Clinical, Pathological and Biochemical Diversity in Progressive Supranuclear Palsy

Total Page:16

File Type:pdf, Size:1020Kb

Clinical, Pathological and Biochemical Diversity in Progressive Supranuclear Palsy 2809076314 REFERENCE ONLY UNIVERSITY OF LONDON THESIS v Degree | 0 £) Year 0 ^ 7 Name of Author \f^ ^ £*Av//c) COPYRIGHT This is a thesis accepted for a Higher Degree of the University of London. It is an unpublished typescript and the copyright is held by the author. All persons consulting the thesis must read and abide by the Copyright Declaration below. COPYRIGHT DECLARATION I recognise that the copyright of the above-described thesis rests with the author and that no quotation from it or information derived from it may be published without the prior written consent of the author. LOAN Theses may not be lent to individuals, but the University Library may lend a copy to approved libraries within the United Kingdom, for consultation solely on the premises of those libraries. Application should be made to: The Theses Section, University of London Library, Senate House, Malet Street, London WC1E 7HU. REPRODUCTION University of London theses may not be reproduced without explicit written permission from the University of London Library. Enquiries should be addressed to the Theses Section of the Library. Regulations concerning reproduction vary according to the date of acceptance of the thesis and are listed below as guidelines. A. Before 1962. Permission granted only upon the prior written consent of the author. (The University Library will provide addresses where possible). B. 1962 - 1974. In many cases the author has agreed to permit copying upon completion of a Copyright Declaration. C. 1975 - 1988. Most theses may be copied upon completion of a Copyright Declaration. D. 1989 onwards. Most theses may be copied. This thesis comes within category D. □ This copy has been deposited in the Library of LA C t _ This copy has been deposited in the University of London Library, Senate □ House, Malet Street, London WC1E 7HU. •' * Clinical, pathological and biochemical diversity in progressive supranuclear palsy by David Williams Submitted to University College London For the degree of Doctor of Philosophy, Ph.D. 2006 Reta Lila Weston Institute of Neurological Studies University College London UMI Number: U592502 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U592502 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract This thesis examines the clinical, pathological and biochemical diversity of progressive supranuclear palsy (PSP). The material and patients used for these studies involved 23 clinically diagnosed living patients and 127 pathologically confirmed cases of PSP, archived at the Queen Square Brain Bank (QSBB). Differences between ‘classic’ PSP and ‘atypical’ PSP were identified, and a number of clinical features that separate them from other bradykinetic rigid syndromes were explored. • In addition to the clinical phenotype associated with PSP-tau pathology initially described by Richardson in 1963 (Richardson’s syndrome, RS) two other distinct clinical syndromes were identified: PSP-Parkinsonism (PSP-P) and pure akinesia with gait freezing (PAGF). • The following clinical features, in addition to the operational diagnostic criteria, were supportive of underlying PSP-tau pathology in patients presenting with Parkinsonism: an absence of drug induced dyskinesias, autonomic failure and visual hallucinations; the presence of falls within 6 years of disease onset; UPSIT scores above the 12th percentile for gender and age; and abnormalities in auditory startle response and auditory blink reflex. • PSP-tau pathology always involved the subthalamic nucleus (STN), globus pallidus (GP) and substantia nigra (SN), but involvement outside these structures was variable and could be sub-divided into at least three different patterns. • Severe tau pathology in PSP-P and PAGF was restricted to the GP, STN and SN. • Co-existent pathological diagnoses did not differ between RS, PSP-P and PAGF. • The ratio of pathological 4-repeat:3-repeat tau in PSP was variable. In RS the mean ratio was higher than in PSP-P (2.84 vs. 1.63 (p<0.003). • Mutations ofMAPT did not account for the diversity of clinical features The proposed clinical and pathological sub-classification of PSP will be helpful in clinical practice. Pathological and biochemical correlates raise the possibility that PSP-P 3 and PAGF may represent discrete nosological entities. Further research may ultimately lead to their absolute distinction from Richardson’s syndrome and related tauopathies. 4 Abstract 3 Tables 9 Figures 11 Abbreviations 13 Outline 14 1. Introduction 15 Progressive supranuclear palsy 16 What is PSP? 21 2. Tauopathies 26 Introduction 26 Molecular biology 27 Corticobasal degeneration 30 FTDP17 32 Parkinsonism dementia complex of Guam 32 Pick’s disease 34 Postencephalitic Parkinsonism 35 Alzheimer’s disease 36 Other tauopathies 37 3. Ambiguities in defining PSP 38 4. Hypothesis 41 5. Clinical heterogeneity in pathologically diagnosed PSP 44 6. Patterns of clinical presentation in pathologically diagnosed PSP 46 6.1. Analysis of clinical features in PSP 46 Aims 46 Materials and Methods 47 Results 49 Discussion 58 6.2. Post-hoc analysis of QSBB database - pure akinesia with gait freezing 62 Background 62 Aims 63 Patients and Methods 63 Results 64 Discussion 71 5 7. Pathological heterogeneity in pathologically diagnosed PSP 76 Introduction 76 Regional pathology in PSP 76 Regional analysis of tau isoform accumulation in PSP 79 Conclusion 80 8. Patterns of regional pathological involvement in PSP 81 Aims 82 Materials and Methods 82 Results 86 Discussion 96 Conclusion 102 9. Biochemical heterogeneity in PSP 104 Introduction 104 9.1. Comparison of methods for tau fractionation and dephosphorylation 108 Aims 108 Materials and methods 108 Results 110 Conclusion 111 9.2. Biochemical heterogeneity in PSP 112 Aims 112 Materials and methods 112 Results 113 Discussion 116 Conclusions 117 10. Genetics of progressive supranuclear palsy 118 Introduction 118 10.1. MAPT gene mutations in PSP 122 Aims 122 Methods 122 Results 123 Conclusions 123 10.2. Tau haplotype analysis in PSP 124 Aims 124 Methods 124 Results 124 Conclusions 125 6 103. Apolipoprotein E 126 Aims 126 Methods 126 Results 126 Conclusion 126 Overall conclusions 127 11. The diagnosis of PSP-P 128 11.1. Diagnostic experiments in clinically diagnosed patients 132 11.1.1. A visual hallucination inventory that differentiates PD from PSP 132 Background 132 Aims 132 Methods 133 Results 135 Discussion 138 11.1.2. Olfaction in PSP 141 Background 141 Aims 141 Methods 141 Results 142 Discussion 145 11.13. The auditory startle response in the diagnosis PSP 147 Background 147 Aims 148 Patients and methods 148 Results 150 Discussion 155 11.2. Retrospective studies in pathologically diagnosed patients 157 11.2.1. Clinical differences between RS, PSP-P & other Parkinsonism 157 Aims 157 Methods 157 Results 158 Conclusions 163 11.2.2. Falls in PSP 164 Background 164 Aims 164 Patients and methods 165 Results 166 Discussion 171 7 11.23. VH In pathologically diagnosed bradykinetic rigid syndromes 176 Aims 176 Patients and methods 176 Results 178 Discussion 181 Conclusions 184 12. Sample size calculations using clinical phenotypes 185 Introduction 185 Aims 185 Methods 185 Results 186 Discussion 188 13. Summary 190 Peer review publications related to this thesis 195 Acknowledgements 196 Appendix 197 Table of references 201 8 1.1 NINDS-SPSP clinical criteria for the diagnosis of PSP 2.1 Tauopathies 6.1 Clinical features in 103 pathologically confirmed cases of PSP 6.2 Cross tabulation of the number of characteristics from two sets 6.3 Early clinical features in cases with an incomplete data set 6.4 Patient profiles according to clinical group 6.5 Late clinical features in 89 cases separated into distinct groups 6.6 Diagnostic criteria for pure akinesia with gait freezing 6.7 Red flags for distinguishing PAGF from PD and VP 6.8 Demographics of patients with PAGF 6.9 Demographics of patients with PSP-P AGF vs. other diseases 8.1 Demographic details of patients included in pathology study 8.2 Additional pathological diagnoses 8.3 Demographics of cluster groups 10.1 ApoE genotype in PSP 10.2 ApoE allelic frequency in PSP 11.1 Visual hallucinations: Demographics in clinically diagnosed cases 11.2 Frequency of “yes” responses to QSVHI questions 11.3 QSVHI in PD and other bradykinetic rigid syndromes 11.4 Olfaction testing: Demographics of clinically diagnosed patients 11.5 Electrophysiology: Demographics in clinically diagnosed patients 11.6 EMG response according to clinical diagnosis 11.7 OO EMG responses according to clinical diagnosis 11.8 Scm EMG responses according to clinical diagnosis 11.9 Demographics of QSBB archives: PSP-P vs. non-PSP-P 11.10 Clinical features: PSP-P vs. PD 11.11 Clinical features: PSP-P vs. MSA 11.12 Clinical features: PSP-P vs. VP 11.13 Falls: Characteristics of patients according to pathological diagnosis 11.14 Clinical features in fallers and non-fallers 11.15 Factors affecting time to first fall in PSP, PSP and MSA 11.16 Disease duration in PSP fallers 11.17
Recommended publications
  • Multiplex Families with Multiple System Atrophy
    ORIGINAL CONTRIBUTION Multiplex Families With Multiple System Atrophy Kenju Hara, MD, PhD; Yoshio Momose, MD, PhD; Susumu Tokiguchi, MD, PhD; Mitsuteru Shimohata, MD, PhD; Kenshi Terajima, MD, PhD; Osamu Onodera, MD, PhD; Akiyoshi Kakita, MD, PhD; Mitsunori Yamada, MD, PhD; Hitoshi Takahashi, MD, PhD; Motoyuki Hirasawa, MD, PhD; Yoshikuni Mizuno, MD, PhD; Katsuhisa Ogata, MD, PhD; Jun Goto, MD, PhD; Ichiro Kanazawa, MD, PhD; Masatoyo Nishizawa, MD, PhD; Shoji Tsuji, MD, PhD Background: Multiple system atrophy (MSA) has Results: Consanguineous marriage was observed in 1 been considered a sporadic disease, without patterns of of 4 families. Among 8 patients, 1 had definite MSA, 5 inheritance. had probable MSA, and 2 had possible MSA. The most frequent phenotype was MSA with predominant parkin- Objective: To describe the clinical features of 4 multi- sonism, observed in 5 patients. Six patients showed pon- plex families with MSA, including clinical genetic tine atrophy with cross sign or slitlike signal change at aspects. the posterolateral putaminal margin or both on brain mag- netic resonance imaging. Possibilities of hereditary atax- Design: Clinical and genetic study. ias, including SCA1 (ataxin 1, ATXN1), SCA2 (ATXN2), Machado-Joseph disease/SCA3 (ATXN1), SCA6 (ATXN1), Setting: Four departments of neurology in Japan. SCA7 (ATXN7), SCA12 (protein phosphatase 2, regula- tory subunit B, ␤ isoform; PP2R2B), SCA17 (TATA box Patients: Eight patients in 4 families with parkinson- binding protein, TBP) and DRPLA (atrophin 1; ATN1), ism, cerebellar ataxia, and autonomic failure with age at ␣ onset ranging from 58 to 72 years. Two siblings in each were excluded, and no mutations in the -synuclein gene family were affected with these conditions.
    [Show full text]
  • A Review on Parkinson's Disease Treatment
    Lee et al. Neuroimmunol Neuroinflammation 2021;8:[Online First] Neuroimmunology DOI: 10.20517/2347-8659.2020.58 and Neuroinflammation Review Open Access A review on Parkinson’s disease treatment Tori K. Lee, Eva L. Yankee Department of Biology, Pacific Union College, Angwin, CA 94508, USA. Correspondence to: Tori K. Lee, Department of Biology, Pacific Union College, 1 Angwin Ave, Angwin, CA 94508, USA. E-mail: [email protected] How to cite this article: Lee TK, Yankee EL. A review on Parkinson’s disease treatment. Neuroimmunol Neuroinflammation 2021;8:[Online First]. http://dx.doi.org/10.20517/2347-8659.2020.58 Received: 1 Oct 2020 First Decision: 1 Dec 2020 Revised: 15 Dec 2020 Accepted: 24 Dec 2020 Available online: 25 Jan 2021 Academic Editors: Athanassios P. Kyritsis, Backil Sung Copy Editor: Monica Wang Production Editor: Jing Yu Abstract Parkinson’s disease (PD) is a neurodegenerative illness and has a common onset between the ages of 55 and 65 years. There is progressive development of both motor and non-motor symptoms, greatly affecting one’s overall quality of life. While there is no cure, various treatments have been developed to help manage the symptoms of PD. Management of PD is a growing field and targets new treatment methods, as well as improvements to old ones. Pharmacological, surgical, and therapeutic treatments have allowed physicians to treat not only the main motor symptoms of PD, but target patient-specific problems as they arise. This review discusses both the established and new possibilities for PD treatment that can provide patient-specific care and mitigate side effects for common treatments.
    [Show full text]
  • Efficacy of Rhythmic Auditory Stimulation on Ataxia and Functional Dependence Post- Cerebellar Stroke" (2020)
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale School of Medicine Physician Associate Program Theses School of Medicine 5-22-2020 Efficacy of Rhythmicudit A ory Stimulation on Ataxia and Functional Dependence Post-Cerebellar Stroke Kaitlin Fitzgerald Yale Physician Associate Program, [email protected] Follow this and additional works at: https://elischolar.library.yale.edu/ysmpa_theses Recommended Citation Fitzgerald, Kaitlin, "Efficacy of Rhythmic Auditory Stimulation on Ataxia and Functional Dependence Post- Cerebellar Stroke" (2020). Yale School of Medicine Physician Associate Program Theses. 13. https://elischolar.library.yale.edu/ysmpa_theses/13 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale School of Medicine Physician Associate Program Theses by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. EFFICACY OF RHYTHMIC AUDITORY STIMULATION ON ATAXIA AND FUNCTIONAL DEPENDENCE POST-CEREBELLAR STROKE A Thesis Presented to The Faculty of the School of Medicine Yale University In Candidacy for the degree of Master of Medical Science May 2020 Kaitlin Fitzgerald, PA-SII Dr. Diana Richardson, MD Class of 2020 Assistant Clinical Professor Yale Physician Associate Program. Yale School of Medicine, Neurology i Table of Contents ABSTRACT
    [Show full text]
  • Neurologic Outcomes in Friedreich Ataxia: Study of a Single-Site Cohort E415
    Volume 6, Number 3, June 2020 Neurology.org/NG A peer-reviewed clinical and translational neurology open access journal ARTICLE Neurologic outcomes in Friedreich ataxia: Study of a single-site cohort e415 ARTICLE Prevalence of RFC1-mediated spinocerebellar ataxia in a North American ataxia cohort e440 ARTICLE Mutations in the m-AAA proteases AFG3L2 and SPG7 are causing isolated dominant optic atrophy e428 ARTICLE Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy revisited: Genotype-phenotype correlations of all published cases e434 Academy Officers Neurology® is a registered trademark of the American Academy of Neurology (registration valid in the United States). James C. Stevens, MD, FAAN, President Neurology® Genetics (eISSN 2376-7839) is an open access journal published Orly Avitzur, MD, MBA, FAAN, President Elect online for the American Academy of Neurology, 201 Chicago Avenue, Ann H. Tilton, MD, FAAN, Vice President Minneapolis, MN 55415, by Wolters Kluwer Health, Inc. at 14700 Citicorp Drive, Bldg. 3, Hagerstown, MD 21742. Business offices are located at Two Carlayne E. Jackson, MD, FAAN, Secretary Commerce Square, 2001 Market Street, Philadelphia, PA 19103. Production offices are located at 351 West Camden Street, Baltimore, MD 21201-2436. Janis M. Miyasaki, MD, MEd, FRCPC, FAAN, Treasurer © 2020 American Academy of Neurology. Ralph L. Sacco, MD, MS, FAAN, Past President Neurology® Genetics is an official journal of the American Academy of Neurology. Journal website: Neurology.org/ng, AAN website: AAN.com CEO, American Academy of Neurology Copyright and Permission Information: Please go to the journal website (www.neurology.org/ng) and click the Permissions tab for the relevant Mary E.
    [Show full text]
  • Movement Disorders in the Elderly
    MOVEMENT DISORDERS IN THE ELDERLY Eugene C. Lai, M.D., Ph.D. Michael E. DeBakey VA Medical Center Baylor College of Medicine Houston, Texas MOVEMENT DISORDERS Neurologic dysfunctions in which there is either a paucity of voluntary and automatic movements (HYPOKINESIA) or an excess of movement (HYPERKINESIA) or uncontrolled movements (DYSKINESIA) typically unassociated with weakness or spasticity HYPOKINESIAS • Parkinson‟s disease • Secondary Parkinsonism • Parkinson‟s plus syndromes HYPERKINESIAS • Akathisia • Hemifacial spasm • Athetosis • Myoclonus • Ballism • Restless leg syndrome • Chorea • Tics • Dystonia • Tremor COMMON MOVEMENT DISORDERS IN THE ELDERLY • Parkinsonism • Tremor • Gait disorder • Restless leg syndrome • Drug-induced syndrome PARKINSONISM • Parkinson‟s disease • Secondary parkinsonism • Drug-induced parkinsonism • Vascular parkinsonism • Parkinson‟s plus syndromes • Multiple system atrophy • Progressive supranuclear palsy PARKINSON’S DISEASE PARKINSON’S DISEASE Classical Clinical Features • Resting Tremor • Cogwheel Rigidity • Bradykinesia • Postural Instability PARKINSON’S DISEASE Associated Clinical Features • Micrographia • Hypophonia • Hypomimia • Shuffling gait / festination • Drooling • Dysphagia NON-MOTOR COMPLICATIONS IN PARKINSON’S DISEASE • Sleep disturbances • Autonomic dysfunctions • Sensory phenomena • Neuropsychiatric manifestations • Cognitive impairment PARKINSON’S DISEASE General Considerations • The second most common progressive neurodegenerative disorder • The most common neurodegenerative movement
    [Show full text]
  • Pseudoparkinsonism: a Review of a Common Nonparkinsonian Hypokinetic Movement Disorder
    Vol.2, No.4, 108-112 (2013) Advances in Parkinson’s Disease http://dx.doi.org/10.4236/apd.2013.24020 Pseudoparkinsonism: A review of a common nonparkinsonian hypokinetic movement disorder Roger Kurlan*, Marcie L. Rabin Atlantic Neuroscience Institute, Overlook Medical Center, Summit, USA; *Corresponding Author: [email protected] Received 16 September 2013; revised 16 October 2013; accepted 24 October 2013 Copyright © 2013 Roger Kurlan, Marcie L. Rabin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT [2-4]. Over time, clinicians learned that a variety of entities This article reviews the syndrome pseudopark- besides neuroleptic drugs can similarly cause a clinical insonism, a movement disorder described in the picture resembling that of PD. The notion that a parkin- literature that resembles parkinsonism but dif- sonian syndrome could be caused by cerebrovascular fers qualitatively. Patients with this disorder disease became popularized in the 1980’s and 1990’s. have apraxic slowness, paratonic rigidity, frontal Some publications referred to the condition as “vascular gait disorder and elements of akinesia that, pseudoparkinsonism” [5,6], similar to the term used for taken together, may be mistaken for true park- neuroleptic drugs. Other articles, in contrast, used the insonism. Pseudoparkinsonism appears to be term “vascular parkinsonism” to describe features with a common and is most often due to Alzheimer’s vascular etiology that are reminiscent of, but distinct disease or vascular dementia. It seems that pa- from, those found in PD.
    [Show full text]
  • Tremor, Abnormal Movement and Imbalance Differential
    Types of involuntary movements Tremor Dystonia Chorea Myoclonus Tics Tremor Rhythmic shaking of muscles that produces an oscillating movement Parkinsonian tremor Rest tremor > posture > kinetic Re-emergent tremor with posture Usually asymmetric Pronation-supination tremor Distal joints involved primarily Often posturing of the limb Parkinsonian tremor Other parkinsonian features Bradykinesia Rigidity Postural instability Many, many other motor and non- motor features Bradykinesia Rigidity Essential tremor Kinetic > postural > rest Rest in 20%, late feature, only in arms Intentional 50% Bringing spoon to mouth is challenging!! Mildly asymmetric Gait ataxia – typically mild Starts in the arms but can progress to neck, voice and jaw over time Jaw tremor occurs with action, not rest Neck tremor should resolve when patient is lying flat Essential tremor Many other tremor types Physiologic tremor Like ET but faster rate and lower amplitude Drug-induced tremor – Lithium, depakote, stimulants, prednisone, beta agonists, amiodarone Anti-emetics (phenergan, prochlorperazine), anti-psychotics (except clozapine and Nuplazid) Many other tremor types Primary writing tremor only occurs with writing Orthostatic tremor leg tremor with standing, improves with walking and sitting, causes imbalance Many other tremor types Cerebellar tremor slowed action/intention tremor Holmes tremor mid-brain lesion, unilateral Dystonia Dystonia Muscle contractions that cause sustained or intermittent torsion of a body part in a repetitive
    [Show full text]
  • Management of Balance and Gait in Older Individuals with Parkinson's Disease Ryan P
    Washington University School of Medicine Digital Commons@Becker Physical Therapy Faculty Publications Program in Physical Therapy 2011 Management of balance and gait in older individuals with Parkinson's disease Ryan P. Duncan Washington University School of Medicine in St. Louis Abigail L. Leddy Washington University School of Medicine in St. Louis Gammon M. Earhart Washington University School of Medicine in St. Louis Follow this and additional works at: http://digitalcommons.wustl.edu/pt_facpubs Recommended Citation Duncan, Ryan P.; Leddy, Abigail L.; and Earhart, Gammon M., "Management of balance and gait in older individuals with Parkinson's disease" (2011). Physical Therapy Faculty Publications. Paper 32. http://digitalcommons.wustl.edu/pt_facpubs/32 This Article is brought to you for free and open access by the Program in Physical Therapy at Digital Commons@Becker. It has been accepted for inclusion in Physical Therapy Faculty Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. 1 Management of Balance and Gait in Older Individuals with Parkinson Disease 2 Duncan R.P.1, Leddy A.L.1, Earhart G.M.1,2,3 3 1Washington University in St. Louis School of Medicine, Program in Physical Therapy 4 2Washington University in St. Louis School of Medicine, Department of Anatomy & Neurobiology 5 3Washington University in St. Louis School of Medicine, Department of Neurology 6 7 Corresponding Author: 8 Gammon M. Earhart, PhD, PT 9 Washington University School of Medicine 10 Program in Physical Therapy 11 Campus Box 8502 12 4444 Forest Park Blvd. 13 St. Louis, MO 63108 14 314-286-1425 15 Email: [email protected] 16 17 Summary 18 Difficulties with walking and balance are common among people with Parkinson disease 19 (PD).
    [Show full text]
  • Gait Disorders (Chapter 10) Aspen 2019
    Hallett: Gait (no videos) Summer 2020 Gait Disorders (Chapter 10) Aspen 2019 1 Extent of the Problem • Major problem in the population, especially in the elderly • Significant cause of disability • Common causes include stroke, peripheral neuropathy, brain or spinal cord trauma, Parkinson’s disease 2 1 Hallett: Gait (no videos) Summer 2020 Capability for Gait • Highly complex motor control problem • Balance – Assume upright position, support, react to perturbations • Locomotion – Initiate steps, steps, adapt steps to circumstances 3 Multiple levels of control • Stepping machinery in the spinal cord • Whole brain gets involved, including cerebral cortex – Walking requires some attention – Why else would it be difficult to walk and chew gum at the same time? – “Stops walking when talking” test can bring out abnormalities • Lundin-Olsson et al. 1997 4 2 Hallett: Gait (no videos) Summer 2020 CLR Nutt, Bloem, Giladi, Hallett, Horak, Nieuwboer Lancet Neurology 2011 5 Gait Cycle 6 3 Hallett: Gait (no videos) Summer 2020 Elemental Descriptions of Gait • Stride length • Cadence • Deviation from direction of travel • Base (standing and walking) • Angular movement of joints • Variability • Rigidity/fluidity • Initiation and maintenance of walking • Adaptability » Modified from Nutt 2001 7 Elemental Disorders of Gait • Weakness: myopathy, neuropathy • Dysmetric: ataxia, chorea • Stiff/rigid: spasticity, parkinsonism, dystonia • Veering: vestibular disorders • Freezing: parkinsonism,frontal gait disorder – Motor block, lack of movement – Rapid side
    [Show full text]
  • GAIT DISORDERS, FALLS, IMMOBILITY Mov7 (1)
    GAIT DISORDERS, FALLS, IMMOBILITY Mov7 (1) Gait Disorders, Falls, Immobility Last updated: April 17, 2019 GAIT DISORDERS ..................................................................................................................................... 1 CLINICAL FEATURES .............................................................................................................................. 1 CLINICO-ANATOMICAL SYNDROMES .............................................................................................. 1 CLINICO-PHYSIOLOGICAL SYNDROMES ......................................................................................... 1 Dyssynergy Syndromes .................................................................................................................... 1 Frontal gait ............................................................................................................................ 2 Sensory Gait Syndromes .................................................................................................................. 2 Sensory ataxia ........................................................................................................................ 2 Vestibular ataxia .................................................................................................................... 2 Visual ataxia .......................................................................................................................... 2 Multisensory disequilibrium .................................................................................................
    [Show full text]
  • The Pedunculopontine Nucleus Area: Critical Evaluation of Interspecies Differences Relevant
    doi:10.1093/brain/awq322 Brain 2011: 134; 11–23 | 11 BRAIN A JOURNAL OF NEUROLOGY REVIEW ARTICLE The pedunculopontine nucleus area: critical evaluation of interspecies differences relevant for its use as a target for deep brain stimulation Downloaded from https://academic.oup.com/brain/article/134/1/11/293572 by guest on 23 September 2021 Mesbah Alam, Kerstin Schwabe and Joachim K. Krauss Department of Neurosurgery, Medical University of Hannover, Hannover 30625, Germany Correspondence to: Prof. Dr. med. Joachim K. Krauss, Department of Neurosurgery, Medical University of Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany E-mail: [email protected] Recently, the pedunculopontine nucleus has been highlighted as a target for deep brain stimulation for the treatment of freezing of postural instability and gait disorders in Parkinson’s disease and progressive supranuclear palsy. There is great controversy, however, as to the exact location of the optimal site for stimulation. In this review, we give an overview of anatomy and connectivity of the pedunculopontine nucleus area in rats, cats, non-human primates and humans. Additionally, we report on the behavioural changes after chemical or electrical manipulation of the pedunculopontine nucleus. We discuss the relation to adjacent regions of the pedunculopontine nucleus, such as the cuneiform nucleus and the subcuneiform nucleus, which together with the pedunculopontine nucleus are the main areas of the mesencephalic locomotor region and play a major role in the initiation of gait. This information is discussed with respect to the experimental designs used for research purposes directed to a better understanding of the circuitry pathway of the pedunculopontine nucleus in association with basal ganglia pathology, and with respect to deep brain stimulation of the pedunculopontine nucleus area in humans.
    [Show full text]
  • Detection of Gait Abnormalities Caused by Neurological Disorders
    Detection of Gait Abnormalities caused by Neurological Disorders Daksh Goyal Koteswar Rao Jerripothula Ankush Mittal Department of Civil Engineering Department of Computer Science and Engineering Raman Classes NIT Karnataka Indraprastha Institute of Information Technology Delhi Roorkee, India Surathkal, India New Delhi, India [email protected] [email protected] [email protected] Abstract—In this paper, we leverage gait to potentially detect some of the important neurological disorders, namely Parkinson’s disease, Diplegia, Hemiplegia, and Huntington’s Chorea. Persons with these neurological disorders often have a very abnormal gait, which motivates us to target gait for their potential detection. Parkinsonian Gait Diplegic Gait Some of the abnormalities involve the circumduction of legs, forward-bending, involuntary movements, etc. To detect such abnormalities in gait, we develop gait features from the key-points of the human pose, namely shoulders, elbows, hips, knees, ankles, Hemiplegic Gait Choreiform Gait etc. To evaluate the effectiveness of our gait features in detecting Fig. 1. Gait Abnormalities the abnormalities related to these diseases, we build a synthetic video dataset of persons mimicking the gait of persons with such disorders, considering the difficulty in finding a sufficient number of people with these disorders. We name it NeuroSynGait video disorders. Even doctors consider such visible symptoms as dataset. Experiments demonstrated that our gait features were a basis for their diagnosis to identify the root cause of the indeed successful in detecting these abnormalities. problem. This research attempts to expedite the diagnosis Index Terms—gait, neurological, disorders, Parkinson’s, Diple- gia, Hemiplegia, Choreiform process by automating this step with computer vision and machine learning algorithms.
    [Show full text]