Arguments and Results
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Active Object Systems Redacted for Privacy Abstract Approved
AN ABSTRACT OF THE THESIS OF Sungwoon Choi for the degree of Doctor of Philosophyin Computer Science presented on February 6, 1992. Title: Active Object Systems Redacted for Privacy Abstract approved. v '" Toshimi Minoura An active object system isa transition-based object-oriented system suitable for the design of various concurrentsystems. An AOS consists of a collection of interacting objects, where the behavior of eachobject is determined by the transition statements provided in the class of that object.A transition statement is a condition-action pair, an equational assignmentstatement, or an event routine. The transition statements provided for eachobject can access, besides the state of that object, the states of the other objectsknown to it through its interface variables. Interface variablesare bound to objects when objects are instantiated so that desired connections among objects are established. The major benefit of the AOS approach is thatan active system can be hierarchically composed from its active software componentsas if it were a hardware system. An AOS provides better encapsulation andmore flexible communication protocols than ordinary object oriented systems, since control withinan AOS is localized. ©Copyright by Sungwoon Choi February 6, 1992 All Rights Reserved Active Object Systems by Sungwoon Choi A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Completed February 6, 1992 Commencement June 1992 APPROVED: Redacted for Privacy Professor of Computer Science in charge ofmajor Redacted for Privacy Head of Department of Computer Science Redacted for Privacy Dean of Gradu to School Or Date thesis presented February 6, 1992 Typed by Sungwoon Choi for Sungwoon Choi To my wife Yejung ACKNOWLEDGEMENTS I would like to express my sincere gratitude tomy major professor, Dr. -
Reversible Programming with Negative and Fractional Types
9 A Computational Interpretation of Compact Closed Categories: Reversible Programming with Negative and Fractional Types CHAO-HONG CHEN, Indiana University, USA AMR SABRY, Indiana University, USA Compact closed categories include objects representing higher-order functions and are well-established as models of linear logic, concurrency, and quantum computing. We show that it is possible to construct such compact closed categories for conventional sum and product types by defining a dual to sum types, a negative type, and a dual to product types, a fractional type. Inspired by the categorical semantics, we define a sound operational semantics for negative and fractional types in which a negative type represents a computational effect that “reverses execution flow” and a fractional type represents a computational effect that“garbage collects” particular values or throws exceptions. Specifically, we extend a first-order reversible language of type isomorphisms with negative and fractional types, specify an operational semantics for each extension, and prove that each extension forms a compact closed category. We furthermore show that both operational semantics can be merged using the standard combination of backtracking and exceptions resulting in a smooth interoperability of negative and fractional types. We illustrate the expressiveness of this combination by writing a reversible SAT solver that uses back- tracking search along freshly allocated and de-allocated locations. The operational semantics, most of its meta-theoretic properties, and all examples are formalized in a supplementary Agda package. CCS Concepts: • Theory of computation → Type theory; Abstract machines; Operational semantics. Additional Key Words and Phrases: Abstract Machines, Duality of Computation, Higher-Order Reversible Programming, Termination Proofs, Type Isomorphisms ACM Reference Format: Chao-Hong Chen and Amr Sabry. -
APPLYING MODEL-VIEW-CONTROLLER (MVC) in DESIGN and DEVELOPMENT of INFORMATION SYSTEMS an Example of Smart Assistive Script Breakdown in an E-Business Application
APPLYING MODEL-VIEW-CONTROLLER (MVC) IN DESIGN AND DEVELOPMENT OF INFORMATION SYSTEMS An Example of Smart Assistive Script Breakdown in an e-Business Application Andreas Holzinger, Karl Heinz Struggl Institute of Information Systems and Computer Media (IICM), TU Graz, Graz, Austria Matjaž Debevc Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia Keywords: Information Systems, Software Design Patterns, Model-view-controller (MVC), Script Breakdown, Film Production. Abstract: Information systems are supporting professionals in all areas of e-Business. In this paper we concentrate on our experiences in the design and development of information systems for the use in film production processes. Professionals working in this area are neither computer experts, nor interested in spending much time for information systems. Consequently, to provide a useful, useable and enjoyable application the system must be extremely suited to the requirements and demands of those professionals. One of the most important tasks at the beginning of a film production is to break down the movie script into its elements and aspects, and create a solid estimate of production costs based on the resulting breakdown data. Several film production software applications provide interfaces to support this task. However, most attempts suffer from numerous usability deficiencies. As a result, many film producers still use script printouts and textmarkers to highlight script elements, and transfer the data manually into their film management software. This paper presents a novel approach for unobtrusive and efficient script breakdown using a new way of breaking down text into its relevant elements. We demonstrate how the implementation of this interface benefits from employing the Model-View-Controller (MVC) as underlying software design paradigm in terms of both software development confidence and user satisfaction. -
An Efficient Implementation of Guard-Based Synchronization for an Object-Oriented Programming Language an Efficient Implementation of Guard-Based
AN EFFICIENT IMPLEMENTATION OF GUARD-BASED SYNCHRONIZATION FOR AN OBJECT-ORIENTED PROGRAMMING LANGUAGE AN EFFICIENT IMPLEMENTATION OF GUARD-BASED SYNCHRONIZATION FOR AN OBJECT-ORIENTED PROGRAMMING LANGUAGE By SHUCAI YAO, M.Sc., B.Sc. A Thesis Submitted to the Department of Computing and Software and the School of Graduate Studies of McMaster University in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy McMaster University c Copyright by Shucai Yao, July 2020 Doctor of Philosophy (2020) McMaster University (Computing and Software) Hamilton, Ontario, Canada TITLE: An Efficient Implementation of Guard-Based Synchro- nization for an Object-Oriented Programming Language AUTHOR: Shucai Yao M.Sc., (Computer Science) University of Science and Technology Beijing B.Sc., (Computer Science) University of Science and Technology Beijing SUPERVISOR: Dr. Emil Sekerinski, Dr. William M. Farmer NUMBER OF PAGES: xvii,167 ii To my beloved family Abstract Object-oriented programming has had a significant impact on software development because it provides programmers with a clear structure of a large system. It encap- sulates data and operations into objects, groups objects into classes and dynamically binds operations to program code. With the emergence of multi-core processors, application developers have to explore concurrent programming to take full advan- tage of multi-core technology. However, when it comes to concurrent programming, object-oriented programming remains elusive as a useful programming tool. Most object-oriented programming languages do have some extensions for con- currency, but concurrency is implemented independently of objects: for example, concurrency in Java is managed separately with the Thread object. We employ a programming model called Lime that combines action systems tightly with object- oriented programming and implements concurrency by extending classes with actions and guarded methods. -
Let's Get Functional
5 LET’S GET FUNCTIONAL I’ve mentioned several times that F# is a functional language, but as you’ve learned from previous chapters you can build rich applications in F# without using any functional techniques. Does that mean that F# isn’t really a functional language? No. F# is a general-purpose, multi paradigm language that allows you to program in the style most suited to your task. It is considered a functional-first lan- guage, meaning that its constructs encourage a functional style. In other words, when developing in F# you should favor functional approaches whenever possible and switch to other styles as appropriate. In this chapter, we’ll see what functional programming really is and how functions in F# differ from those in other languages. Once we’ve estab- lished that foundation, we’ll explore several data types commonly used with functional programming and take a brief side trip into lazy evaluation. The Book of F# © 2014 by Dave Fancher What Is Functional Programming? Functional programming takes a fundamentally different approach toward developing software than object-oriented programming. While object-oriented programming is primarily concerned with managing an ever-changing system state, functional programming emphasizes immutability and the application of deterministic functions. This difference drastically changes the way you build software, because in object-oriented programming you’re mostly concerned with defining classes (or structs), whereas in functional programming your focus is on defining functions with particular emphasis on their input and output. F# is an impure functional language where data is immutable by default, though you can still define mutable data or cause other side effects in your functions. -
University of Vaasa
UNIVERSITY OF VAASA FACULTY OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE Arvi Lehesvuo A SOFTWARE FRAMEWORK FOR STORING USER WORKSPACES OF DESKTOP APPLICATIONS Master’s thesis in Technology for the degree of Master of Science in Technology submitted for inspection, Vaasa, June 30, 2012. Supervisor Prof. Jouni Lampinen Instructor M.Sc. Pasi Pelkkikangas 1 TABLE OF CONTENTS page ABBREVIATIONS 3 LIST OF FIGURES 4 TIIVISTELMÄ 5 ABSTRACT 6 1. INTRODUCTION 7 1.1. Company Introduction: Wapice Ltd 8 1.2. Professional Background Statement 9 1.3. The Scope of the Research 9 1.4. Research Questions 10 2. RESEARCH METHODOLOGY 12 2.1. Constructive Research Approach 12 2.2. Research Process as Applied in This Research 13 3. THEORY AND BACKGROUND OF THE STUDY 17 3.1. Introduction to the Subject 17 3.2. History of Object Oriented Programming 17 3.3. Most Central Elements in Object Oriented Programming 19 3.4. More Advanced Features of Object Oriented Programming 25 3.5. Software Design Patterns 27 3.6. Graphical User Interface Programming 34 4. DEVELOPING THE SOLUTION 39 4.1. Identifying the Solution Requirements 39 4.2. Designing Basic Structure for the Solution 43 4.3. Building the Solution as an External Software Component 47 4.4. Storing the User Data 48 4.5. Optimizing Construction for C# 51 2 5. EVALUATING PRACTICAL RELEVANCE OF THE DESIGN 54 5.1. Testing Design by applying it to Different GUI Design Models 54 5.2. Analyzing Results of the User Questionnaire 57 6. CONCLUSIONS AND FUTURE 61 6.1. Practical Contribution 62 6.2. -
Notes on Functional Programming with Haskell
Notes on Functional Programming with Haskell H. Conrad Cunningham [email protected] Multiparadigm Software Architecture Group Department of Computer and Information Science University of Mississippi 201 Weir Hall University, Mississippi 38677 USA Fall Semester 2014 Copyright c 1994, 1995, 1997, 2003, 2007, 2010, 2014 by H. Conrad Cunningham Permission to copy and use this document for educational or research purposes of a non-commercial nature is hereby granted provided that this copyright notice is retained on all copies. All other rights are reserved by the author. H. Conrad Cunningham, D.Sc. Professor and Chair Department of Computer and Information Science University of Mississippi 201 Weir Hall University, Mississippi 38677 USA [email protected] PREFACE TO 1995 EDITION I wrote this set of lecture notes for use in the course Functional Programming (CSCI 555) that I teach in the Department of Computer and Information Science at the Uni- versity of Mississippi. The course is open to advanced undergraduates and beginning graduate students. The first version of these notes were written as a part of my preparation for the fall semester 1993 offering of the course. This version reflects some restructuring and revision done for the fall 1994 offering of the course|or after completion of the class. For these classes, I used the following resources: Textbook { Richard Bird and Philip Wadler. Introduction to Functional Program- ming, Prentice Hall International, 1988 [2]. These notes more or less cover the material from chapters 1 through 6 plus selected material from chapters 7 through 9. Software { Gofer interpreter version 2.30 (2.28 in 1993) written by Mark P. -
A Framework to Support Behavioral Design Pattern Detection from Software Execution Data
A Framework to Support Behavioral Design Pattern Detection from Software Execution Data Cong Liu1, Boudewijn van Dongen1, Nour Assy1 and Wil M. P. van der Aalst2;1 1Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands 2Department of Computer Science, RWTH Aachen University, 52056 Aachen, Germany Keywords: Pattern Instance Detection, Behavioral Design Pattern, Software Execution Data, General Framework. Abstract: The detection of design patterns provides useful insights to help understanding not only the code but also the design and architecture of the underlying software system. Most existing design pattern detection approaches and tools rely on source code as input. However, if the source code is not available (e.g., in case of legacy software systems) these approaches are not applicable anymore. During the execution of software, tremendous amounts of data can be recorded. This provides rich information on the runtime behavior analysis of software. This paper presents a general framework to detect behavioral design patterns by analyzing sequences of the method calls and interactions of the objects that are collected in software execution data. To demonstrate the applicability, the framework is instantiated for three well-known behavioral design patterns, i.e., observer, state and strategy patterns. Using the open-source process mining toolkit ProM, we have developed a tool that supports the whole detection process. We applied and validated the framework using software execution data containing around 1000.000 method calls generated from both synthetic and open-source software systems. 1 INTRODUCTION latter specifies how classes and objects interact. Many techniques have been proposed to detect design pat- As a common design practice, design patterns have tern instances. -
Design Patterns in Ocaml
Design Patterns in OCaml Antonio Vicente [email protected] Earl Wagner [email protected] Abstract The GOF Design Patterns book is an important piece of any professional programmer's library. These patterns are generally considered to be an indication of good design and development practices. By giving an implementation of these patterns in OCaml we expected to better understand the importance of OCaml's advanced language features and provide other developers with an implementation of these familiar concepts in order to reduce the effort required to learn this language. As in the case of Smalltalk and Scheme+GLOS, OCaml's higher order features allows for simple elegant implementation of some of the patterns while others were much harder due to the OCaml's restrictive type system. 1 Contents 1 Background and Motivation 3 2 Results and Evaluation 3 3 Lessons Learned and Conclusions 4 4 Creational Patterns 5 4.1 Abstract Factory . 5 4.2 Builder . 6 4.3 Factory Method . 6 4.4 Prototype . 7 4.5 Singleton . 8 5 Structural Patterns 8 5.1 Adapter . 8 5.2 Bridge . 8 5.3 Composite . 8 5.4 Decorator . 9 5.5 Facade . 10 5.6 Flyweight . 10 5.7 Proxy . 10 6 Behavior Patterns 11 6.1 Chain of Responsibility . 11 6.2 Command . 12 6.3 Interpreter . 13 6.4 Iterator . 13 6.5 Mediator . 13 6.6 Memento . 13 6.7 Observer . 13 6.8 State . 14 6.9 Strategy . 15 6.10 Template Method . 15 6.11 Visitor . 15 7 References 18 2 1 Background and Motivation Throughout this course we have seen many examples of methodologies and tools that can be used to reduce the burden of working in a software project. -
Active Object
Active Object an Object Behavioral Pattern for Concurrent Programming R. Greg Lavender Douglas C. Schmidt [email protected] [email protected] ISODE Consortium Inc. Department of Computer Science Austin, TX Washington University, St. Louis An earlier version of this paper appeared in a chapter in the book ªPattern Languages of Program Design 2º ISBN 0-201-89527-7, edited by John Vlissides, Jim Coplien, and Norm Kerth published by Addison-Wesley, 1996. : Output : Input Handler Handler : Routing Table : Message Abstract Queue This paper describes the Active Object pattern, which decou- 3: enqueue(msg) ples method execution from method invocation in order to : Output 2: find_route(msg) simplify synchronized access to a shared resource by meth- Handler ods invoked in different threads of control. The Active Object : Message : Input pattern allows one or more independent threads of execution Queue Handler 1: recv(msg) to interleave their access to data modeled as a single ob- ject. A broad class of producer/consumer and reader/writer OUTGOING OUTGOING MESSAGES GATEWAY problems are well-suited to this model of concurrency. This MESSAGES pattern is commonly used in distributed systems requiring INCOMING INCOMING multi-threaded servers. In addition,client applications (such MESSAGES MESSAGES as windowing systems and network browsers), are increas- DST DST ingly employing active objects to simplify concurrent, asyn- SRC SRC chronous network operations. 1 Intent Figure 1: Connection-Oriented Gateway The Active Object pattern decouples method execution from method invocation in order to simplify synchronized access to a shared resource by methods invoked in different threads [2]. Sources and destinationscommunicate with the Gateway of control. -
Sample Chapter
SAMPLE CHAPTER C# in Depth by Jon Skeet Chapter 6 Copyright 2008 Manning Publications brief contents PART 1PREPARING FOR THE JOURNEY ......................................1 1 ■ The changing face of C# development 3 2 ■ Core foundations: building on C# 1 32 PART 2C#2: SOLVING THE ISSUES OF C# 1........................... 61 3 ■ Parameterized typing with generics 63 4 ■ Saying nothing with nullable types 112 5 ■ Fast-tracked delegates 137 6 ■ Implementing iterators the easy way 161 7 ■ Concluding C# 2: the final features 183 PART 3C# 3—REVOLUTIONIZING HOW WE CODE ..................205 8 ■ Cutting fluff with a smart compiler 207 9 ■ Lambda expressions and expression trees 230 10 ■ Extension methods 255 11 ■ Query expressions and LINQ to Objects 275 12 ■ LINQ beyond collections 314 13 ■ Elegant code in the new era 352 vii Implementing iterators the easy way This chapter covers ■ Implementing iterators in C# 1 ■ Iterator blocks in C# 2 ■ A simple Range type ■ Iterators as coroutines The iterator pattern is an example of a behavioral pattern—a design pattern that simplifies communication between objects. It’s one of the simplest patterns to understand, and incredibly easy to use. In essence, it allows you to access all the elements in a sequence of items without caring about what kind of sequence it is— an array, a list, a linked list, or none of the above. This can be very effective for building a data pipeline, where an item of data enters the pipeline and goes through a number of different transformations or filters before coming out at the other end. Indeed, this is one of the core patterns of LINQ, as we’ll see in part 3. -
A Design Pattern Generation Tool
Project Number: GFP 0801 A DESIGN PATTERN GEN ERATION TOOL A MAJOR QUALIFYING P ROJECT REPORT SUBMITTED TO THE FAC ULTY OF WORCESTER POLYTECHNIC INSTITUTE IN PARTIAL FULFILLME NT OF THE REQUIREMEN TS FOR THE DEGREE OF BACHELOR O F SCIENCE BY CAITLIN VANDYKE APRIL 23, 2009 APPROVED: PROFESSOR GARY POLLICE, ADVISOR 1 ABSTRACT This project determines the feasibility of a tool that, given code, can convert it into equivalent code (e.g. code that performs the same task) in the form of a specified design pattern. The goal is to produce an Eclipse plugin that performs this task with minimal input, such as special tags.. The final edition of this plugin will be released to the Eclipse community. ACKNOWLEGEMENTS This project was completed by Caitlin Vandyke with gratitude to Gary Pollice for his advice and assistance, as well as reference materials and troubleshooting. 2 TABLE OF CONTENTS Abstract ....................................................................................................................................................................................... 2 Acknowlegements ................................................................................................................................................................... 2 Table of Contents ..................................................................................................................................................................... 3 Table of Illustrations .............................................................................................................................................................