Robert Collins Louisiana Dried Shrimp Co Transcript Edited
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Seafood Watch Seafood Report: Crabs Blue Crab
Seafood Watch Seafood Report: Crabs Volume I Blue Crab Callinectes sapidus Writer/Editor:AliceCascorbi Fisheries Research Analyst Monterey Bay Aquarium Additional Research: Heather Blough Audubon Living Oceans Program Final 14 February 2004 Seafood Watch® Blue Crab Report February 14, 2004 About Seafood Watch® and the Seafood Reports Monterey Bay Aquarium’s Seafood Watch® program evaluates the ecological sustainability of wild-caught and farmed seafood commonly found in the United States marketplace. Seafood Watch® defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long- term without jeopardizing the structure or function of affected ecosystems. Seafood Watch® makes its science-based recommendations available to the public in the form of regional pocket guides that can be downloaded from the Internet (seafoodwatch.org) or obtained from the Seafood Watch® program by emailing [email protected]. The program’s goals are to raise awareness of important ocean conservation issues and empower seafood consumers and businesses to make choices for healthy oceans. Each sustainability recommendation on the regional pocket guides is supported by a Seafood Report. Each report synthesizes and analyzes the most current ecological, fisheries and ecosystem science on a species, then evaluates this information against the program’s conservation ethic to arrive at a recommendation of “Best Choices”, “Good Alternatives” or “Avoid.” The detailed evaluation methodology is available upon request. In producing the Seafood Reports, Seafood Watch® seeks out research published in academic, peer-reviewed journals whenever possible. Other sources of information include government technical publications, fishery management plans and supporting documents, and other scientific reviews of ecological sustainability. -
Mycological Evaluation of Smoked-Dried Fish Sold at Maiduguri Metropolis, Nigeria: Preliminary Findings and Potential Health Implications
Original Article / Orijinal Makale doi: 10.5505/eurjhs.2016.69885 Eur J Health Sci 2016;2(1):5-10 Mycological Evaluation of Smoked-Dried Fish Sold at Maiduguri Metropolis, Nigeria: Preliminary Findings and Potential Health Implications Nijerya’da Maiduguri Metropolis’te satılan tütsülenmiş balıkların mikolojik değerlendirilmesi: Ön bulgular ve sağlığa potansiyel etkileri 1 2 3 Fatima Muhammad Sani , Idris Abdullahi Nasir , Gloria Torhile 1Department of Medical Laboratory Science, College of Medical Sciences University of Maiduguri, Borno State, Nigeria 2Department of Medical Microbiology, University of Abuja Teaching Hospital, Gwagwalada, FCT Abuja, Nigeria 3Department of Medical Microbiology, Federal Teaching Hospital Gombe, Gombe, Nigeria ABSTRACT Background: Smoked-dried fish are largely consumed as source of nutrient by man. It has been established that fish food can act as vehicle for transmission of some mycological pathogens especially in immunocompromised individuals. Methods: Between 7th October 2011 and 5th January 2012, a total of 100 different species of smoke-dried fish comprising 20 each of Cat fish (Arius hendeloti), Tilapia (Oreochromis niloticus), Stock fish (Gadus morhua), Mud fish (Neoxhanna galaxiidae) and Bonga fish (Enthalmosa fimbriota) were processed and investigated for possible fungal contamination based on culture isolation using Sabouraud dextrose agar (SDA) and microscopy. Results: Organisms isolated and identified in pure culture were Mucor spp. (36%), Aspergillus niger (35%), Aspergillus fumigatus (6%), Candida tropicalis (3%), Candida stellatoidea (2%), Microsporum audunii (2%), Penicillium spp. (2%), and Trichophyton rubrum (1%) while Mucor spp. and Aspergillus niger (4%); Mucor spp. and Candida tropicalis (3%); Aspergillus fumigatus and Mucor spp. (1%); Aspergillus niger, Candida spp. and Mucor spp. (1%) were isolated in mixed culture. -
A Report on the Sodium Levels of Salted Dry Fish in Chennai And
The Pharma Innovation Journal 2018; 7(11): 01-04 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 A report on the sodium levels of salted dry fish in TPI 2018; 7(11): 01-04 © 2018 TPI Chennai and recommendations to comply regulation www.thepharmajournal.com Received: 01-09-2018 Accepted: 02-10-2018 A Devi Dharshini, M Latha Mala Priyadharshini, D Baskaran and A Devi Dharshini G Dhinakar Raj College of Food and Dairy Technology, TANUVAS, Abstract Koduveli, Chennai, Tamil Nadu, Regulating the intake of sodium is in need of the hour pertaining to the established health effects of high India sodium consumption. Labeled food products from organized food sectors provide information on sodium M Latha Mala Priyadharshini levels, while in unorganized sector the sodium content of some of the heavily salted food products such Assistant Professor, Vaccine as dry fish goes unnoticed. This report is presented based on the studies from 12 commercial dry fish Research Centre – Bacterial samples collected form Chennai, one of the major sea food export coastal region of India. The samples Vaccine, Centre for Animal were tested for NaCl, sodium and moisture content. The NaCl content was found to be well above 15% in Health Studies, Madhavaram 7 samples, between 10-15% in 2 samples and below 10% in 3 samples. Consequently 9 samples had Milk Colony, Madhavaram, sodium content above 2000 mG/100G and it was evident that NaCl content of more than half the samples Chennai, Tamil Nadu, India was not in compliance with the FSSAI regulations of 10-15% NaCl content by weight of salted dry fish. -
Health Benefits of Eating Fish (Mercury in Fish)
Fish and seafood can provide a valuable, nutritious Fish and seafood with lower mercury and higher addition to a healthy, balanced diet. levels of healthy fatty acids (omega-3) include: anchovy, Atlantic mackerel, blue crab, clam, lake Fish and seafood are good sources of protein, whitefish, mullet, mussel, oyster, Pollock, rainbow omega-3 fatty acids, minerals and vitamins trout, salmon, sardines, smelt, shrimp, and tuna (light, (including vitamin D) that promote healthy hearts, canned). healthy growth, and brain and eye development of infants and children. For further information on mercury in store bought fish and seafood, visit “Mercury in Fish: Questions and Health Canada recommends that all Canadians, Answers” on Health Canada’s website including pregnant women and children, eat at least www.hc-sc.gc.ca. two servings of fish per week to benefit from the nutrients found in fish. Go for variety. Eat a variety of fish and seafood that have lower levels of mercury or other Some fish have higher levels of mercury, a naturally chemicals. Generally smaller type of fish and fish occurring element that can be harmful, especially to that don’t eat other fish tend to have lower infants and unborn children. Limit intake of fish most mercury levels. likely to have higher mercury levels: shark, escolar, orange roughy, swordfish, and fresh or frozen tuna. Prepare fish in a way that maximizes the health benefits. Cook using lower fat preparation Women of childbearing age and children should eat a methods. Baked, broiled, steamed or grilled fish is maximum of two servings of these fish (the size of healthier than fried or deep fried fish. -
Southwest Guide: Your Use to Word
BEST CHOICES GOOD ALTERNATIVES AVOID How to Use This Guide Arctic Char (farmed) Clams (US & Canada wild) Bass: Striped (US gillnet, pound net) Bass (US farmed) Cod: Pacific (Canada & US) Basa/Pangasius/Swai Most of our recommendations, Catfish (US) Crab: Southern King (Argentina) Branzino (Mediterranean farmed) including all eco-certifications, Clams (farmed) Lobster: Spiny (US) Cod: Atlantic (gillnet, longline, trawl) aren’t on this guide. Be sure to Cockles Mahi Mahi (Costa Rica, Ecuador, Cod: Pacific (Japan & Russia) Cod: Pacific (AK) Panama & US longlines) Crab (Asia & Russia) check out SeafoodWatch.org Crab: King, Snow & Tanner (AK) Oysters (US wild) Halibut: Atlantic (wild) for the full list. Lobster: Spiny (Belize, Brazil, Lionfish (US) Sablefish/Black Cod (Canada wild) Honduras & Nicaragua) Lobster: Spiny (Mexico) Salmon: Atlantic (BC & ME farmed) Best Choices Mahi Mahi (Peru & Taiwan) Mussels (farmed) Salmon (CA, OR & WA) Octopus Buy first; they’re well managed Oysters (farmed) Shrimp (Canada & US wild, Ecuador, Orange Roughy and caught or farmed responsibly. Rockfish (AK, CA, OR & WA) Honduras & Thailand farmed) Salmon (Canada Atlantic, Chile, Sablefish/Black Cod (AK) Squid (Chile & Peru) Norway & Scotland) Good Alternatives Salmon (New Zealand) Squid: Jumbo (China) Sharks Buy, but be aware there are Scallops (farmed) Swordfish (US, trolls) Shrimp (other imported sources) Seaweed (farmed) Tilapia (Colombia, Honduras Squid (Argentina, China, India, concerns with how they’re Shrimp (US farmed) Indonesia, Mexico & Taiwan) Indonesia, -
FDA: "Glowing" Seafood?
FDA: "Glowing" Seafood? http://web.archive.org/web/20080225162926/http://vm.cfsan.fda.gov/~ea... U.S. Food and Drug Administration Seafood Products Research Center July 1998 "GLOWING" SEAFOOD? by Patricia N. Sado* Introduction Seafood that produces a bright, blue-green light in the dark could be a meal from outer space or haute cuisine in a science fiction novel. The U. S. Food and Drug Administration (FDA) has received many consumer complaints about various seafood products "glowing" in the dark. Some of these consumers called their local health departments, poison control centers, and their U.S. Senator because they thought they had been poisoned by radiation. These consumers said they had trouble convincing people that their seafood was emitting light. One consumer took his imitation crabmeat to a local television station. Unfortunately his seafood had dried out and did not glow for the television reporters. Several consumers said that it took them many weeks before they found phone numbers for various government agencies to make inquiries. Several consumers thought their "glowing" seafood was due to phosphorescing phytoplankton, or even fluorescence. The consumers' seafood products "glowing" in the dark were not due to radiation or to fluorescence, which requires an ultraviolet light to trigger the reaction. These seafood products exhibited luminescence due to the presence of certain bacteria that are capable of emitting light. Luminescence by bacteria is due to a chemical reaction catalyzed by luciferase, a protein similar to that found in fireflies. The reaction involves oxidation of a reduced flavin mononucleotide and a long chain aliphatic aldehyde by molecular oxygen to produce oxidized flavin plus fatty acid and light (5, 12). -
Mercury in Fish – Background to the Mercury in Fish Advisory Statement
Mercury in fish – Background to the mercury in fish advisory statement (March 2004) Food regulators regularly assess the potential risks associated with the presence of contaminants in the food supply to ensure that, for all sections of the population, these risks are minimised. Food Standards Australia New Zealand (FSANZ) has recently reviewed its risk assessment for mercury in food. The results from this assessment indicate that certain groups, particularly pregnant women, women intending to become pregnant and young children (up to and including 6 years), should limit their consumption of some types of fish in order to control their exposure to mercury. The risk assessment conducted by FSANZ that was published in 2004 used the most recent data and knowledge available at the time. FSANZ intends toreview the advisory statement in the future and will take any new data and scientific evidence into consideration at that time. BENEFITS OF FISH Even though certain types of fish can accumulate higher levels of mercury than others, it is widely recognised that there are considerable nutritional benefits to be derived from the regular consumption of fish. Fish is an excellent source of high biological value protein, is low in saturated fat and contains polyunsaturated fatty acids such as essential omega-3 polyunsaturates. It is also a good source of some vitamins, particularly vitamin D where a 150 g serve of fish will supply around 3 micrograms of vitamin D – about three times the amount of vitamin D in a 10 g serve of margarine. Fish forms a significant component of the Australian diet with approximately 25% of the population consuming fish at least once a week (1995 Australian National Nutrition Survey; McLennan & Podger 1999). -
A Survey in Bacteriological Quality of Traditional Dried Seafood Products Distributed in Chon Buri, Thailand
P-ISSN 2586-9000 E-ISSN 2586-9027 Homepage : https://tci-thaijo.org/index.php/SciTechAsia Science & Technology Asia Vol. 24 No. 4 October - December 2019 Page: [102-114] Original research article A Survey in Bacteriological Quality of Traditional Dried Seafood Products Distributed in Chon Buri, Thailand Subuntith Nimrat1,2,*, Namphueng Butkhot2, Sireeporn Samutsan2, Kittikoon Chotmongcol2, Traimat Boonthai3 and Veerapong Vuthiphandchai4 1Department of Microbiology, Faculty of Science, Burapha University, Chon Buri 20131, Thailand 2Environmental Science Program, Faculty of Science, Burapha University, Chon Buri 20131, Thailand 3Biological Science Program, Faculty of Science, Burapha University, Chon Buri 20131, Thailand 4Department of Aquatic Science, Faculty of Science, Burapha University, Chon Buri 20131, Thailand Received 11 April 2019; Received in revised form 15 July 2019 Accepted 24 July 2019; Available online 31 October 2019 ABSTRACT This study aimed to assess physicochemical and bacteriological qualities of dried seafood products distributed in Chon Buri province, Thailand. Forty-four dried seafood samples were collected from local markets and examined for pH, water activity (aw), salt content, numbers of viable bacteria and halophilic and halotolerant bacteria, numbers of Escherichia coli and Staphylococcus aureus and the presence of Salmonella, Vibrio parahaemolyticus and Vibrio cholerae using a standard protocol. Values of pH, aw and salt content in dried seafood products were 5.16 ± 0.04 – 8.63 ± 0.03, 0.221 ± 0.01 – 0.822 ± 0.02 and 0.28 ± 0.03 – 18.92 ± 0.10%, respectively. Numbers of viable bacteria, and halophilic and halotolerant bacteria were 102 – 109 and 102 – 109 CFU g-1, respectively. Main compositions of total viable bacteria, and halophilic and halotolerant bacteria in dried seafood products were Staphylococcus, Bacillus and Pantoae. -
Mama Nguyen's Bun Rieu Through Annie's Window
Mama Nguyen’s Bun Rieu Through Annie’s Window I am very excited to share this recipe with you all because it is one of my favorite Vietnamese soups - Bun Rieu. The broth in Bun Rieu is tomato-based and mixed in you have crabmeat, shrimp, pork ribs, and fresh cut tomatoes served with rice stick noodles. What makes this soup more special to me is that it is my mom’s recipe, Mama Nguyen’s Bun Rieu. Every Vietnamese house-hold makes this soup differently with unique garnishes. This is how my mom prepares it. Let’s get cooking… Prep Time: 15 minutes Cook Time: 45 minutes Total Time: 1 hour Feed: 3-5 people Appliance: Le Creuset 3 ½ Qt Round Dutch Oven or Medium/Large Pot of choice INGREDIENTS 1 pack of Rice Stick noodles 2 lbs of sliced pork ribs 1 lb ground pork 1 lb shrimp 3 whole sliced tomatoes 6 whole minced garlic 1 whole minced shallots 1 pack fried tofu 2 tbsp fish sauce 1 canned crabmeat or fresh crabmeat 1 jar of crab paste 2 cubes of bun rieu soup seasoning ½ bag of dried small shrimp 1 tbsp rock sugar 2 egg 2 tbsp kosher salt INSTRUCTIONS 1. Using your medium or large size pot, filled with water half way and bring to a boil, add your rice stick noodles to cook for about 10-12 minutes until it is cooked through. Drain rice sticks, strain with cold water and let it sit to dry. 2. Using the same pot add water halfway and add your sliced pork ribs on medium high and cook for about 5 minutes. -
Pan Roasts Gumbo Chilled Seafood Steamers Starters
CHILLED SEAFOOD HOUSE FAVORITES WINE OYSTERS ON THE HALF SHELL* GOLD BAND OYSTERS FISH AND CHIPS 19.99 TAIL ON LOUP DE MER, SALT AND BUBBLES GLASS BOTTLE 12.99 (1/2 DOZEN) 19.99 (DOZEN) VINEGAR “CHIPS”, LEMON DILL TARTAR, AND CREOLE KORBEL (187ML) 10 SPECIALTY OYSTERS REMOULADE MOSCATO, VILLA M ROSSO, 9 36 14.99 (1/2 DOZEN) 25.99 (DOZEN) PIEMONTE, ITALY NEW ZEALAND MUSSELS CIOPPINO 21.99 A HEARTY FISHERMAN’S STEW COOKED WITH LIGHT & REFRESHING ON THE HALF SHELL 16.99 (DOZEN) SHRIMP, CRAB, COD, MUSSELS, AND CLAMS. WHITE WINE PAN ROASTS SERVED WITH STEAMED RICE PINOT GRIGIO, 13 52 A LOCAL’S FAVORITE! A CREAMY TOMATO SHRIMP COCKTAIL 12.99 STEW COOKED WITH YOUR CHOICE OF SEAFOOD, AND SANTA MARGHERITA, LINGUINE SHRIMP SCAMPI 17.99 ALTO ADIGE, ITALY FINISHED WITH A HINT OF BRANDY. LUMP CRAB COCKTAIL 15.99 SERVED WITH STEAMED RICE CHOICE OF RED OR WHITE SAUCE PINOT GRIGIO, 7 28 TRINITY OAKS, CA ALASKAN KING CRAB LEGS 51.99 1 1/2 LBS, SERVED CHILLED COMBO PAN ROAST 23.99 NEW ENGLAND LOBSTER ROLL 19.99 RIESLING, 7 28 SHRIMP, CRAB, AND LOBSTER TENDER LOBSTER SALAD PILED INTO CHATEAU STE MICHELLE OUR TOASTED NEW ENGLAND STYLE BUN, HARVEST SELECT, WA SEAFOOD JACKPOT* SERVED WITH FRIES CRAB PAN ROAST 20.99 SAUVIGNON BLANC, 8 32 ASSORTMENT OF CHILLED SHRIMP COCKTAIL, KENDALL-JACKSON, AVANT, CA GOLD BAND OYSTERS, NEW ZEALAND MUSSELS, SEAFOOD JAMBALAYA 22.99 AND LOBSTER TAIL SHRIMP PAN ROAST 19.99 SAUVIGNON BLANC, 9 36 SMALL 24.99 LARGE 49.99 SHRIMP, CRAB, LOBSTER, ANDOUILLE KIM CRAWFORD, SAUSAGE, MUSSELS, AND CLAMS BRAISED MARLBOROUGH, NEW ZEALAND LOBSTER PAN ROAST 24.99 WITH RICE AND CREOLE SPICES BOUILLABAISSE 24.99 CHARDONNAY STEAMERS KITCHEN SINK PAN ROAST 21.99 SERVED WITH A GARLIC HERB BROTH PROVENCAL STYLE SHELLFISH STEW SHRIMP, CRAB, CHICKEN, AND BERINGER, CA 7 28 WITH LEMON, AND WHITE WINE FEATURING SHRIMP, CRAB, LOBSTER, ANDOUILLE SAUSAGE COD, MUSSELS, AND CLAMS. -
Bun Rieu Ingredients.Pdf
Bun Rieu Ingredients (4-6) 1 package of dried Vermicelli (Cooked) 1 cup of crab meat or 3 boiled crabs (peeled) 1 cup of crab paste 1 lb of ground pork 1 lb of fried TOFU 3 eggs 2 lbs of pork bone or pork ribs ½ lb Shrimp peeled and deveined ½ lb of dried shrimp Whole garlic (minced) 6 roma tomatoes (sliced in quarter) 3-4 tablespoon of fish sauce 2 tablespoon sugar 1 tablespoon salt 2 tablespoon ANNATO SEED OIL (for coloring or 3 tablespoon tomato paste) Instructions: Put the pork into a large soup pan. Cover the pork with water until it just covers the pork. Bring the water to a boil. Once the water boils, take out the pork pieces and set aside. Pour out the water. Transfer the pork back into the soup pan and cover it with fresh water. This process will help to clean the pork and produce a clear broth. Add in the onion, dried shrimp, and the salt. Bring the water to a boil. Reduce to low heat and simmer the soup for an hour and a half. While the soup is simmering, combine the scallions, and oil in a pan. Cook for 20 seconds and set aside. Watch the scallions carefully because they burn easily. Once the soup has simmered for an hour and a half, add this mixture to the soup with the tomatoes. This mixture and the tomatoes will help give the soup its signature red color. Simmer for another 30 minutes. As the soup is simmering, combine the eggs and crab paste in a small bowl. -
The Effects of Different Raw Materials and Gel Forming Conditions on The
unuftp.is Final project 2015 THE EFFECTS OF DIFFERENT RAW MATERIALS AND GEL FORMING CONDITIONS ON THE QUALITY OF FISH CAKES FROM MINCED REDFISH Tran Thi Huyen Faculty of Food Technology, Nha Trang University 02 Nguyen Dinh Chieu, Nha Trang, Vietnam [email protected] Supervisors: Sigurjon Arason University of Iceland and Matis, Iceland [email protected] Paulina Elzbieta Wasik Matis, Iceland [email protected] ABSTRACT Nowadays, fish cakes are not only popular products in Asian markets but also consumed widely in many countries in the world. Shortage of fresh fish for producing fish cakes has been a great concern of producers. This study aimed to evaluate quality of fish cakes prepared from fresh redfish mince (January 2016), 1-month old frozen redfish mince (December 2015) and 6- month-old frozen redfish mince (July 2015) and in forming conditions of chilled temperature (0 – 4 °C) and room temperature (18 - 20°C) during 4 weeks under chilled storage. The sampling points were 0, 2 and 4 weeks. Results indicated that there were no significant differences in sensory scores, pH, breaking force, hardness of fish cakes made from fresh redfish mince compared to those made from frozen redfish mince. Shear force of fish cake made from fresh mince was higher than that from frozen mince. The different forming conditions did not cause changes in colour, pH, and lipid compounds of fish cakes (with an exception for TBARS value). Forming at 18 – 20 °C brought higher breaking force and shear force of fish cakes than those formed at 0 – 4 °C. Breaking force and hardness increased after second week of storage.