A Stromal Cell Population That Inhibits Adipogenesis in Mammalian Fat Depots Petra C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Rise and Fall of the Bovine Corpus Luteum
University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Spring 5-6-2017 The Rise and Fall of the Bovine Corpus Luteum Heather Talbott University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Biochemistry Commons, Molecular Biology Commons, and the Obstetrics and Gynecology Commons Recommended Citation Talbott, Heather, "The Rise and Fall of the Bovine Corpus Luteum" (2017). Theses & Dissertations. 207. https://digitalcommons.unmc.edu/etd/207 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. THE RISE AND FALL OF THE BOVINE CORPUS LUTEUM by Heather Talbott A DISSERTATION Presented to the Faculty of the University of Nebraska Graduate College in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biochemistry and Molecular Biology Graduate Program Under the Supervision of Professor John S. Davis University of Nebraska Medical Center Omaha, Nebraska May, 2017 Supervisory Committee: Carol A. Casey, Ph.D. Andrea S. Cupp, Ph.D. Parmender P. Mehta, Ph.D. Justin L. Mott, Ph.D. i ACKNOWLEDGEMENTS This dissertation was supported by the Agriculture and Food Research Initiative from the USDA National Institute of Food and Agriculture (NIFA) Pre-doctoral award; University of Nebraska Medical Center Graduate Student Assistantship; University of Nebraska Medical Center Exceptional Incoming Graduate Student Award; the VA Nebraska-Western Iowa Health Care System Department of Veterans Affairs; and The Olson Center for Women’s Health, Department of Obstetrics and Gynecology, Nebraska Medical Center. -
Activated Peripheral-Blood-Derived Mononuclear Cells
Transcription factor expression in lipopolysaccharide- activated peripheral-blood-derived mononuclear cells Jared C. Roach*†, Kelly D. Smith*‡, Katie L. Strobe*, Stephanie M. Nissen*, Christian D. Haudenschild§, Daixing Zhou§, Thomas J. Vasicek¶, G. A. Heldʈ, Gustavo A. Stolovitzkyʈ, Leroy E. Hood*†, and Alan Aderem* *Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103; ‡Department of Pathology, University of Washington, Seattle, WA 98195; §Illumina, 25861 Industrial Boulevard, Hayward, CA 94545; ¶Medtronic, 710 Medtronic Parkway, Minneapolis, MN 55432; and ʈIBM Computational Biology Center, P.O. Box 218, Yorktown Heights, NY 10598 Contributed by Leroy E. Hood, August 21, 2007 (sent for review January 7, 2007) Transcription factors play a key role in integrating and modulating system. In this model system, we activated peripheral-blood-derived biological information. In this study, we comprehensively measured mononuclear cells, which can be loosely termed ‘‘macrophages,’’ the changing abundances of mRNAs over a time course of activation with lipopolysaccharide (LPS). We focused on the precise mea- of human peripheral-blood-derived mononuclear cells (‘‘macro- surement of mRNA concentrations. There is currently no high- phages’’) with lipopolysaccharide. Global and dynamic analysis of throughput technology that can precisely and sensitively measure all transcription factors in response to a physiological stimulus has yet to mRNAs in a system, although such technologies are likely to be be achieved in a human system, and our efforts significantly available in the near future. To demonstrate the potential utility of advanced this goal. We used multiple global high-throughput tech- such technologies, and to motivate their development and encour- nologies for measuring mRNA levels, including massively parallel age their use, we produced data from a combination of two distinct signature sequencing and GeneChip microarrays. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Differential Patterns of Allelic Loss in Estrogen Receptor-Positive Infiltrating Lobular and Ductal Breast Cancer
GENES, CHROMOSOMES & CANCER 47:1049–1066 (2008) Differential Patterns of Allelic Loss in Estrogen Receptor-Positive Infiltrating Lobular and Ductal Breast Cancer L. W. M. Loo,1 C. Ton,1,2 Y.-W. Wang,2 D. I. Grove,2 H. Bouzek,1 N. Vartanian,1 M.-G. Lin,1 X. Yuan,1 T. L. Lawton,3 J. R. Daling,2 K. E. Malone,2 C. I. Li,2 L. Hsu,2 and P.L. Porter1,2,3* 1Division of Human Biology,Fred Hutchinson Cancer Research Center,Seattle,WA 2Division of Public Health Sciences,Fred Hutchinson Cancer Research Center,Seattle,WA 3Departmentof Pathology,Universityof Washington,Seattle,WA The two main histological types of infiltrating breast cancer, lobular (ILC) and the more common ductal (IDC) carcinoma are morphologically and clinically distinct. To assess the molecular alterations associated with these breast cancer subtypes, we conducted a whole-genome study of 166 archival estrogen receptor (ER)-positive tumors (89 IDC and 77 ILC) using the Affy- metrix GeneChip® Mapping 10K Array to identify sites of loss of heterozygosity (LOH) that either distinguished, or were shared by, the two phenotypes. We found single nucleotide polymorphisms (SNPs) of high-frequency LOH (>50%) common to both ILC and IDC tumors predominately in 11q, 16q, and 17p. Overall, IDC had a slightly higher frequency of LOH events across the genome than ILC (fractional allelic loss 5 0.186 and 0.156). By comparing the average frequency of LOH by chro- mosomal arm, we found IDC tumors with significantly (P < 0.05) higher frequency of LOH on 3p, 5q, 8p, 9p, 20p, and 20q than ILC tumors. -
The E–Id Protein Axis Modulates the Activities of the PI3K–AKT–Mtorc1
Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press The E–Id protein axis modulates the activities of the PI3K–AKT–mTORC1– Hif1a and c-myc/p19Arf pathways to suppress innate variant TFH cell development, thymocyte expansion, and lymphomagenesis Masaki Miyazaki,1,8 Kazuko Miyazaki,1,8 Shuwen Chen,1 Vivek Chandra,1 Keisuke Wagatsuma,2 Yasutoshi Agata,2 Hans-Reimer Rodewald,3 Rintaro Saito,4 Aaron N. Chang,5 Nissi Varki,6 Hiroshi Kawamoto,7 and Cornelis Murre1 1Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA; 2Department of Biochemistry and Molecular Biology, Shiga University of Medical School, Shiga 520-2192, Japan; 3Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany; 4Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA; 5Center for Computational Biology, Institute for Genomic Medicine, University of California at San Diego, La Jolla, California 92093, USA; 6Department of Pathology, University of California at San Diego, La Jolla, California 92093, USA; 7Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan It is now well established that the E and Id protein axis regulates multiple steps in lymphocyte development. However, it remains unknown how E and Id proteins mechanistically enforce and maintain the naı¨ve T-cell fate. Here we show that Id2 and Id3 suppressed the development and expansion of innate variant follicular helper T (TFH) cells. Innate variant TFH cells required major histocompatibility complex (MHC) class I-like signaling and were associated with germinal center B cells. -
WO 2014/135655 Al 12 September 2014 (12.09.2014) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/135655 Al 12 September 2014 (12.09.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/EP2014/054384 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 6 March 2014 (06.03.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 13305253.0 6 March 2013 (06.03.2013) EP (84) Designated States (unless otherwise indicated, for every (71) Applicants: INSTITUT CURIE [FR/FR]; 26 rue d'Ulm, kind of regional protection available): ARIPO (BW, GH, F-75248 Paris cedex 05 (FR). CENTRE NATIONAL DE GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, LA RECHERCHE SCIENTIFIQUE [FR/FR]; 3 rue UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, Michel Ange, F-75016 Paris (FR). -
The YAP/HIF-1Α/Mir-182/EGR2 Axis Is Implicated in Asthma Severity
Zhou et al. Cell Biosci (2021) 11:84 https://doi.org/10.1186/s13578-021-00560-1 Cell & Bioscience RESEARCH Open Access The YAP/HIF-1α/miR-182/EGR2 axis is implicated in asthma severity through the control of Th17 cell diferentiation Jing Zhou1, Ning Zhang2, Wei Zhang1, Caiju Lu1 and Fei Xu1* Abstract Background: Asthma is a heterogeneous chronic infammatory disease of the airway, involving reversible airfow limitation and airway remodeling. T helper 17 (Th17) cells play an important role in the pathogenesis of allergic asthma. However, there is limited understanding of the signaling pathways controlling Th17 cell diferentiation in asthma. The aim of this study was to investigate if the Yes-associated protein (YAP)/hypoxia inducible factor-1α (HIF-1α)/microRNA-182 (miR-182)/early growth response 2 (EGR2) axis is involved in mediating Th17 cell diferentia- tion and disease severity in asthma. Methods: The study included 29 pediatric patients with asthma, 22 healthy volunteers, ovalbumin-induced murine asthma models, and mouse naive CD4+ T cells. The subpopulation of Th17 cells was examined by fow cytometry. The levels of interleukin-17A were determined by enzyme linked immunosorbent assay. Chromatin immunoprecipitation- quantitative polymerase chain reaction assays and dual-luciferase reporter gene assays were performed to examine interactions between HIF-1α and miR-182, and between miR-182 and EGR2. Results: YAP, HIF-1α, and miR-182 were upregulated but EGR2 was downregulated in human and mouse peripheral blood mononuclear cells from the asthma group. Abundant expression of YAP and HIF-1α promoted miR-182 expres- sion and then inhibited EGR2, a target of miR-182, thus enhancing Th17 diferentiation and deteriorating asthma and lipid metabolism dysfunction. -
Bioinformatics Approaches to Identify Pain Mediators, Novel Lncrnas and Distinct Modalities of Neuropathic Pain
Bioinformatics approaches to identify pain mediators, novel LncRNAs and distinct modalities of neuropathic pain by Georgios Baskozos A thesis submitted to University College London for the degree of Doctor of Philosophy Institute of Structural and Molecular Biology University College London September 2016 1 Declaration I, Georgios Baskozos, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. ……………………………………… Georgios Baskozos 29 September 2016 2 Abstract This thesis presents a number of studies in the general subject of bioinformatics and functional genomics. The studies were made in collaboration with experimental scientists of the London Pain Consortium (LPC), an initiative that has promoted collaborations between experimental and computational scientists to further understanding of pain. The studies are mainly concerned with the molecular biology of pain and deal with data gathered from high throughput technologies aiming to assess the transcriptional changes involved in well induced pain states, both from animal models of pain and human patients. We have analysed next generation sequencing data (NGS data) in order to assess the transcriptional changes in rodent’s dorsal root ganglions under well induced pain states. We have also developed a customised computational pipeline to analyse RNA- sequencing data in order to identify novel Long non-coding RNAs (LncRNAs), which may function as mediators of neuropathic pain. Our analyses detected hundreds of novel LncRNAs significantly dysregulated between sham-operated animals and animal models of pain. In addition, in order to gain valuable insights into neuropathic pain, including both its molecular signature, somatosensory profiles and clusters of individuals related to pain severity, we analysed clinical data together with data obtained from quality of life pain-questionnaires. -
The Transcription Factor EGR2 Is the Molecular Linchpin Connecting STAT6 Activation to the Late, Stable Epigenomic Program of Alternative Macrophage Polarization
Downloaded from genesdev.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press The transcription factor EGR2 is the molecular linchpin connecting STAT6 activation to the late, stable epigenomic program of alternative macrophage polarization Bence Daniel,1,2,3,11,12 Zsolt Czimmerer,4,12 Laszlo Halasz,1,2,3,12 Pal Boto,4 Zsuzsanna Kolostyak,4 Szilard Poliska,4 Wilhelm K. Berger,1,2,3 Petros Tzerpos,4 Gergely Nagy,4 Attila Horvath,4 György Hajas,5 Timea Cseh,4 Aniko Nagy,4 Sascha Sauer,6,7,8,9 Jean Francois-Deleuze,10 Istvan Szatmari,4 Attila Bacsi,5 and Laszlo Nagy1,2,3,4 1Department of Medicine, 2Department of Biological Chemistry, Johns Hopkins University School of Medicine, St. Petersburg, Florida 33701, USA; 3Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida 33701, USA; 4Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary; 5Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary; 6Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany; 7CU Systems Medicine, University of Würzburg, Würzburg 97070, Germany; 8Berlin Institute for Medical Systems Biology, 9Berlin Institute of Health, Max-Delbrück- Center for Molecular Medicine, Berlin 13125, Germany; 10Centre National de Génotypage, Institut de Génomique, Commissariat à l’Énergie Atomique, Evry 91000, France Macrophages polarize into functionally distinct subtypes while responding to microenvironmental cues. The identity of proximal transcription factors (TFs) downstream from the polarization signals are known, but their ac- tivity is typically transient, failing to explain the long-term, stable epigenomic programs developed. -
Egr2 and 3 Control Adaptive Immune Responses by Temporally Uncoupling Expansion from T Cell Differentiation
Published Online: 9 May, 2017 | Supp Info: http://doi.org/10.1084/jem.20160553 Downloaded from jem.rupress.org on October 9, 2018 Article Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation Tizong Miao,1* Alistair L.J. Symonds,1* Randeep Singh,1,2 Janine D. Symonds,3 Ane Ogbe,2 Becky Omodho,2 Bo Zhu,1,4 Suling Li,2 and Ping Wang1 1The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, England, UK 2Bioscience, Brunel University, Uxbridge UB8 3PH, England, UK 3Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London WC1E 6BT, England, UK 4Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People’s Republic of China Egr2 and 3 are important for maintaining immune homeostasis. Here we define a fundamental function of Egr2 and 3 oper- ating as a checkpoint that controls the transition between clonal expansion and differentiation of effector T cells. Egr2 and 3 deficiency resulted in defective clonal expansion but hyperactivation and excessive differentiation of T cells in response to viral infection. Conversely, sustained Egr2 expression enhanced expansion but severely impaired effector differentiation. Egr2 bound to and controlled the expression of genes regulating proliferation (Myc and Myb) and differentiation repressors (Bcl6, Id3), while repressing transcription factors required for effector function (Zeb2, RORa, RORc, and Bhlhe40). Egr2 and 3 ex- pression in T cells was regulated reciprocally by antigen and IFNγ, providing a mechanism for adjusting proliferation and dif- ferentiation of individual T cells. -
A Dissertation Entitled the Androgen Receptor
A Dissertation entitled The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit Submitted to the Graduate Faculty as partial fulfillment of the requirements for the PhD Degree in Biomedical science Dr. Manohar Ratnam, Committee Chair Dr. Lirim Shemshedini, Committee Member Dr. Robert Trumbly, Committee Member Dr. Edwin Sanchez, Committee Member Dr. Beata Lecka -Czernik, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2011 Copyright 2011, Mesfin Gonit This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit As partial fulfillment of the requirements for the PhD Degree in Biomedical science The University of Toledo August 2011 Prostate cancer depends on the androgen receptor (AR) for growth and survival even in the absence of androgen. In the classical models of gene activation by AR, ligand activated AR signals through binding to the androgen response elements (AREs) in the target gene promoter/enhancer. In the present study the role of AREs in the androgen- independent transcriptional signaling was investigated using LP50 cells, derived from parental LNCaP cells through extended passage in vitro. LP50 cells reflected the signature gene overexpression profile of advanced clinical prostate tumors. The growth of LP50 cells was profoundly dependent on nuclear localized AR but was independent of androgen. Nevertheless, in these cells AR was unable to bind to AREs in the absence of androgen. -
Chip-Seq Annotation and Visualization How to Add Biological Meaning to Peaks
ChIP-seq Annotation and Visualization How to add biological meaning to peaks M. Defrance, C. Herrmann, D. Puthier, M. Thomas-Chollier, S Le Gras, J van Helden Our data in the context Custom track uploded by the user (here ESR1 peaks in siGATA3 context) public UCSC annotation/data tracks Typical questions - What are the genes associated to the peaks? ChIP-seq peaks - Are some genomic categories over-represented? - Are some functional categories over-represented? - Are the peaks close to the TSS, …? ChIP-seq peaks Annotation Visualisation Enrichment profiles Annotated peaks Genomic & functional Average Profile near TSS Average Profile near TTS Annotation Genomic location Relation to CpG island 0.30 1.0 2500 0.8 chr start end Gene 0.25 chr15 65294195 65295186 0.6 chrX 19635923 19638359 Chst7 Average Profile Average Profile Average 3000 chr8 33993863 33995559 1500 0.4 0.20 chr10 114236977 114239326 Trhde # of regions # of regions 0.2 Distribution of Peak Heights chrX 69515082 69516482 Gabre 500 chr4 49857142 49858913 Grin3a 1000 −3000 −2000 −1000 0 1000 2000 3000 −3000 −2000 −1000 0 1000 2000 3000 0 5 10 15 chr16 7352861 7353410 Rbfox1 0 0 Relative Distance to TSS (bp) Relative Distance to TTS (bp) chr7 64764156 64765421 Gabra5 ChIP Regions (Peaks) over Chromosomes Average Gene Profile chrX 83436881 83438330 Nr0b1 CGI Shore Distant chr10 120288598 120289143 Msrb3 Multiple 1 Promoter Intergenic 2 chr5 67446361 67446855 Limch1 Gene Body 3 0.8 4 5 6 7 0.6 8 9 Average Profile Average 10 0.4 11 12 Chromosome 13 0.2 14 15 −1000 0 1000 2000 3000 4000 16 Upstream (bp), 3000 bp of Meta−gene, Downstream (bp) 17 18 19 Average Concatenated Exon Profile Average Concatenated Intron Profile X Y 0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08 1.0 Chromosome Size (bp) 1.0 0.8 0.8 0.6 0.6 Average Profile Average Profile Average 0.4 0.4 0.2 0.2 0 20 40 60 80 100 0 20 40 60 80 100 Relative Location (%) Relative Location (%) Distribution of Peak Heights 0 5 10 15 ChIP Regions (Peaks) over Chromosomes 1 2 3 4 5 6 7 8 9 10 11 12 Chromosome W.Huang et al.