Correlations Between White Matter Integrity, Structural Connectivity, and Upper and Lower Extremity Motor Function in Individuals with Chronic Stroke Denise M

Total Page:16

File Type:pdf, Size:1020Kb

Load more

University of South Carolina Scholar Commons Theses and Dissertations 2015 Correlations Between White Matter Integrity, Structural Connectivity, And Upper and Lower Extremity Motor Function in Individuals With Chronic Stroke Denise M. Peters University of South Carolina Follow this and additional works at: https://scholarcommons.sc.edu/etd Part of the Exercise Science Commons Recommended Citation Peters, D. M.(2015). Correlations Between White Matter Integrity, Structural Connectivity, And Upper and Lower Extremity Motor Function in Individuals With Chronic Stroke. (Doctoral dissertation). Retrieved from https://scholarcommons.sc.edu/etd/3680 This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. CORRELATIONS BETWEEN WHITE MATTER INTEGRITY, STRUCTURAL CONNECTIVITY, AND UPPER AND LOWER EXTREMITY MOTOR FUNCTION IN INDIVIDUALS WITH CHRONIC STROKE by Denise M. Peters Bachelor of Science University of Alabama-Birmingham, 2001 Doctor of Physical Therapy University of South Carolina, 2007 Submitted in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy in Exercise Science The Norman J. Arnold School of Public Health University of South Carolina 2015 Accepted by: Stacy L. Fritz, Major Professor Jill C. Stewart, Committee Member Jessica D. Richardson, Committee Member Troy M. Herter, Committee Member Roger D. Newman-Norlund, Committee Member Lacy Ford, Senior Vice Provost and Dean of Graduate Studies © Copyright by Denise M. Peters, 2015 All Rights Reserved. ii DEDICATION For my family… To my partner, who supported me throughout this journey with amazing patience, even as the years kept adding up. You enabled me to pursue this degree while starting a family, something that was not without its challenges for the both of us, and I thank you greatly for this. Through unexpected twists and turns, you lent a guiding hand, a supportive voice, and were someone who I could always count on. To my daughters, who taught me more about time management and made me laugh during even the most stressful of times. You helped me learn more about balance in my life, and to not lose focus on finding joy in each day. To my mother, who has always supported and encouraged her children to seek out opportunities to further their education. Without you, this dissertation would have probably taken another year to complete…thank you for driving countless miles to help take care of your grandkids so that I could have uninterrupted time to focus on my studies/research. And to my father, whom I miss each and every day. You were always a role model to me, so much so that I tried to be a permanent graduate student just like you. You taught me the meaning of unconditional love and support, and to be kind to people of all walks of life. You always gave the best advice, which I drew upon many times during this journey. Thank you…for everything…I miss you. iii ACKNOWLEDGEMENTS I would like to thank Stacy Fritz…my mentor and my friend, who gave me the space and flexibility I needed over the years, but always gave me nudges when appropriate to get me moving in the right direction. Your guidance and advice has shaped who I am as a researcher/academician…thank you for all of the time you put up with me, and for caring so much about furthering my professional development. Thank you to Addie Middleton for your help with data collection (which made this study possible) and for being my comrade in navigating this PhD process. Thank you to Jessica Richardson for taking the time to help foster my interest in neuroimaging and stroke, and for teaching me your “mad skills” concerning imaging analyses. You truly were a driving force behind this study, and I am forever grateful for the time, guidance, and patience you showed me. Thank you to Jill Stewart for letting me take over your lab every few weeks and for helping me with the imaging analyses and all the hiccups encountered along the way. You are a great teacher, and I look forward to working with you more in the future. And thank you to Julius Fridriksson for allowing me to join his study so that I could collect data for this project, and to Leo Bonilha and Zeke Gleichgerrcht for their valuable input and advice concerning imaging analyses. iv ABSTRACT Great variability is seen in the clinical manifestation of and recovery from stroke. Structural abnormalities often extend beyond the infarction site, indirectly affecting nonlesioned areas which can further contribute to motor deficits. Advances in neuroimaging have enabled the examination of white matter integrity and anatomical connectivity within the brain. Evidence is limited, however, regarding the relationship between the structural integrity and connectivity of primary and secondary motor tracts/brain regions and chronic upper and (especially) lower extremity motor impairments post-stroke. Therefore, the current study examined the relationship between upper/lower extremity motor impairments and structural integrity (Aim 1) and connectivity (Aim 2) of motor-relevant brain pathways and regions in individuals with chronic stroke. Forty-three participants completed a comprehensive motor assessment, with MRI scanning performed within two days of behavioral testing. Nonparametric analyses were performed to examine the relationship between structural integrity and connectivity of motor-relevant brain regions and motor function. Regression analyses were performed to assess the amount of variance in upper/lower extremity motor performance explained by ipsilesional corticospinal tract (CST) and red nucleus (RN) integrity, as well as cortical connectivity of the three main brain regions of motor control [primary motor cortex (M1), premotor cortex, and supplementary motor area]. Results indicate that ipsilesional CST and RN structural integrity (as assessed by fractional anisotropy values) are both positively associated with chronic upper/lower extremity v motor function. Ipsilesional CST integrity, however, is a stronger predictor of chronic upper extremity motor function and grip strength post-stroke. Furthermore, cortical integrity and connectivity of ipsilesional M1 is associated with upper extremity motor function of the affected extremity and gait speed, with cortical disconnection of M1 being an independent predictor of chronic motor function. These findings highlight the importance of examining structural changes and cortical disconnection beyond the lesion site post-stroke. Such insight could enhance our understanding of the underlying factors contributing to motor impairments, and improve motor recovery prognosis and help with targeting therapeutic interventions. vi TABLE OF CONTENTS DEDICATION ....................................................................................................................... iii ACKNOWLEDGEMENTS ........................................................................................................ iv ABSTRACT ............................................................................................................................v LIST OF TABLES ....................................................................................................................x LIST OF FIGURES ................................................................................................................. xi LIST OF ABBREVIATIONS .................................................................................................... xii CHAPTER 1: INTRODUCTION ..................................................................................................1 CHAPTER 2: LITERATURE REVIEW ........................................................................................6 2.1 PATHOPHYSIOLOGY AND CLINICAL PRESENTATION OF STROKE ............................6 2.2 NEUROANATOMY OF MOTOR CONTROL ................................................................8 2.3 IMAGING AND STROKE .........................................................................................13 2.4 DIFFUSION TENSOR IMAGING ..............................................................................15 2.5 CORTICAL CONNECTIVITY AND NETWORK DISRUPTION ......................................21 2.6 DTI AND UPPER EXTREMITY MOTOR IMPAIRMENT/RECOVERY IN ACUTE STROKE .....................................................................................................22 2.7 DTI AND UPPER EXTREMITY MOTOR IMPAIRMENT/RECOVERY IN CHRONIC STROKE .................................................................................................26 2.8 DTI AND LOWER EXTREMITY/GAIT IMPAIRMENT IN STROKE ..............................35 2.9 DTI AND LOWER EXTREMITY/GAIT IMPAIRMENT IN OTHER PATIENT POPULATIONS .............................................................................................39 vii CHAPTER 3: METHODS ........................................................................................................48 3.1 RESEARCH DESIGN ..............................................................................................48 3.2 POWER ANALYSES ...............................................................................................48 3.3 PARTICIPANTS .....................................................................................................49 3.4 MOTOR ASSESSMENT ..........................................................................................50
Recommended publications
  • Chapter 8 Nervous System

    Chapter 8 Nervous System

    Chapter 8 Nervous System I. Functions A. Sensory Input – stimuli interpreted as touch, taste, temperature, smell, sound, blood pressure, and body position. B. Integration – CNS processes sensory input and initiates responses categorizing into immediate response, memory, or ignore C. Homeostasis – maintains through sensory input and integration by stimulating or inhibiting other systems D. Mental Activity – consciousness, memory, thinking E. Control of Muscles & Glands – controls skeletal muscle and helps control/regulate smooth muscle, cardiac muscle, and glands II. Divisions of the Nervous system – 2 anatomical/main divisions A. CNS (Central Nervous System) – consists of the brain and spinal cord B. PNS (Peripheral Nervous System) – consists of ganglia and nerves outside the brain and spinal cord – has 2 subdivisions 1. Sensory Division (Afferent) – conducts action potentials from PNS toward the CNS (by way of the sensory neurons) for evaluation 2. Motor Division (Efferent) – conducts action potentials from CNS toward the PNS (by way of the motor neurons) creating a response from an effector organ – has 2 subdivisions a. Somatic Motor System – controls skeletal muscle only b. Autonomic System – controls/effects smooth muscle, cardiac muscle, and glands – 2 branches • Sympathetic – accelerator “fight or flight” • Parasympathetic – brake “resting and digesting” * 4 Types of Effector Organs: skeletal muscle, smooth muscle, cardiac muscle, and glands. III. Cells of the Nervous System A. Neurons – receive stimuli and transmit action potentials
  • Cortex Brainstem Spinal Cord Thalamus Cerebellum Basal Ganglia

    Cortex Brainstem Spinal Cord Thalamus Cerebellum Basal Ganglia

    Harvard-MIT Division of Health Sciences and Technology HST.131: Introduction to Neuroscience Course Director: Dr. David Corey Motor Systems I 1 Emad Eskandar, MD Motor Systems I - Muscles & Spinal Cord Introduction Normal motor function requires the coordination of multiple inter-elated areas of the CNS. Understanding the contributions of these areas to generating movements and the disturbances that arise from their pathology are important challenges for the clinician and the scientist. Despite the importance of diseases that cause disorders of movement, the precise function of many of these areas is not completely clear. The main constituents of the motor system are the cortex, basal ganglia, cerebellum, brainstem, and spinal cord. Cortex Basal Ganglia Cerebellum Thalamus Brainstem Spinal Cord In very broad terms, cortical motor areas initiate voluntary movements. The cortex projects to the spinal cord directly, through the corticospinal tract - also known as the pyramidal tract, or indirectly through relay areas in the brain stem. The cortical output is modified by two parallel but separate re­ entrant side loops. One loop involves the basal ganglia while the other loop involves the cerebellum. The final outputs for the entire system are the alpha motor neurons of the spinal cord, also called the Lower Motor Neurons. Cortex: Planning and initiation of voluntary movements and integration of inputs from other brain areas. Basal Ganglia: Enforcement of desired movements and suppression of undesired movements. Cerebellum: Timing and precision of fine movements, adjusting ongoing movements, motor learning of skilled tasks Brain Stem: Control of balance and posture, coordination of head, neck and eye movements, motor outflow of cranial nerves Spinal Cord: Spontaneous reflexes, rhythmic movements, motor outflow to body.
  • Cerebral Cortex

    Cerebral Cortex

    Cerebral Cortex • Research on the structure and function of the brain reveals that there are both specialized and diffuse areas of function • Motor and sensory areas are localized in discrete cortical areas called domains • Many higher mental functions such as memory and language appear to have overlapping domains and are more diffusely located • Broadmann areas are areas of localized function Cerebral Cortex - Generalizations • The cerebral cortex has three types of functional areas – Motor areas / control voluntary motor function – Sensory areas / provide conscious awareness of sensation – Association areas / act mainly to integrate diverse information for purposeful action • Each hemisphere is chiefly concerned with the sensory and motor functions of the opposite (contralateral) side of the body Motor Areas • Cortical areas controlling motor functions lie in the posterior part of the frontal lobes • Motor areas include the primary motor cortex, the premotor cortex, Broca’s area, and the front eye field Primary Motor Cortex • The primary motor cortex is located in the precentral gyrus of the frontal lobe of each hemisphere • Large neurons (pyramidal cells) in these gyri allow us to consciously control the precise or skill voluntary movements of our skeletal muscles Pyramidal cells • These long axons, which project to the spinal cord, form the massive Dendrites voluntary motor tracts called the pyramidal, or corticospinal tracts • All other descending motor tracts issue from brain stem nuclei and consists of chains of two, three, or
  • Optimal Feedback Control and the Neural Basis of Volitional Motor Control

    Optimal Feedback Control and the Neural Basis of Volitional Motor Control

    REVIEWS OPTIMAL FEEDBACK CONTROL AND THE NEURAL BASIS OF VOLITIONAL MOTOR CONTROL Stephen H. Scott Skilled motor behaviour, from the graceful leap of a ballerina to a precise pitch by a baseball player, appears effortless but reflects an intimate interaction between the complex mechanical properties of the body and control by a highly distributed circuit in the CNS. An important challenge for understanding motor function is to connect these three levels of the motor system — motor behaviour, limb mechanics and neural control. Optimal feedback control theory might provide the important link across these levels of the motor system and help to unravel how the primary motor cortex and other regions of the brain plan and control movement. Perhaps the most surprising feature of the motor system The goal of this review is to bring all three levels of is the ease with which humans and other animals can the motor system together, to illustrate how M1 is move. It is only when we observe the clumsy movements linked to limb physics and motor behaviour. The key of a child, or the motor challenges faced by individuals ingredient is the use of optimal feedback control as a with neurological disorders, that we become aware of model of motor control in which sophisticated behav- the inherent difficulties of motor control. iours are created by low-level control signals (BOX 2). The efforts of systems neuroscientists to understand I begin with a brief review of each level of the motor how the brain controls movement include studies system, followed by a more detailed description of how on the physics of the musculoskeletal system, neuro- optimal feedback control predicts many features of physiological studies to explore neural control, and neural processing in M1.
  • The Neural Basis of Speech and Language

    The Neural Basis of Speech and Language

    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION CHAPTER © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC The NeuralNOT FOR SALE Basis OR DISTRIBUTION of NOT FOR SALE OR DISTRIBUTION Speech and Language 2 © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Introduction © Jones & BartlettThis section Learning, gives the LLC reader a brief overview ©of Joneswhat takes & Bartlett place neurally Learning, when LLCa per- son starts a conversation by saying, “Hello. How are you? How was your vacation NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION trip?” to another individual whom the person meets on the street. Simply put, the steps involved would be as follows: 1. Basic vision: seeing a person on the street 2. Visual perception: recognizing the person as someone the speaker knows 3. Cognition:© theJones desire & to Bartlett speak with Learning, this person LLC about a trip that the speaker© Jones may & Bartlett Learning, LLC want to takeNOT in FORthe future SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 4. Language: searching for the right sounds, syllables, words, and sentences, all pre- sented in the right order, with meaning properly related to the greeting and the subject matter, to be expressed with a positive attitude © Jones5. Motor & Bartlettprogramming Learning, or planning: LLC readying the speech© mechanism Jones & Bartlettjust prior Learning, to LLC NOT speakingFOR SALE so that OR the DISTRIBUTION production is correct NOT FOR SALE OR DISTRIBUTION 6. Motor production or execution: speaking 7.
  • Rubrospinal Tract

    Rubrospinal Tract

    LECTURE IV: Physiology of Motor Tracts EDITING FILE GSLIDES IMPORTANT MALE SLIDES EXTRA FEMALE SLIDES LECTURER’S NOTES 1 PHYSIOLOGY OF MOTOR TRACTS Lecture Four In order to initiate any type of voluntary movement there will be 2 levels of neuron that your body will use and they are: Upper Motor Neurons (UMN) Lower Motor Neurons (LMN) These are the motor These are the motor neurons whose cell bodies neurons of the spinal lie in the motor cortex, or cord (AHCs) and brain brainstem, and they stem motor nuclei of the activate the lower motor cranial nerves that neuron innervates skeletal muscle directly. Figure 4-1 The descending motor system (pyramidal,Extrapyramidal )has a number of important sets these are named according to the origin of their cell bodies and their final destination; Originates from the cerebral ● The rest of the descending motor pathways 1 cortex and descends to the pyramidal do not travel through the medullary pyramids spinal cord (the corticospinal extra and are therefore collectively gathered under tract) passes through the the heading:“the extrapyramidal tracts” pyramids of the medulla and ● Responsible for subconscious gross therefore has been called the “the pyramidal movements(swinging of arms during walking) pyramidal tract ” DESCENDING MOTOR SYSTEM PYRAMIDAL EXTRAPYRAMIDAL Corticospinal Corticobulbar Rubrospinal Vestibulospinal Tectospinal tracts tracts tracts tracts tracts Reticulospinal Olivospinal tract Tract FOOTNOTES 1. They are collections of white matter in the medulla that appear triangular due to crossing of motor tracts. Therefore they are termed “medullary pyramids”. 2 PHYSIOLOGY OF MOTOR TRACTS Lecture Four MOTOR AREAS Occupies the Precentral Area of representation Gyrus & contains large, is proportional with the giant highly excitable complexity of function Betz cells.
  • Essential Neuromodulation This Page Intentionally Left Blank Essential Neuromodulation

    Essential Neuromodulation This Page Intentionally Left Blank Essential Neuromodulation

    Essential Neuromodulation This page intentionally left blank Essential Neuromodulation Jeffrey E. Arle Director, Functional Neurosurgery and Research, Department of Neurosurgery Lahey Clinic Burlington, MA Associate Professor of Neurosurgery Tufts University School of Medicine, Boston, MA Jay L. Shils Director of Intraoperative Monitoring, Dept of Neurosurgery Lahey Clinic Burlington, MA AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an Imprint of Elsevier Academic Press is an imprint of Elsevier 32 Jamestown Road, London NW1 7BY, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA First edition 2011 Copyright © 2011 Elsevier Inc. All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone ( + 44) (0) 1865 843830; fax ( +44) (0) 1865 853333; email: [email protected]. Alternatively, visit the Science and Technology Books website at www.elsevierdirect.com/rights for further information Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of
  • How Does the Brain Produce Movement?

    How Does the Brain Produce Movement?

    p CHAPTER 10 How Does the Brain Produce Movement? The Hierarchical Control The Basal Ganglia and of Movement the Cerebellum The Forebrain and Movement Initiation The Basal Ganglia and Movement Force The Brainstem and Species-Typical Movement Focus on Disorders: Tourette’s Syndrome Focus on Disorders: Autism The Cerebellum and Movement Skill The Spinal Cord and Movement Execution Focus on Disorders: Paraplegia The Organization of the Somatosensory System The Organization of the Somatosensory Receptors and Sensory Perception Motor System Dorsal-Root Ganglion Neurons The Motor Cortex The Somatosensory Pathways to the Brain The Corticospinal Tracts Spinal-Cord Responses to Somatosensory Input The Motor Neurons The Vestibular System and Balance The Control of Muscles Exploring the Somatosensory The Motor Cortex and Skilled System Movements The Somatosensory Homunculus Investigating Neural Control of Skilled Movements The Effects of Damage to the Somatosensory Cortex The Control of Skilled Movements in Other Species The Somatosensory Cortex and Complex How Motor Cortex Damage Affects Skilled Movement Movements Kevork Djansezian/AP Photo Micrograph: Dr. David Scott/Phototake 354 I p amala is a female Indian elephant that lives at the In one way, however, Kamala uses this versatile trunk zoo in Calgary, Canada. Her trunk, which is really very unusually for an elephant (Onodera & Hicks, 1999). K just a greatly extended upper lip and nose, con- She is one of only a few elephants in the world that paints sists of about 2000 fused muscles. A pair of nostrils runs its with its trunk (Figure 10-1). Like many artists, she paints length and fingerlike projections are located at its tip.
  • Case Study: Critical Illness Myopathy

    Case Study: Critical Illness Myopathy

    Case Study Critical Illness Myopathy Raghav Govindarajan, MD Danita Jones, DO Nestor Galvez, MD, MS AANEM Case Study: Critical Illness Myopathy Author Information Full Name: Raghav Govindarajan, MD; Danita Jones, DO; Nestor Galvez, MD, MS,FAAN Affiliation: Cleveland Clinic Florida No one involved in the planning of this CME activity had any relevant financial relationships to disclose. Authors/Faculty had nothing to disclose. Reviewed and accepted by Winfried A. Raabe, MD of the 2013-2014 Website CME Committee of the American Association of Neuromuscular & Electrodiagnostic Medicine. Reviewed 2017 by Philip S. Hsu, MD. Certified for CME credit 10/2014 – 10/2020 Copyright© October 2014 AMERICAN ASSOCIATION OF NEUROMUSCULAR & ELECTRODIAGNOSTIC MEDICINE ELECTRODIOGNOSTIC MEDICINE 2621 Superior Dr NW Rochester, MN 55901 Critical Illness Myopathy EDUCATIONAL OBJECTIVES: Upon completion of this case study, the participants will acquire skills to 1) identify uncommon presentation of critical illness myopathy, (2) differentiate among various causes of brachial diplegia (man in the barrel syndrome), and (3) outline the electrodiagnostic (EDX) changes in critical illness myopathy. CERTIFYING ORGANIZATION: The AANEM is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to sponsor continuing medical education (CME) for physicians and certifies that this CME activity was planned and produced in accordance with ACCME Essentials. CME CREDIT: The AANEM designates this enduring material for a maximum of 1 AMA PRA Category 1 Credit(s)TM. Physicians should claim only the credit commensurate with the extent of their participation in the activity. CME materials published by the AANEM are reviewed every 3 years by an AANEM education committee for their scientific relevance.
  • The Sensorimotor System, Part I: the Physiologic Basis of Functional Joint Stability Bryan L

    The Sensorimotor System, Part I: the Physiologic Basis of Functional Joint Stability Bryan L

    Journal of Athletic Training 2002;37(1):71±79 q by the National Athletic Trainers' Association, Inc www.journalofathletictraining.org The Sensorimotor System, Part I: The Physiologic Basis of Functional Joint Stability Bryan L. Riemann; Scott M. Lephart University of Pittsburgh, Pittsburgh, PA Bryan L. Riemann, PhD, ATC, contributed to conception and design; acquisition and analysis and interpretation of the data; and drafting, critical revision, and ®nal approval of the article. Scott M. Lephart, PhD, ATC, contributed to conception and design; analysis and interpretation of the data; and drafting, critical revision, and ®nal approval of the article. Address correspondence to Bryan L. Riemann, PhD, ATC, Georgia Southern University, PO Box 8076, Statesboro, GA 30460± 8076. Address e-mail to [email protected]. Objective: To de®ne the nomenclature and physiologic tal roles in optimal motor control and sensorimotor control over mechanisms responsible for functional joint stability. functional joint stability. Data Sources: Information was drawn from an extensive Conclusions/Applications: Sensorimotor control over the MEDLINE search of the scienti®c literature conducted in the dynamic restraints is a complex process that involves compo- areas of proprioception, neuromuscular control, and mecha- nents traditionally associated with motor control. Recognizing nisms of functional joint stability for the years 1970 through and understanding the complexities involved will facilitate the 1999. An emphasis was placed on de®ning pertinent nomen- continued development and institution of management strate- clature based on the original references. gies based on scienti®c rationales. Data Synthesis: Afferent proprioceptive input is conveyed to Key Words: proprioception, neuromuscular, motor control all levels of the central nervous system.
  • Motor Axon Pathfinding

    Motor Axon Pathfinding

    Downloaded from http://cshperspectives.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Motor Axon Pathfinding Dario Bonanomi and Samuel L. Pfaff Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037 Correspondence: [email protected] Motor neurons are functionally related, but represent a diverse collection of cells that show strict preferences for specific axon pathways during embryonic development. In this article, we describe the ligands and receptors that guide motor axons as they extend toward their per- ipheral muscle targets. Motor neurons share similar guidance molecules with many other neuronal types, thus one challenge in the field of axon guidance has been to understand how the vast complexity of brain connections can be established with a relatively small number of factors. In the context of motor guidance, we highlight some of the temporal and spatial mechanisms used to optimize the fidelity of pathfinding and increase the func- tional diversity of the signaling proteins. otor neurons residing in the brain stem differences between motor neurons and to char- Mand spinal cord extend axons into the acterize the signaling pathways that underlie the periphery and are the final relay cells for loco- specificity of motor axon targeting. motor commands. These cells are among the longest projection neurons in the body and their axons follow stereotypical pathways dur- DEVELOPMENT OF MOTOR NEURON DIVERSITY: TRANSCRIPTION FACTORS ing embryogenesis to synapse with muscle and sympathetic/parasympathetic targets. Cellular During embryonic development, a mapping studies of motor axon navigation in developing relationship emerges that links the position of chick and zebrafish embryos have shown that motor neuron cell bodies within the spinal motor neurons located at different rostrocaudal cord to the location of their synaptic targets in positions show specific preferences for axonal the periphery.
  • Cerebellar Loops with Motor Cortex and Prefrontal Cortex of a Nonhuman Primate

    Cerebellar Loops with Motor Cortex and Prefrontal Cortex of a Nonhuman Primate

    8432 • The Journal of Neuroscience, September 10, 2003 • 23(23):8432–8444 Behavioral/Systems/Cognitive Cerebellar Loops with Motor Cortex and Prefrontal Cortex of a Nonhuman Primate Roberta M. Kelly1 and Peter L. Strick2 1Salk Institute for Biological Studies, La Jolla, California 92037, and 2Pittsburgh Veterans Affairs Medical Center and Center for the Neural Basis of Cognition, Departments of Neurobiology, Neurosurgery, and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 We used transneuronal transport of neurotropic viruses to examine the topographic organization of circuits linking the cerebellar cortex with the arm area of the primary motor cortex (M1) and with area 46 in dorsolateral prefrontal cortex of monkeys. Retrograde transneu- ronaltransportoftheCVS-11(challengevirusstrain11)strainofrabiesvirusincerebello-thalamocorticalpathwaysrevealedthatthearm area of M1 receives input from Purkinje cells located primarily in lobules IV–VI of the cerebellar cortex. In contrast, transneuronal transportofrabiesfromarea46revealedthatitreceivesinputfromPurkinjecellslocatedprimarilyinCrusIIoftheansiformlobule.Thus, both M1 and area 46 are the targets of output from the cerebellar cortex. However, the output to each area of the cerebral cortex originates from Purkinje cells in different regions of the cerebellar cortex. Anterograde transneuronal transport of the H129 strain of herpes simplex virus type 1 (HSV1) revealed that neurons in the arm area of M1 project via the pons to granule cells primarily in lobules IV–VI, whereas neurons in area 46 project to granule cells primarily in Crus II. Together, the findings from rabies and HSV1 experiments indicate that the regions of the cerebellar cortex that receive input from M1 are the same as those that project to M1. Similarly, the regions of the cerebellar cortex that receive input from area 46 are the same as those that project to area 46.