Janet’s Algorithm and Systems Theory

Daniel Robertz

Lehrstuhl B f¨ur Mathematik

http://wwwb.math.rwth-aachen.de/~daniel

28.11.2012

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Outline

Janet’s algorithm

Module-theoretic approach to linear systems

Parametrizing linear systems

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Janet’s algorithm

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Janet’s algorithm for linear PDEs

∂2u ∂u − = 0 ∂x∂y ∂y  find: u = u(x,y) analytic  ∂2u ∂u  − = 0 ∂x2 ∂y  

2 x2 xy y u(x,y)= a0,0 + a1,0 x + a0,1 y + a2,0 2! + a1,1 1!1! + a0,2 2! + ...

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Janet’s algorithm for linear PDEs

∂2u ∂u − = 0 ∂x∂y ∂y  find: u = u(x,y) analytic  ∂2u ∂u  − = 0 ∂x2 ∂y  

2 x2 xy y u(x,y)= a0,0 + a1,0 x + a0,1 y + a2,0 2! + a1,1 1!1! + a0,2 2! + ...

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Janet’s algorithm for linear PDEs

∂2u ∂u − = 0 ∂x∂y ∂y  find: u = u(x,y) analytic  ∂2u ∂u  − = 0 ∂x2 ∂y   ∂ ∂2u ∂u ∂ ∂2u ∂u ∂2u ∂u ∂x ∂x∂y − ∂y − ∂y ∂x2 − ∂y = ∂y2 − ∂y = 0     2 x2 xy y u(x,y)= a0,0 + a1,0 x + a0,1 y + a2,0 2! + a1,1 1!1! + a0,2 2! + ...

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Janet’s algorithm for linear PDEs

∂2u ∂u − = 0 ∂x∂y ∂y  find: u = u(x,y) analytic  ∂2u ∂u  − = 0 ∂x2 ∂y   ∂ ∂2u ∂u ∂ ∂2u ∂u ∂2u ∂u ∂x ∂x∂y − ∂y − ∂y ∂x2 − ∂y = ∂y2 − ∂y = 0     2 x2 xy y u(x,y)= a0,0 + a1,0 x + a0,1 y + a2,0 2! + a1,1 1!1! + a0,2 2! + ...

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Janet’s algorithm for linear PDEs

∂2u ∂u − = 0 ∂x∂y ∂y  find: u = u(x,y) analytic  ∂2u ∂u  − = 0 ∂x2 ∂y   ∂ ∂2u ∂u ∂ ∂2u ∂u ∂2u ∂u ∂x ∂x∂y − ∂y − ∂y ∂x2 − ∂y = ∂y2 − ∂y = 0     2 x2 xy y u(x,y)= a0,0 + a1,0 x + a0,1 y + a2,0 2! + a1,1 1!1! + a0,2 2! + ...

Janet’s algorithm computes a vector space basis for power series solutions

(Maurice Janet, ∼ 1920)

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Janet’s algorithm for linear PDEs

uy,y = 0 A   ux,x − yuz,z = 0 B  is equivalent to

uy,y = 0 A   ux,x − yuz,z = 0 B    1 2 − 2 − 1 2  uy,z,z = 0 2 (∂x y∂z )A 2 ∂y B     ux,y,y = 0 ∂xA  1 4 − 2 2 2 4 − 1 2 2 − 2 2 2 uz,z,z,z = 0 2 (∂x 2y∂x∂z + y ∂z )A 2 (∂x∂y y∂y ∂z +2∂y ∂z )B    1 3 − 2 − 1 2  ux,y,z,z = 0 2 (∂x y∂x∂z )A 2 ∂x∂y B    1 5 − 3 2 2 4 − 1 3 2 2 2 − 2  ux,z,z,z,z = 0 2 (∂x 2y∂x∂z + y ∂x∂z )A 2 (∂x∂y + y∂x∂y ∂z 2∂x∂y ∂z )B   Taylor coeff’s for 1, z, y, x, z2, yz, xz, xy, z3, xz2, xyz, xz3 arbitrary, all other coeff’s determined by linear equations

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Outline

Decomposition of multiple closed sets of monomials into disjoint cones

Janet’s algorithm

(Generalized) Hilbert series, Hilbert polynomial

Construction of a free resolution

Janet bases over Z

Janet bases for Ore algebras

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Strategy

R = K[x1,...,xn], K field

I ideal of R (or, more generally: M submodule of Rm)

goal: compute “good” generating set for I (Janet basis)

sort terms in a polynomial in a way compatible with multiplication

i n total ordering < on M := Mon(x1,...,xn) := {x | i ∈ (Z≥0) }

use highest terms lm(p), lm(q) to decide “divisibility”

∂2u ∂u represent − as ∂ ∂ − ∂ in Q[∂ ,∂ ] ∂x∂y ∂y x y y x y

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Multiple closed sets of monomials

i n M := Mon(x1,...,xn) := {x | i ∈ (Z≥0) }

S ⊆ M is M-multiple closed if

ms ∈ S ∀ m ∈ M, s ∈ S

M-multiple closed set 2 3 4 generated by x1x2, x1x2, x1

2 3 4 =: h x1x2, x1x2, x1 iM

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Multiple closed sets of monomials

Lemma Every M-multiple closed set S ⊆ M has a finite generating set. Proof.

Every seq. F : m1,m2,m3 ... ∈ M s.t. mi 6| mj ∀ i

Induction: n = 1: clear.

a1 an n → n + 1: Let m1 = x1 ··· xn .

(j,d) b1 d bn Define subsequence F : mi = x1 ··· xj ··· xn

We have: {F (j,d)} = {F } j n d a 1≤[≤ 0≤[≤ j By induction, the {F (j,d)} are finite.

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Multiple closed sets of monomials

Lemma Every M-multiple closed set S ⊆ M has a finite generating set.

Cor. Every ascending sequence of M-multiple closed sets becomes stationary.

Given a finite generating set {p1,...,pr} for I E K[x1,...,xn], Janet’s algorithm computes

S0 ⊆ S1 ⊆ ... ⊆ Sk = lm(I) (all M-multiple closed)

where S0 is generated by lm(p1), ..., lm(pr)

⇒ termination

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Decomposition into disjoint cones

Def.

Let C ⊆ Mon(x1,...,xn), µ ⊆ {x1,...,xn}.

(C,µ) is a cone if ∃ v ∈ C s.t. C = Mon(µ) v

Variables in µ: multiplicative variables (for v)

Variables in {x1,...,xn}− µ: non-multiplicative variables (for v)

Dimension of (C,µ): |µ|

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Decomposition into disjoint cones

Def.

Let S ⊆ M = Mon(x1,...,xn).

{ (C1,µ1), ..., (Cr,µr) }⊂P(M) ×P({x1,...,xn})

is a decomposition of S into disjoint cones if

˙ r each (Ci,µi) is a cone and S = i=1Ci. S

{ (v1,µ1), ..., (vr,µr) } is a decomp. of S into disj. cones

if { (Mon(µ1) v1,µ1), ..., (Mon(µr) vr,µr) } is one.

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Decomposition into disjoint cones

Strategy of Janet’s algorithm:

Decompose M-multiple closed sets S into disjoint cones.

2 3 4 S = h x1x2, x1x2, x1 iM

decomposition: 2 2 2 { (x1x2, {x2}), (x1x2, {x2}), 3 4 (x1x2, {x2}), (x1, {x1,x2}) }

This can also be done for Mon(x1,...,xn) − S.

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Janet division

The possible ways of decomposing M-multiple closed sets into disjoint cones are studied as involutive divisions (Gerdt, Blinkov et. al.)

Janet division:

Let G ⊂ M = Mon(x1,...,xn) be finite.

a1 an For a cone with vertex v = x1 ··· xn ∈ G

xi is a multiplicative variable iff

b ai = max{ bi | x ∈ G; bj = aj ∀ j

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Janet division

a1 an For v = x1 ··· xn :

b xi ∈ µ ⇐⇒ ai = max{ bi | x ∈ G; bj = aj ∀ j

Example: G = { yz, xyz, x2 yz, x2 y2 }

yz

x yz

x2 yz

x2 y2

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Janet division

a1 an For v = x1 ··· xn :

b xi ∈ µ ⇐⇒ ai = max{ bi | x ∈ G; bj = aj ∀ j

Example: G = { yz, xyz, x2 yz, x2 y2 }

yz ∗ y z

x yz ∗ y z

x2 yz x ∗ z

x2 y2 x y z

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Decomposition into disjoint cones

Decompose(G, η) G ⊂ Mon(x1,...,xn), ∅ 6= η ⊆ {x1,...,xn} G ←{g ∈ G |6∃ h ∈ G : h | g} if |G| ≤ 1 or |µ| =1 then return {(m, η) | m ∈ G} else

y ← ya with a = min{i | 1 ≤ i ≤ n, yi ∈ η}

d ← max{degy(g) | g ∈ G}

Gi ←{g ∈ G | degy(g) = i}, i =0,...,d i−1 i−j Gi ← Gi ∪ Sj=0 {y g | g ∈ Gj }, i =1,...,d

Td ←{ (m,ζ ∪{y}) | (m,ζ) ∈ Decompose(Gd, η −{y}) }

Ti ← Decompose(Gi, η −{y}), i =0,...,d − 1 d return Si=0 Ti fi

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Janet reduction

NF(p, T , ≺) p ∈ K[x1,...,xn], T = { (d1,µ1),..., (ds,µs) } r ← 0 while p 6=0 do if ∃ (d,µ) ∈ T : lm(p) ∈ Mon(µ) lm(d) then lc(p) lm(p) p ← p − lc(d) lm(d) d else r ← r + lc(p) lm(p) p ← p − lc(p) lm(p) fi od return r Disj. cones ⇒ course of Alg. is uniquely determined

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Janet’s algorithm

JanetBasis(F , ≺) F ⊆ K[x1,...,xn] finite G ← F do G ← auto-reduce G

J ←{ (p1,µ1),..., (pr,µr) } s.t. { (lm(p1),µ1),..., (lm(pr),µr) }

decomp. into disj. cones of h lm(G) iM P ←{ NF(x · p,J) | (p,µ) ∈ J, x 6∈ µ } G ←{ p | (p,µ) ∈ J }∪ P while P 6= {0}

return J

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Janet basis

Janet basis J = { (p1,µ1), ..., (pr,µr) } for I = hF i

Invariant of the loop:

G (or {p1,...,pr}) always forms a gen. set for I

r Mon(µi)pi is a K-basis of I. i[=1 Linear independence: clear.

r p ∈ I: p = ci pi Xi=1

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Example

2 Let I := h g1, g2 i E K[x,y], g1 := x − y, g2 := xy − y.

Let > be degrevlex, x>y.

Decomposition into disjoint cones of h lm(g1), lm(g2) i:

{ (x2, {x,y}), (xy, {y}) }

2 2 f := x · g2 = x y − xy ∈ I, f = ci gi? i=1 X

2 Reduction of f modulo g1, g2 yields: g3 := y − y ∈ I

{ (g1, {x,y}), (g2, {y}), (g3, {y}) } (minimal) Janet basis for I

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 (Generalized) Hilbert series

Janet basis J = { (p1,µ1), ..., (pr,µr) } for I

We have lm(I)= h lm(p1), ..., lm(pr) iM.

Generalized Hilbert series r 1 H (x ,...,x )= lm(p ) I 1 n i 1 − x x ∈µ j Xi=1 Yj i enumerates a K-basis of lm(I).

HI (t,...,t) is the usual Hilbert series.

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Example

Janet basis for I

2 2 2 3 4 J = { (x1x2, {x2}), (x1x2, {x2}), (x1x2, {x2}), (x1, {x1,x2}) }

generalized Hilbert series: x x2 x2x2 x3x x4 1 2 + 1 2 + 1 2 + 1 1 − x2 1 − x2 1 − x2 (1 − x1)(1 − x2)

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Hilbert polynomial

Janet basis of M: { (p1,µ1), ..., (pr,µr) }

k HM (t,...,t) = dimK Mk t k X≥0 r 1 = tdeg(pi) (1 − t)|µi| i=1 Xr |µi| + j − 1 = tdeg(pi) tj j i=1 j X X≥0   k Coeff. of t in HM (t,...,t) ? For k ≥ max{deg(pi) | i = 1,...,r}:

r |µi| + k − deg(pi) − 1 dimK Mk = k − deg(pi) i=1 X  

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Example

S = lm(I)

Decomp. of Mon(x1,...,xn) − S into disjoint cones

generalized Hilbert series enum. a K-basis of K[x1,...,xn]/I

generalized Hilbert series:

1 2 2 3 + x1 + x1x2 + x1 + x1x2 + x1 1 − x2

Hilbert polynomial: 6 |µ | + k − deg(p ) − 1 i i = 1 k − deg(pi) i=1 X  

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Free resolution

Janet basis J = { (p1,µ1), ..., (pr,µr) } for I

We have xj pi = k αi,j,k pk, xj 6∈ µi, αi,j,k ∈ K[µk]

|J| P Define π : R → R :p ˆi 7→ pi. (pˆi std. gen.)

Prop.

xj pˆi − αi,j,k pˆk, xj 6∈ µi, i = 1,...,r, k X form a Janet basis of ker π for a suitable monomial ordering.

construction of a free resolution of R/I.

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Example

R = K[x1,x2,x3], x1 >x2 >x3, I =(x1,x2,x3)

Janet basis: x1 x1 x2 x3 x2 ∗ x2 x3 x3 ∗ ∗ x3

normal form computation: x1 · x2 − x2 · x1 x1 · x3 − x3 · x1 x2 · x3 − x3 · x2

−x x 0 x  2 1   1  −x3 0 x1 x2      0 −x3 x2   x3  R1×3 −−−−−−−−−−−−−−−→ R1×3 −−−−−−→ R −→ R/I −→ 0

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Example

R = K[x1,x2,x3], x1 >x2 >x3, I =(x1,x2,x3)

Janet basis: [−x2 x1 0] x1 x2 x3 [−x3 0 x1 ] x1 x2 x3 [ 0 −x3 x2 ] ∗ x2 x3

normal form computation:

x1 · [ 0 −x3 x2] − x2 · [−x3 0 x1]+ x3 · [−x2 x1 0]

−x x 0 x  2 1   1  −x3 0 x1 x2     ( x3 −x2 x1 )  0 −x3 x2   x3  0 → R −−−−−−−−−−−−→ R1×3 −−−−−−−−−−−−−−−→ R1×3 −−−−−−→ R → R/I → 0

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Free resolution

Prop.

xj pˆi − αi,j,k pˆk, xj 6∈ µi, i = 1,...,r, k X form a Janet basis of ker π w.r.t. ≺.

x2 x1

Choose a total order ≪ on J s.t. x1 x2 pk ≪ pl if ∃ path from pl to pk in the Janet graph. x1 x3

i j x lm(pk)

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Consequences

{ (p1,µ1), ..., (pr,µr) } Janet basis for I E R can decide ideal membership normal form for residue classes modulo I enumeration of a K-basis of I and a K-basis of R/I (generalized Hilbert series) can easily determine Hilbert polynomial can read off a free resolution of R/I every Janet basis is a Gr¨obner basis

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Janet bases over Z

NF(p, T , ≺) p ∈ Z[x1,...,xn], T = { (d1,µ1),..., (dl,µl) } r ← 0 while p 6=0 do if ∃ (d,µ) ∈ T : lm(p) ∈ Mon(µ) d then write lc(p) = a · lc(d) + b, |b| < | lc(d)| if a 6=0 then lm(p) p ← p − a lm(d) d else move leading term from p to r fi else move leading term from p to r fi od return r

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Janet bases for Ore algebras Skew polynomial ring A[∂; σ, δ]:

A domain and K-algebra

σ : A → A K-algebra endomorphism

δ : A → A σ-derivation, i.e.

δ(a b)= σ(a) δ(b)+ δ(a) b, a, b ∈ A

i A[∂; σ, δ]= ai ∂ | ai ∈ A, i ∈ Z≥0 ( ) Xfin. with commutation rule

∂a = σ(a) ∂ + δ(a), a ∈ A

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Janet bases for Ore algebras

Ore algebra D = A[∂1; σ1,δ1] ... [∂m; σm,δm]:

A = K or A = K[x1,...,xn]

σi : D → D K-algebra endomorphisms

δi : D → D σi-derivations

i m A[∂1; σ1,δ1] ... [∂m; σm,δm]= ai ∂ | ai ∈ A, i ∈ (Z≥0) ( ) Xfin. with commutation rules

∂i a = σi(a) ∂i + δi(a), a ∈ A,

∂i ∂j = ∂j ∂i

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Janet bases for Ore algebras

Weyl algebra: ordinary differential equations

d d d da A1 = K[t][ dt ] dt a = a dt + dt Weyl algebra: partial differential equations

An = K[x1,...,xn][∂1,...,∂n] ∂i xj = xj ∂i + δij

Bn = K(x1,...,xn)[∂1,...,∂n] Shift operators: difference equations

Sh = K[t][δh] δh t =(t − h) δh

combinations ...

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Janet bases for Ore algebras

D = K[x1,...,xn][∂1,...,∂m]

I left ideal of D generated by p1, ..., pr

normal form for elements of D:

use ∂i xj = σi(xj) ∂i + ...

to move all ∂i to the right of every xj

i j n m M := { x ∂ | i ∈ (Z≥0) , j ∈ (Z≥0) } consider M-multiple closed set generated by

the normal forms of lm(pi), i = 1,...,r decomp. into disj. cones as before

reduction: all multiplications from the left

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Janet bases for Ore algebras

D = K[x1,...,xn][∂1,...,∂m]

I left ideal of D generated by p1, ..., pr

For termination of the algorithm, assume that

∂i xj =(ci,j xj + di,j) ∂i + ei,j

where ci,j ∈ K − {0}, di,j ∈ K,

ei,j ∈ K[x1,...,xn] with deg(ei,j) ≤ 1

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Maple packages...

...at Lehrstuhl B f¨ur Mathematik, RWTH

implementing the involutive basis technique:

Involutive / Janet

JanetOre

LDA (Linear Difference Algebra)

in cooperation with V. P. Gerdt & Y. A. Blinkov

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Involutive

Janet (-like Gr¨obner) bases for submodules of free modules over a commutative polynomial ring coefficients: rationals or finite fields and field extensions, and rational integers Janet division, Janet-like division term orderings: degrevlex, plex TOP / POT block / elimination orderings

web: http://wwwb.math.rwth-aachen.de/Janet

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Involutive

Analogues of Buchberger’s criteria can be selected Interface to C++: call fast routines when needed or switch to fast routines for the whole Maple session Syzygies, Hilbert series, etc. Applications: commutative algebra solving systems of algebraic equations

web: http://wwwb.math.rwth-aachen.de/Janet

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Main procedures of Involutive

InvolutiveBasis compute Janet(-like Gr¨obner) basis PolInvReduce involutive reduction modulo Janet basis FactorModuleBasis vector space basis of residue class module Syzygies syzygy module PolResolution free resolution PolHilbertSeries, PolHilbertPolynomial, etc. combinatorial devices PolMinPoly, PolRepres, etc. computing in residue class rings

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 ginv

C++ module for Python comp. of Gr¨obner bases using involutive algorithms polynomials, differential / difference equations open source software originated by V. P. Gerdt, Y. A. Blinkov contributions by LBfM coefficients: rationals or finite fields and some algebraic and transcendental field extensions term orderings: degrevlex (TOP / POT), lex, product orderings see web page for timings

web: http://invo.jinr.ru

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 ginv

import ginv st = ginv.SystemType("Polynomial") im = ginv.MonomInterface("DegRevLex", st, [’x’, ’y’]) ic = ginv.CoeffInterface("GmpZ", st) ip = ginv.PolyInterface("PolyList", st, im, ic) iw = ginv.WrapInterface("CritPartially", ip) iD = ginv.DivisionInterface("Janet", iw) eqs = ["x^2+y^2", ...] basis = ginv.basisBuild("TQ", iD, eqs)

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Module-theoretic approach to linear systems

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Linear Systems

D ring (field, integral domain, Ore algebra, ...)

R ∈ Dq×p, F left D-module

Ry = 0, y ∈ F p.

“optimal” answer for us: P ∈ Dp×r s.t. ker(R.) = im(P.)

not possible in general

Example. D = k a (skew) field. Gaussian elimination singles out parameters injective parametrization

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Example

de Rham complex:

∞ 3 D = R[∂x,∂y,∂z], e.g. F = C (Ω), Ω ⊆ R convex

∂x 0 ∂z −∂y  ∂y  .  −∂z 0 ∂x  . ∂z ∂y −∂x 0 ∂x ∂y ∂z .   3×1   3×1 0 → R →F −−−−−−→F −−−−−−−−−−−−−−−→F −−−−−−−−−−→F  → 0

∂x 0 ∂z −∂y .  ∂y  .  −∂z 0 ∂x  ∂z ∂y −∂x 0 . ∂x ∂y ∂z   1×3   1×3 0 ← M ← D ←−−−−−− D ←−−−−−−−−−−−−−−− D ←−−−−−−−−−−  D ← 0

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Module-theoretic approach to linear systems Σ: Ry = 0, R ∈ Dq×p

D = ring of functional operators

M = D1×p/D1×q R independent of eq.’s chosen for Σ

F = signal space

If F is an injective cogenerator for DM then

homD( · ,F) M / SolF (M)

is a categorical duality.

Malgrange, Sato, Kashiwara, Oberst, Fliess, Mounier, Pommaret, Quadrat, Willems, Zerz, . . .

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Module-theoretic approach to linear systems Σ: Ry = 0, R ∈ Dq×p, M = D1×p/D1×q R

F injective cogenerator for DM:

.R .S 0 o M o D1×p o D1×q o D1×r exact

ifandonlyif (apply homD( · , F))

p R. q S. r 0 / SolF (M) / F / F / F exact.

Fundamental principle (Ehrenpreis, Malgrange, Palamodov)

for D = C[∂1,...,∂n] acting by differentiation on F:

e.g. F ∈ { complex-valued C∞-functions on Rn, complex-valued distributions on Rn, formal / convergent power series }

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Injective Cogenerator

v1 ∂x 2×1 R1 u = , R1 := ∈ D , D = K[∂x,∂y] v ∂y  2    compatibility condition:

v R 1 = 0, R := (∂ − ∂ ) ∈ D1×2, 2 v 2 y x  2 

.R1 .R2 0 o M o D o D1×2 o D o 0 exact

(R1). (R2). 2×1 0 / SolF (M) / F / F / F / 0 exact

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Parametrizing linear systems

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Parametrization and torsion-freeness Let M be given by the finite presentation

ρ .R 0 o M o D1×p o D1×q.

Assume P is a parametrization, i.e.

.P .R D1×r o D1×p o D1×q

is an exact sequence of left D-modules. Then M is torsion-free:

.P .R F r D1×r o D1×p o D1×q ✈ O ✈✈ ∗ ✈✈ ι ι ✈✈ ✈✈ ρ  z✈ SolF (M) M ③③ O ③③ ③③ ③③  |③ 0 0 0

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Example

F. Dubois, N. Petit, and P. Rouchon, Motion Planning and Nonlinear Simulations for a Tank Containing a Fluid, Proc. ECC, Karlsruhe (), 1999.

φ1(t − 2) + φ2(t) − 2 φ˙3(t − 1) = 0,  ˙  φ1(t)+ φ2(t − 2) − 2 φ3(t − 1) = 0.  D := Q [∂,δ] (differential time-delay operators)

2 δ 1 −2 δ∂ 2×3 R := 2 ∈ D , 1 δ −2 δ∂ !

M := D1×3/D1×2 R

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Parametrizability test M = D1×p/D1×q R M ⊤ = Dq×1/R Dp×1

2 δ∂  2 δ∂  . δ2 1 −2 δ∂ . δ2 + 1  1 δ2 −2 δ∂  D1×1   / D3×1 / D2×1 / M ⊤ / 0

2 δ∂ .  2 δ∂  δ2 1 −2 δ∂ . δ2 + 1  1 δ2 −2 δ∂  D1×1 o   D1×3 o D1×2 not exact

2 δ∂ .  2 δ∂  δ2 1 −2 δ∂ . δ2 + 1  1 δ2 −2 δ∂  D1×1 o   D1×3 o❚ D1×2 j ❚❚❚❚ ❚❚❚❚ ❚❚❚❚ 1 −1 0 ❚❚❚ R′ := ❚❚  0 −δ2 − 1 2 δ∂  D1×2

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Parametrizability test

2 δ∂ .  2 δ∂  δ2 1 −2 δ∂ . δ2 + 1  1 δ2 −2 δ∂  D1×1 o   D1×3 o❚ D1×2 j ❚❚❚❚ ❚❚❚❚ ❚❚❚❚ 1 −1 0 ❚❚❚ R′ := ❚❚  0 −δ2 − 1 2 δ∂  D1×2

We have t(M)= D1×2 R′/D1×2 R 6= 0.

2 In particular, (δ − 1) (φ1(t) − φ2(t))=0, φ1 − φ2 is 2-periodic.

2 δ∂ 2 δ∂ is a parametrization of the subsystem  δ2 + 1    φ1(t) − φ2(t) = 0,  ˙  −φ2(t − 2) − φ2(t) + 2 φ3(t − 1) = 0.

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Parametrizability test

1 ⊤ ∼ In fact, we compute extD(M ,D) = t(M).

0 ↓ t(M) 0 0 0 ↓ ↓ ↓ ↓ ⊤ 0 ←− M ←− F0 ←− F1 ←− homD(M ,D) ←− 0 ↓ ↓ ↓ ↓ ⊤ 0 ←− K ⊗D M ←− K ⊗D F0 ←− K ⊗D F1 ←− homD(M , K) ←− 0 ↓ ↓ ↓ ↓ ⊤ 0 ←− (K/D) ⊗D M ←− (K/D) ⊗D F0 ←− (K/D) ⊗D F1 ←− homD(M ,K/D) ←− 0 ↓ ↓ ↓ ↓ 1 ⊤ 0 0 0 extD(M ,D) ↓ 0

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 Parametrizability test

We can compute

2 ′ 1 −1 0 ′′ δ −1 R := 2 , R := 0 −δ − 1 2 ∂δ ! 1 −1 !

which satisfy R = R′′ R′. Herewehave ker(R′) = 0.

⇒ t(M) =∼ D1×2/(D1×2 R′′), M/t(M) =∼ D1×3/(D1×2 R′).

M/t(M) corresponds to the parametrizable subsystem

φ1(t) − φ2(t) = 0,  ˙  −φ2(t − 2) − φ2(t) + 2 φ3(t − 1) = 0. 

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 System Module Homological Algebra

autonomous t(M) 6= 0 ext1 (M T ,D) 6= 0 elements D

controllable, t(M) = 0 ext1 (M T ,D) = 0 parametrizable D

i T parametrization reflexive extD(M ,D) = 0, is parametrizable i = 1, 2

......

i T ... projective extD(M ,D) = 0, 1 ≤ i ≤ gld(D)

flatness free ...

Contributions to this classification: Pommaret-Quadrat, Oberst, Fliess, Mounier, . . .

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 References

M. Janet, Le¸cons sur les syst`emes d’´equations aux d´eriv´ees partielles, Gauthiers-Villars, Paris, 1929

C. M´eray, D´emonstration g´en´erale de l’existence des int´egrales des ´equations aux d´eriv´ees partielles, J. de math´ematiques pures et appliqu´ees, 3e s´erie, tome VI, 1880

C. Riquier, Les syst`emes d’´equations aux d´eriv´ees partielles, Gauthiers-Villars, Paris, 1910

J. F. Ritt, Differential Algebra, Dover, 1966

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 References

W. Plesken, D. Robertz, Janet’s approach to presentations and resolutions for polynomials and linear pdes, Archiv der Mathematik, 84 (1), 2005, pp. 22–37

Y. A. Blinkov, C. F. Cid, V. P. Gerdt, W. Plesken, D. Robertz, The Maple Package ”Janet”: I. Polynomial Systems and II. Linear Partial Differential Equations, Proceedings of CASC 2003, pp. 31–40 resp. pp. 41–54

F.-O. Schreyer, Die Berechnung von Syzygien mit dem verallgemeinerten Weierstraßschen Divisionssatz und eine Anwendung auf analytische Cohen-Macaulay-Stellenalgebren minimaler Multiplizit¨at, Diploma Thesis, Univ. , Germany, 1980

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 References D. Robertz, Formal Computational Methods for Control Theory, PhD thesis, RWTH Aachen University, 2006, available at http://darwin.bth.rwth-aachen.de/opus/volltexte/2006/1586

D. Robertz, Janet bases and applications, in: M. Rosenkranz, D. Wang, Gr¨obner Bases in Symbolic Analysis, Radon Series Comp. Appl. Math., de Gruyter, 2007

D. Robertz, Noether normalization guided by monomial cone decompositions, J. of Symbolic Computation, 44 (10), 2009, pp. 1359–1373

D. Robertz, Formal Algorithmic Elimination for PDEs, Habilitationsschrift, accepted by the Faculty of , and Natural Sciences, RWTH Aachen University, 2012

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 References

W. Plesken, D. Robertz, Constructing Invariants for Finite Groups, Experimental Mathematics, 14 (2), 2005, pp. 175–188

W. Plesken, D. Robertz, Representations, commutative algebra, and Hurwitz groups, J. Algebra, 300 (2006), 2006, pp. 223–247

W. Plesken, D. Robertz, Elimination for coefficients of special characteristic polynomials, Experimental Mathematics 17 (4), 2008, pp. 499–510

W. Plesken, D. Robertz, Linear Differential Elimination for Analytic Functions, Mathematics in Computer Science, 4 (2–3), 2010, pp. 231–242

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 References

V. P. Gerdt, Y. A. Blinkov, Involutive bases of polynomial ideals. Minimal involutive bases, Mathematics and Computers in Simulation, 45, 1998

Y. A. Blinkov, V. P. Gerdt, D. A. Yanovich, Construction of Janet Bases, I. Monomial Bases, II. Polynomial Bases, Proceedings of CASC 2001

V. P. Gerdt, Involutive Algorithms for Computing Gr¨obner Bases, Proc. “Computational commutative and non-commutative algebraic geometry” (Chishinau, June 6-11, 2004), IOS Press, 2005

V. P. Gerdt, Y. A. Blinkov, V. V. Mozzhilkin, Gr¨obner Bases and Generation of Difference Schemes for Partial Differential Equations, Symmetry, Integrability and Geometry: Methods and Applications, 2006

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 References

V. P. Gerdt, D. Robertz, A Maple Package for Computing Gr¨obner Bases for Linear Recurrence Relations, Nuclear Instruments and Methods in Research A, 559 (1), 2006, pp. 215–219

V. P. Gerdt, D. Robertz, Consistency of Finite Difference Approximations for Linear PDE Systems and its Algorithmic Verification, in: S. M. Watt (ed.), Proceedings of ISSAC 2010, TU M¨unchen, Germany, pp. 53–59

V. P. Gerdt, D. Robertz, Computation of Difference Gr¨obner Bases, Computer Science Journal of Moldova, 20 (2), 2012, pp. 203–226

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 References

F. Chyzak, B. Salvy, Non-commutative elimination in Ore algebras proves multivariate identities, J. Symbolic Computation, 26, 1998

V. Levandovskyy, Non-commutative Computer Algebra for polynomial algebras: Gr¨obner bases, applications and implementation, PhD thesis, Univ. Kaiserslautern, Germany, 2005

V. P. Gerdt, D. A. Yanovich, Experimental Analysis of Involutive Criteria, “Algorithmic Algebra and Logic 2005”, April 3-6, 2005, Passau, Germany

J. Apel, R. Hemmecke, Detecting unnecessary reductions in an involutive basis computation, J. Symbolic Computation, 40, 2005

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 References

W. W. Adams, P. Loustaunau, An Introduction to Gr¨obner Bases, AMS, 1994

T. Becker and V. Weispfenning, Gr¨obner Bases. A Computational Approach to Commutative Algebra, Springer, 1993

D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms, Springer, 1992

D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer, 1995

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 References B. Malgrange, Syst`emes `acoefficients constants, S´eminaire Bourbaki 246:79–89, 1962–63.

U. Oberst, Multidimensional constant linear systems, Acta Appl. Math. 20:1–175, 1990.

J.-F. Pommaret and A. Quadrat, Algebraic analysis of linear multidimensional control systems, IMA Journal of Control and Information 16 (3):275–297, 1999.

J.-F. Pommaret and A. Quadrat, A functorial approach to the behavior of multidimensional control systems, Applied Mathematics and Computer Science, 13:7–13, 2003.

J.-F. Pommaret Partial Differential Control Theory Kluwer, 2001

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 References

R. Baer, Erweiterungen von Gruppen und ihren Isomorphismen, Math. Z. 38 (1):375–416, 1934.

H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, 1956.

S. MacLane, Homology, Springer, 1995.

J. J. Rotman, An Introduction to Homological Algebra, Academic Press, 1979.

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 References

F. Chyzak and A. Quadrat and D. Robertz, Effective algorithms for parametrizing linear control systems over Ore algebras, Applicable Algebra in , Communications and Computing 16 (5):319–376, 2005.

A. Quadrat and D. Robertz, Parametrizing all solutions of uncontrollable multidimensional linear systems, in: 16th IFAC World Congress, Prague, 2005.

A. Quadrat and D. Robertz, On the blowing-up of stably free behaviours, 44th IEEE CDC and ECC, Seville, 2005.

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 References

Quadrat, A. and Robertz, D., On the Monge problem and multidimensional optimal control, in: 17th MTNS, Kyoto, Japan, 2006.

Quadrat, A. and Robertz, D., Baer’s extension problem for multidimensional linear systems, in: 18th MTNS, Virginia Tech, USA, 2008.

Quadrat, A. and Robertz, D., Computation of bases of free modules over the Weyl algebras, J. Symbolic Computation, 42:1113–1141, 2007

Quadrat, A. and Robertz, D., Controllability and differential flatness of linear analytic ordinary differential systems, in: 19th MTNS, Budapest, 2010.

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 References

A. Quadrat, Syst`emes et Structures: Une approche de la th´eorie math´ematique des syst`emes par l’analyse alg´ebrique constructive, Habilitation thesis, Univ. de Nice Sophia Antipolis, 2010.

T. Cluzeau and A. Quadrat, Factoring and decomposing a class of linear functional systems, Linear Algebra Appl. 428(1):324–381, 2008.

A. Fabia´nska and A. Quadrat, Applications of the Quillen-Suslin theorem to multidimensional systems theory, in: Gr¨obner bases in control theory and signal processing, pp. 23–106, Radon Ser. Comput. Appl. Math. 3, de Gruyter, 2007.

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 References

M. Barakat and D. Robertz, homalg: A meta-package for homologial algebra, Journal of Algebra and Its Applications 7 (3):299–317, 2008.

F. Chyzak and A. Quadrat and D. Robertz, OreModules: A symbolic package for the study of multidimensional linear systems, in: Chiasson, J. and Loiseau, J.-J. (eds.), Applications of Time-Delay Systems, LNCIS 352, 233–264, Springer, 2007.

T. Cluzeau and A. Quadrat, OreMorphisms: A homological algebra package for factoring and decomposing linear functional systems, in: Loiseau, J.-J., Michiels, W., Niculescu, S.-I., Sipahi, R. (eds.), Topics in Time-Delay Systems: Analysis, Algorithms and Control, LNCIS, Springer, 2008.

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 References

M. Fliess, Some basic structural properties of generalized linear systems, Systems & Control Letters 15:391–396, 1990.

M. Fliess, J. L´evine, P. Martin, and P. Rouchon, Flatness and defect of nonlinear systems: introductory theory and examples, Int. J. Control 61:1327–1361, 1995.

J. W. Polderman and J. C. Willems, Introduction to Mathematical Systems Theory: A Behavioral Approach, TAM 26, Springer, 1998.

H. Pillai and S. Shankar, A behavioral approach to control of distributed systems, SIAM J. Contr. Opt. 37:388–408, 1999.

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 References M. Fliess and H. Mounier, Controllability and observability of linear delay systems: an algebraic approach, ESAIM COCV, 3:301–314, 1998.

H. Mounier, Propri´et´es structurelles des syst`emes lin´eaires `aretards: aspects th´eoriques et pratiques, PhD Thesis, University of Orsay, France, 1995.

J. Wood, Modules and behaviours in nD systems theory, Multidimensional Dimensional Systems and Signal Processing, 11:11–48, 2000.

A. Quadrat, An introduction to constructive algebraic analysis and its applications, Les cours du CIRM, 1 no. 2 (2010), pp. 281–471, INRIA Research Report no. 7354, http://hal.archives-ouvertes.fr/inria-00506104/fr/.

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012 References

V. Lomadze and E. Zerz, Control and interconnection revisited: the linear multidimensional case, in: 2nd Int. Workshop on Multidimensional (ND) Systems, Czocha Castle, 2000.

E. Zerz, Topics in Multidimensional Linear Systems Theory, LNCIS 256, Springer, 2000.

F. Dubois and N. Petit and P. Rouchon, Motion Planning and Nonlinear Simulations for a Tank Containing a Fluid, in: Proc. ECC, Karlsruhe (Germany), 1999.

N. Petit and P. Rouchon, Dynamics and solutions to some control problems for water-tank systems, IEEE Trans. Autom. Contr. 47 (4): 594–609, 2002.

Inria Saclay – ˆIle-de-France / L2S, Sup´elec, 28.11.2012