The Importance of Aryltetralin (Podophyllum) Lignans and Their Distribution in the Plant Kingdom
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The American Mayapple and Its Potential for Podophyllotoxin Production*
Reprinted from: Trends in new crops and new uses. 2002. J. Janick and A. Whipkey (eds.). ASHS Press, Alexandria, VA. The American Mayapple and its Potential for Podophyllotoxin Production* Rita M. Moraes, Hemant Lata, Ebru Bedir, Muhammad Maqbool, and Kent Cushman INTRODUCTION Podophyllotoxin is the starting material for the semi-synthesis of the anti-cancer drugs etoposide, teniposide and etopophos. These compounds have been used for the treatment of lung and testicular cancers as well as certain leukemias. It is also the precursor to a new derivative CPH 82 that is being tested for rheumatoid arthritis in Europe, and it is the precursor to other derivatives used for the treatment of psoriasis and malaria. Several podophyllotoxin preparations are on the market for dermatological use to treat genital warts. Since the total synthesis of podophyllotoxin is an expensive process, availability of the compound from natural re- newable resources is an important issue for pharmaceutical companies that manufacture these drugs. Currently, the commercial source of podophyllotoxin is the rhizomes and roots of Podophyllum emodi Wall. (syn. P. hexandrum Royle), Berberidaceae, an endangered species from the Himalayas. In recent stud- ies, we concluded that the leaf blades of the North American mayapple (P. peltatum L.) may serve as an alter- native source of podophyllotoxin production. Since leaves are renewable organs that store lignans as glucopyranosides, podophyllotoxin can be obtained by conversion of podophyllotoxin 4-O-β-D-glucopyranoside into the aglycone using our buffer extraction procedure. This extraction procedure of P. peltatum leaves yields podophyllotoxin in amounts similar to the ethanol extraction of P. -
Reproductive Biology of the Rare Plant, Dysosma Pleiantha (Berberidaceae): Breeding System, Pollination and Implications for Conservation
Pak. J. Bot ., 47(3): 951-957, 2015. REPRODUCTIVE BIOLOGY OF THE RARE PLANT, DYSOSMA PLEIANTHA (BERBERIDACEAE): BREEDING SYSTEM, POLLINATION AND IMPLICATIONS FOR CONSERVATION XI GONG 1, BI-CAI GUAN 2, *, SHI-LIANG ZHOU 3 AND GANG GE 2 1State Key Laboratory of Food Science and Technology, College of Life Science and Food engineering, Nanchang University, Nanchang 330047, China 2Jiangxi Key Laboratory of Plant Resources, Nanchang University, Nanchang 330031, China. 3State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China. *Corresponding author e-mail: [email protected], Tel.: +86 0791 83969530) Abstract Dysosma pleiantha is an endangered and endemic species in China. We have reported the flowering phenology, breeding system and pollinator activity of the species distributed in Tianmu Mountain (Zhejiang Province) nature reserves. Flowering occurred during the months of early April to late May, with the peak in the middle of the April, and was synchronous across all four subpopulations. The anthesis of an intact inflorescence lasted from sixteen to twenty-three days with eight to eleven days blossom of an individual flower. In D. pleiantha , the morphological development of flowers and fruit leading to the development of mature seeds takes place over a period 3–5 months from flowering. The average of pollen-ovule ratio (P/O) was 18 898.7. The pollen transfer in this species was mainly performed by flies, Hydrotaea chalcogaster (Muscidae). Controlled pollination experiments indicated D. pleiantha was obligate xenogamyous and self- incompatible, and pollination was pollinator-dependent. Controlled pollination experiments showed that the mean fruit set (%) under the natural condition (17.1%) was markedly lower than that of manual cross-pollination (75.6%). -
An Encyclopedia of Shade Perennials This Page Intentionally Left Blank an Encyclopedia of Shade Perennials
An Encyclopedia of Shade Perennials This page intentionally left blank An Encyclopedia of Shade Perennials W. George Schmid Timber Press Portland • Cambridge All photographs are by the author unless otherwise noted. Copyright © 2002 by W. George Schmid. All rights reserved. Published in 2002 by Timber Press, Inc. Timber Press The Haseltine Building 2 Station Road 133 S.W. Second Avenue, Suite 450 Swavesey Portland, Oregon 97204, U.S.A. Cambridge CB4 5QJ, U.K. ISBN 0-88192-549-7 Printed in Hong Kong Library of Congress Cataloging-in-Publication Data Schmid, Wolfram George. An encyclopedia of shade perennials / W. George Schmid. p. cm. ISBN 0-88192-549-7 1. Perennials—Encyclopedias. 2. Shade-tolerant plants—Encyclopedias. I. Title. SB434 .S297 2002 635.9′32′03—dc21 2002020456 I dedicate this book to the greatest treasure in my life, my family: Hildegarde, my wife, friend, and supporter for over half a century, and my children, Michael, Henry, Hildegarde, Wilhelmina, and Siegfried, who with their mates have given us ten grandchildren whose eyes not only see but also appreciate nature’s riches. Their combined love and encouragement made this book possible. This page intentionally left blank Contents Foreword by Allan M. Armitage 9 Acknowledgments 10 Part 1. The Shady Garden 11 1. A Personal Outlook 13 2. Fated Shade 17 3. Practical Thoughts 27 4. Plants Assigned 45 Part 2. Perennials for the Shady Garden A–Z 55 Plant Sources 339 U.S. Department of Agriculture Hardiness Zone Map 342 Index of Plant Names 343 Color photographs follow page 176 7 This page intentionally left blank Foreword As I read George Schmid’s book, I am reminded that all gardeners are kindred in spirit and that— regardless of their roots or knowledge—the gardening they do and the gardens they create are always personal. -
University of Groningen Podophyllotoxin Koulman, Albert
University of Groningen Podophyllotoxin Koulman, Albert IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2003 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Koulman, A. (2003). Podophyllotoxin: A study of the biosynthesis, evolution, function and use of podophyllotoxin and related lignans. [S.n.]. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 30-09-2021 Podophyllotoxin RIJKSUNIVERSITEIT GRONINGEN Podophyllotoxin A Study of the Biosynthesis, Evolution, Function and Use of Podophyllotoxin and Related Lignans. -
Podophyllum Hexandrum): a Review
Asian J. Adv. Basic Sci.: 2018, 6(2), 42-51 ISSN (Print): 2454 – 7492 ISSN (Online): 2347 – 4114 www.ajabs.org The Himalayan May Apple (Podophyllum hexandrum): A Review Abhishek Sharma1* and Pankaj Sharma2 1 & 2 Himachal Pradesh State Biodiversity Board, Vigyan Bhawan, Bemloe, Shimla-171001, (H.P.), INDIA * Correspondence: E-mail: [email protected] (Received 21 Oct, 2018; Accepted 15 Nov, 2018; Published 23 Nov, 2018) ABSTRACT: Plant based therapeuticals have been in use from time immemorial. The evolution of human race on this planet must have been closely followed by the advent of several diseases. The process took several million of years before he could identify the natural resources including plants for alleviating diseases by a process of trial and error. About 1,100 plants species are frequently used in Indian medicinal system and out of these, 500 plants are commonly used in preparation of different drugs. One of those plants is Podophyllum hexandrum Royle, commonly known as the Himalayan May Apple. The herb grows in the Himalayan alpine and subalpine zones. Underground part of the plant yield podophyllotoxin, an active ingredient used as a starting compound for the chemical synthesis of etoposide and teniposide, compound that are effective in treatment of lung cancer, a variety of leukemias, and other solid tumors. Though podophyllotoxin is present in different plant species, but in sufficient amounts it is present only in some species of genus Podophyllum. Podophyllum hexandrum of Indian origin contains three times more podophyllotoxin than its American counterpart Podophyllum peltatum. There has been massive extraction of its rootstock over the last several decades leading to destructive harvesting. -
BERBERIDACEAE 小檗科 Xiao Bo Ke Ying Junsheng (应俊生 Ying Tsun-Shen)1; David E
BERBERIDACEAE 小檗科 xiao bo ke Ying Junsheng (应俊生 Ying Tsun-shen)1; David E. Boufford2, Anthony R. Brach3 Herbs, perennial, or shrubs, rarely small trees, evergreen or deciduous, sometimes rhizomatous or tuberous. Stems with or with- out spines. Leaves alternate, opposite, or basal, simple, or 1–3 × pinnately or 2–3 × ternately compound; stipules present or absent; venation pinnate or palmate. Inflorescences terminal or axillary, racemes, spikes, umbels, cymes, or panicles, or flowers fascicled or solitary. Flowers pedicellate or sessile, bisexual, radially symmetric; bracteoles or bracts present or absent. Perianth usually 2- or 3- merous, rarely absent. Sepals 6–9, often petaloid, distinct, in 2 or 3 whorls. Petals 6, distinct, flat, hooded, pouched, or spurred; nec- tary present or absent. Stamens 6, opposite petals; anthers 2-celled, dehiscing by valves or longitudinal silts. Ovary superior, appar- ently 1-carpellate; ovules numerous, rarely solitary; placentation marginal or appearing basal; style present or absent, sometimes per- sistent in fruit as a beak. Fruit a berry, capsule, follicle, or utricle. Seeds 1 to numerous, sometimes arillate; endosperm abundant. Seventeen genera and ca. 650 species: mainly in the north temperate zone and on subtropical mountains; 11 genera and 303 species (272 endemic, one introduced) in China; 17 additional species (15 endemic) are insufficiently known. Editors’ note. The Berberidaceae were to be published in Flora of China Volume 7 (2008). However, a problem with the treatment of Berberis necessitated postponing publication of the family until the present volume. See the comments under Berberis, below. The family Berberidaceae presents an interesting, distinctive biogeography. The two species of Achlys Candolle are disjunctly distributed be- tween E Asia and North America, with one in Japan and Korea and one along the west coast of North America. -
Pollen Morphology and Phylogenetic Relationships of the Berberidaceae
SMITHSONIAN CONTRIBUTIONS TO BOTANY NUMBER 50 Pollen Morphology and Phylogenetic Relationships of the Berberidaceae Joan W. Nowicke andJohn J. Skvarla SMITHSONIAN INSTITUTION PRESS City of Washington 1981 ABSTRACT Nowicke, Joan W., and John J. Skvarla. Pollen Morphology and Phylogenetic Relationships of the Berberidaceae. Smithsonian Contributions to Botany, number 50, 83 pages, 215 figures, 3 tables, 1981.-Pollen from 68 collections repre- senting 14 genera and 40 species of the family Berberidaceae was examined by light microscopy, SEM, and TEM. In part, the pollen data reinforce the traditional view of closely related pairs or small groups of genera. In Berberis and Mahonia the pollen morphology would support separate family status as well as congeneric treatment. The unusual exine structure in Nandina would reinforce its treatment as a monotypic family, Nandinaceae. The distinction of Bongardia from Leontice and of Dysosma from Podophyllum is confirmed by pollen data. The presence of a fundamentally similar tectum in Achlys, Dysosma, Epimedium,Jeffsonia, Podophyllum peltatum, P. hispidun, and Vancouveria suggests closer relationship among these genera than has been previously thought. The _close similarity of the polle-n in Jeffersonia and Plagio- rhegma confirms their congeneric treatment, Palynologically, Bongardia, Caulo- phyllum, and Leontice are more closely related to each other than to any remaining genera. In three taxa, Diphylleia, Podophyllum hexandrum, and Ranta- nia, certain characteristic(s) of the pollen render it unique and for the most part nullify any systematic value within the family. The pollen morphology of the Berberidaceae s. 1. is not similar to that of the Ranunculaceae, Hydrastis excepted, nor to Lardizabalaceae. There appear to be unusual examples of parallelism between the Berberidaceae and Cistaceae, and between Podophyllum and Croton. -
Strengthening Structures in the Petiole–Lamina Junction of Peltate Leaves
biomimetics Article Strengthening Structures in the Petiole–Lamina Junction of Peltate Leaves Julian Wunnenberg, Annabell Rjosk * , Christoph Neinhuis and Thea Lautenschläger Department of Biology, Faculty of Science, Institute of Botany, Technische Universität Dresden, 01062 Dresden, Germany; [email protected] (J.W.); [email protected] (C.N.); [email protected] (T.L.) * Correspondence: [email protected] Abstract: Peltate- or umbrella- shaped leaves are characterised by a petiole more or less centrally attached to the lamina on the abaxial side. The transition from the petiole to lamina in peltate leaves resembles a significant and abrupt geometrical change from a beam to a plate in a very compact shape. Since these leaves have not been subject of many studies, the distribution of that specific leaf morphology in the plant kingdom was investigated. Furthermore, the connection between the petiole and lamina of several peltate species was studied anatomically and morphologically, focusing on the reinforcing fibre strands. We found peltate leaves in 357 species representing 25 orders, 40 families and 99 genera. The majority are herbaceous perennials growing in shady, humid to wet habitats mainly distributed in the subtropical–tropical zones. Detailed anatomical investigation of 41 species revealed several distinct principles of how the transition zone between the petiole and lamina is organised. In-depth analysis of these different types accompanied by finite element-modelling could serve as inspiration for supporting structures in lightweight construction. Citation: Wunnenberg, J.; Rjosk, A.; Keywords: peltate leaves; petiole; petiole–lamina junction; anatomy; strengthening structures Neinhuis, C.; Lautenschläger, T. Strengthening Structures in the Petiole–Lamina Junction of Peltate Leaves. -
Anticancer Drug Discovery — from Serendipity to Rational Design
Chapter 2 Anticancer Drug Discovery — From Serendipity to Rational Design Jolanta Natalia Latosińska and Magdalena Latosińska Additional information is available at the end of the chapter http://dx.doi.org/10.5772/52507 1. Introduction Cancer is nowadays used as a generic term describing a group of about 120 different diseases, which can affect any part of the body and defined as the state characterized by the uncontrolled growth and invasion of normal tissues and spread of cells [1]. According to WHO reports cancer is a leading cause of premature death worldwide, accounting for 7.6 million deaths (around 13% of all deaths) only in 2008 [2]. The deaths from cancer worldwide are projected to continue rising, reaching an estimated 13.1 million in 2030 (WHO 2012). The number of all cancer cases around the world reached 12.7 million in 2008 and is expected to increase to 21 million by 2030. Approximately one in five people before age 75 will suffer from cancer during their lifetime, while one in ten in this age range is predicted to die due to cancer [2]. About 70% of all cancer deaths occurred in low- and middle-income countries. Cancer statistics indicate that most common new cancer cases (excluding common non-melanoma skin cancer) include lung, breast, colorectum, stomach, prostate and liver. These statistics are affected by a few factors including the increase in the number of carcinogens in daily life conditions (food, alcohol, tobacco etc.; high levels of chemicals and pollutants in environment, exposure to UV and ionizing radiation and viruses), genetic disposition [1] but also higher effectiveness of the treatment regimes.