. Stability was found to be exposure and compound dependent with minimal sample losses observed for HMX, RDX, and PETN while substantial and rapid losses were observed in all conditions except −4 °C for ETN and TNT and in all conditions for tetryl. The results of this work highlight the potential fate of explosive traces when exposed to various environments.
    [Show full text]
  • Organic Chemistry of Explosives
    JWBK121-FM October 11, 2006 21:10 Char Count= 0 Organic Chemistry of Explosives Dr. Jai Prakash Agrawal CChem FRSC (UK) Former Director of Materials Defence R&D Organisation DRDO House, New Delhi, India email: [email protected] Dr. Robert Dale Hodgson Consultant Organic Chemist, Syntech Chemical Consultancy, Morecambe, Lancashire, UK Website: http://www.syntechconsultancy.co.uk email: [email protected] iii JWBK121-FM October 11, 2006 21:10 Char Count= 0 iii JWBK121-FM October 11, 2006 21:10 Char Count= 0 Organic Chemistry of Explosives i JWBK121-FM October 11, 2006 21:10 Char Count= 0 ii JWBK121-FM October 11, 2006 21:10 Char Count= 0 Organic Chemistry of Explosives Dr. Jai Prakash Agrawal CChem FRSC (UK) Former Director of Materials Defence R&D Organisation DRDO House, New Delhi, India email: [email protected] Dr. Robert Dale Hodgson Consultant Organic Chemist, Syntech Chemical Consultancy, Morecambe, Lancashire, UK Website: http://www.syntechconsultancy.co.uk email: [email protected] iii JWBK121-FM October 11, 2006 21:10 Char Count= 0 Copyright C 2007 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777 Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher.
    [Show full text]