Modeling the Effect of Ion-Induced Shock Waves and DNA Breakage

Total Page:16

File Type:pdf, Size:1020Kb

Modeling the Effect of Ion-Induced Shock Waves and DNA Breakage Modeling the effect of ion-induced shock waves and DNA breakage with the reactive CHARMM force field Ida Friis,1 Alexey V. Verkhovtsev,2, ∗ Ilia A. Solov’yov,3, ∗ and Andrey V. Solov’yov2, ∗ 1Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark 2MBN Research Center, Altenh¨oferallee 3, 60438 Frankfurt am Main, Germany 3Department of Physics, Carl von Ossietzky Universit¨at Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany Ion-induced DNA damage is an important effect underlying ion beam cancer therapy. This paper introduces the methodology of modeling DNA damage induced by a shock wave caused by a projectile ion. Specifically it is demonstrated how single- and double strand breaks in a DNA molecule could be described by the reactive CHARMM (rCHARMM) force field implemented in the program MBN Explorer. The entire work flow of performing the shock wave simulations, including obtaining the crucial simulation parameters, is described in seven steps. Two exemplary analyses are provided for a case study simulation serving to: (i) quantify the shock wave propagation, and (ii) describe the dynamics of formation of DNA breaks. The paper concludes by discussing the computational cost of the simulations and revealing the possible maximal computational time for different simulation setups. I. INTRODUCTION changes of their topology and molecular composition [9, 11, 12]. It takes into account additional parameters Classical molecular dynamics (MD) enables studying of the system, such as bond dissociation energy, bond of structure and dynamics of biological systems and inor- order and the valence of atoms. The functional form ganic materials, nowadays constituting of up to 106 108 of interatomic interactions is also adjusted to account atoms, on the nanosecond time scale [1]. In biological− for the finite dissociation energy of the chemical bonds systems, which are in focus of this work, the interac- [9]. The rCHARMM force field is particularly applicable tion between constituent atoms in such systems is com- for simulating irradiation- and collision-induced damage monly described through empirical molecular mechanics phenomena where breaking of chemical bonds plays an force fields, for example, CHARMM [2, 3] or AMBER [4], essential role. It was used previously to study thermal which are governed by the type of individual atoms and splitting of water [9], ion-induced water radiochemistry by the network of chemical bonds between them. Being [13], collision-induced fusion and fragmentation of C60 based on harmonic potentials, such force fields are well fullerenes [14], irradiation-induced fragmentation of an suited for modeling non-reactive conformational changes organometallic compound W(CO)6 [15] as well as the in (bio)molecular systems, but cannot be used to sim- formation and growth of metal nanostructures in the ulate processes of breaking and formation of chemical process of focused electron beam induced deposition bonds which involve changes in atom connectivity. Re- [12]. active force fields can overcome this limitation and enable This paper reports the first application of rCHARMM simulation of chemical reactions in large systems which for modelling chemical transformations in complex bio- cannot be simulated by ab initio methods. Well-known logical systems. The number of systems and phenomena examples of reactive force fields are ReaxFF [5, 6] and that can be studied using this approach is very large and reactive empirical bond-order (REBO) potentials [7, 8]. cannot be described in one paper. Therefore we focus In both approaches, the interatomic potential describes here on an exemplar case study and apply rCHARMM reactive events through a bond-order formalism where to simulate an important effect arising when an ion pro- jectile propagates through a biological medium, namely arXiv:2107.03736v1 [physics.bio-ph] 8 Jul 2021 bond order is empirically calculated from interatomic dis- tances. thermomechanical damage of a DNA molecule by an ion- Recently, the so-called reactive CHARMM induced shock wave. Understanding radiation effects pro- (rCHARMM) force field [9] was introduced and duced by charged projectiles traversing biological media implemented in the MBN Explorer software pack- is of utmost importance for radiotherapy with ion beams age [10]. Being an important extension of the standard [16, 17] and space radiation protection [18]. Since mod- CHARMM force field [2, 3], rCHARMM permits classical eling of chemical transformations in DNA (and other MD simulations of a large variety of molecular systems complex biomolecular systems) involves many different experiencing chemical transformations whilst monitoring technical and computational aspects, we present a de- tailed methodology for modeling such effects by means of rCHARMM. The formation of ion-induced shock waves on the ∗ On leave from Ioffe Institute, Polytekhnicheskaya 26, 194021 St. nanometer scale was predicted theoretically [19] and Petersburg, Russia studied computationally in a series of subsequent works 2 [13, 20–23]. Ions traversing a biological medium can de- caused by the propagation of different ions through vari- posit large amounts of energy per unit path length and ous media. It is also demonstrated how other important most of this energy is used to ionize water molecules observables, such as the number of molecular fragments and eject low-energy (below 50 eV) secondary electrons created by the shock wave impact on the speed of shock [24]. Most of these electrons transfer their energy to elec- wave propagation in the medium, can be derived from the tronic excitations of the medium in less than a nanome- simulations. This analysis is important for understanding ter on a femtosecond time scale [25]. This time is much the radiation damage with ions on a quantitative level, shorter than the typical time for energy dissipation via focusing on particular physical, chemical, and biological the electron-phonon coupling mechanism, which occurs effects that bring about lethal damage to cells exposed on a few picosecond timescale [25]. As a result, the to ion beams [24, 33, 34]. The methodology described medium in a nanometer-size cylinder around the ion in the present paper can be applied in further computa- track is strongly heated thus providing conditions for a tional studies considering irradiation of DNA with differ- “strong cylindrical explosion”. This creates a discontinu- ent ions and different orientations between the ion’s path ity in the initial conditions for pressure that starts prop- and the DNA molecule. agating in the radial direction away from the ion path. This propagation also features discontinuities in density and collective flow velocity and is referred to as a shock wave [26, 27]. II. METHODOLOGY Two possible effects of ion-induced shock waves in the radiation damage scenario have been suggested [20]. The first is related to direct DNA damage (such as the cre- Computational modeling of an ion-induced shock wave ation of DNA strand breaks) by thermomechanical stress hitting DNA in an aqueous environment is a multi- [20, 21, 28–30]. The other effect is the significant role step process. The simulations rely in particular on the of shock waves in transporting reactive species (such as rCHARMM force field [9, 12], and in this section, details hydroxyl radicals and solvated electrons) due to radial are provided for every step that is required to successfully collective flows initiated by them [13, 25]. perform simulations. Earlier MD studies [20, 21, 28] of possible bond break- age in DNA by ion-induced shock waves were done using the standard CHARMM force field. In these non-reactive simulations, the potential energy stored in a certain DNA A. Construction of the system (step 1) bond was monitored in time as its length varies around its equilibrium distance [20, 21]. When the potential en- The study of a shock wave damaging DNA can be ergy of the bond exceeded a given threshold (which is performed on different systems, but it is most natu- about 3 to 6 eV for covalent bonds in the DNA backbone ral here to consider a generic piece of DNA in a wa- [31]), the bond was considered as broken. ter box. Thus, the system is made from three joined A deeper understanding of the shock wave induced DNA molecules (PDB-ID 309D [35]) with the sequence DNA damage requires a more systematic approach im- (CGACGATCGT) which corresponds to the sequence plying the use of reactive force fields. Such considera- (GCTGCTAGCA) in the complementary strand. For the tion involves the following aspects. First, a stable DNA sake of simplicity, the DNA molecule is placed in a pure structure should be constructed. Second, the force field water box representing the biological medium. The box describing the rupture of covalent bonds in the DNA (or extends 17 nm from the DNA to the edge of the water at least in a specific part of it, e.g. in the backbone) box in the x- and y-directions, as illustrated in Fig. 1A. must be developed. Finally, the process of shock wave The dimensions of the water box are chosen here con- formation and propagation through a molecular medium sistently with previous studies [21], where it was shown should be simulated. Details of the whole computational that a size of 17 nm is sufficient to simulate propaga- protocol and interlinks between its constituent parts are tion of a shock wave generated by a carbon or iron ion presented and discussed in this paper. The methodol- on the timescale of approximately 10 ps. To neutralize ogy reported here represents an alternative approach to the system, one sodium ion is placed for every phosphate other methods (such as ReaxFF [6, 30, 32]) enabling sim- group in the DNA to ensure a charge neutrality of the ulations of bond breakage and formation within the MD entire system. The total system size is 1,010,994 atoms framework.
Recommended publications
  • A Survey of Some Empirical and Semiempirical Interatomic And
    ui avaiiuai'ua , iuxicu. DUi;au rcererence door; noTto Library, N.W. Bldg D8 taken fr NBS TECHNICAL 246 A Survey of Some Empirical and Semi-Empirical Interatomic SI and Intermolecular Potentials i§ BENJAMIN M. AXILROD or KtHt /T \ U.S. DEPARTMENT OF COMMERCE >rV z *& National Bureau of Standards o \ ^CAU Of * IS — THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards 1 provides measurement and technical information services essential to the efficiency and effectiveness of the work of the Nation's scientists and engineers. The Bureau serves also as a focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To accomplish this mission, the Bureau is organized into three institutes covering broad program areas of research and services: THE INSTITUTE FOR BASIC STANDARDS . provides the central basis within the United States for a complete and consistent system of physical measurements, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. This Institute comprises a series of divisions, each serving a classical subject matter area: —Applied Mathematics—Electricity—Metrology—Mechanics —Heat—Atomic Physics—Physical Chemistry—Radiation Physics—Laboratory Astrophysics 2—Radio Standards Laboratory, 2 which includes Radio Standards Physics and Radio Standards Engineering—Office of Standard Refer- ence Data. THE INSTITUTE FOR MATERIALS RESEARCH . conducts materials research and provides associated materials services including mainly reference materials and data on the properties of ma- terials.
    [Show full text]
  • Interatomic Potentials
    Interatomic Potentials Dorothy Duffy October 2020 1 Introduction Interatomic potentials, also commonly referred to as forcefields, are widely used in the materials modelling community for simulating processes and calculating structural properties. They have been employed for several decades in a range of modelling methods, including molecular dynamics, Monte Carlo and, more recently, in rare event methods, such umbrella sampling and metadynamics, discussed in previous lectures of this course. The primary reasons for the popularity and success of methods employing in- teratomic potentials are their computational efficiency. Simulations of hundreds of millions of atoms are now commonplace and molecular dynamics timescales of tens of nanoseconds, or even microseconds, are achievable on high perfor- mance computing platforms. Extending simulation length and time scales is a universal aim of materials modellers, as they endeavor to close the gap between modelling and experiment. The main disadvantage with employing interatomic potentials is, of course, that the results are sensitive to the model. While this is true to some extent for density functional theory calculations, the sensitivity to the model is much stronger in interatomic potential methods. A second significant limitation is that the methods provide no information about electronic structure, therefore calculations of electronic properties, such as band gaps, are inaccessible. Nev- ertheless, carefully parameterised potentials are an invaluable tool for exploring time and length scale
    [Show full text]
  • Unifying Interatomic Potential, G (R), Elasticity, Viscosity, and Fragility of Metallic Glasses: Analytical Model, Simulations, and Experiments
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Home Search Collections Journals About Contact us My IOPscience Unifying interatomic potential, g (r), elasticity, viscosity, and fragility of metallic glasses: analytical model, simulations, and experiments This content has been downloaded from IOPscience. Please scroll down to see the full text. J. Stat. Mech. (2016) 084001 (http://iopscience.iop.org/1742-5468/2016/8/084001) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 131.111.184.102 This content was downloaded on 02/11/2016 at 17:59 Please note that terms and conditions apply. You may also be interested in: Relaxation and physical aging in network glasses: a review Matthieu Micoulaut Computer simulations of glasses: the potential energy landscape Zamaan Raza, Björn Alling and Igor A Abrikosov Length scales in glass-forming liquids and related systems: a review Smarajit Karmakar, Chandan Dasgupta and Srikanth Sastry Dynamical and structural signatures of the glass transition in emulsions Chi Zhang, Nicoletta Gnan, Thomas G Mason et al. Localization model description of diffusion and structural relaxation in glass-forming Cu–Zr alloys Jack F Douglas, Beatriz A Pazmino Betancourt, Xuhang Tong et al. Models of the glass transition J Jackle Exploring the potential energy landscape of glass-forming systems: from inherent structuresvia metabasins to macroscopic transport Andreas Heuer IOP Journal of Statistical Mechanics: Theory and Experiment J. Stat. Mech. 2016 ournal of Statistical Mechanics: Theory and Experiment 2016 J © 2016 IOP Publishing Ltd and SISSA Medialab srl Special Issue on Structure in Glassy and Jammed Systems JSMTC6 Unifying interatomic potential, g r , 084001 ( ) elasticity, viscosity, and fragility of A E Lagogianni et al metallic glasses: analytical model, Mech.
    [Show full text]
  • Machine Learning a General-Purpose Interatomic Potential for Silicon
    PHYSICAL REVIEW X 8, 041048 (2018) Machine Learning a General-Purpose Interatomic Potential for Silicon Albert P. Bartók Scientific Computing Department, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, OX11 0QX, United Kingdom James Kermode Warwick Centre for Predictive Modelling, School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom Noam Bernstein Center for Materials Physics and Technology, U.S. Naval Research Laboratory, Washington, D.C. 20375, USA Gábor Csányi Engineering Laboratory, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom (Received 26 May 2018; revised manuscript received 11 October 2018; published 14 December 2018) The success of first-principles electronic-structure calculation for predictive modeling in chemistry, solid-state physics, and materials science is constrained by the limitations on simulated length scales and timescales due to the computational cost and its scaling. Techniques based on machine-learning ideas for interpolating the Born-Oppenheimer potential energy surface without explicitly describing electrons have recently shown great promise, but accurately and efficiently fitting the physically relevant space of configurations remains a challenging goal. Here, we present a Gaussian approximation potential for silicon that achieves this milestone, accurately reproducing density-functional-theory reference results for a wide range of observable properties, including crystal, liquid, and amorphous bulk phases, as well as point, line, and plane defects. We demonstrate that this new potential enables calculations such as finite-temperature phase-boundary lines, self-diffusivity in the liquid, formation of the amorphous by slow quench, and dynamic brittle fracture, all of which are very expensive with a first-principles method. We show that the uncertainty quantification inherent to the Gaussian process regression framework gives a qualitative estimate of the potential’s accuracy for a given atomic configuration.
    [Show full text]
  • Simulations of the Structure and Properties of Amorphous Silica
    Chemical Engineering Science 56 (2001) 4205–4216 www.elsevier.com/locate/ces Simulations of the structure andproperties of amorphous silica surfaces Jeanette M. Stallons, Enrique Iglesia ∗ Department of Chemical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA Received10 December 1999; accepted26 December 2000 Abstract The structure andtransport properties of solidsurfaces have been describedusingmodelsof varying complexity andrigor without systematic comparisons among available methods. Here, we describe the surface of amorphous silica using four techniques: (1) an orderedsurfacecreatedby cutting the structure of a known silica polymorph ( -cristobalite); (2) an unrelaxedamorphous surface obtainedby cutting bulk amorphous silica structures createdby molecular dynamicsmethods;(3) a relaxedamorphous surface createdby relaxing the amorphous surface; and(4) a randomsurface createdby Monte Carlo sphere packing methods. Calculations of the adsorption potential surface and simulation of the surface di4usion of weakly bound adsorbates (N2, Ar, CH4) interacting via Lennard–Jones potentials with these surfaces were used to compare surface models and to judge their ÿdelity by comparisons with available experimental values. Similar heats of adsorption were obtained on the relaxed, unrelaxed, and random surfaces (±0:5kJ=mol), but the relaxed surface showed greater heterogeneity with a wider distribution of adsorption energies. Surface di4usion on the relaxed surface was slower than on the other surfaces, with slightly higher activation energies (0:5–1:0kJ=mol). Rigorous comparisons between simulatedandexperimental surface di4usivitiesare not possible, because of scarce surface di4usion data on well-characterized surfaces. The values obtained from simulations on silica were similar to experimental surface di4usivities reported on borosilicate glasses. ? 2001 Publishedby Elsevier Science Ltd. Keywords: Porous media; Simulation; Transport processes; Di4usion; Surface di4usion; Adsorption 1.
    [Show full text]
  • Disentangling Interatomic Repulsion and Anharmonicity in the Viscosity and Fragility of Glasses
    Disentangling interatomic repulsion and anharmonicity in the viscosity and fragility of glasses J. Krausser,1 A. E. Lagogianni,2 K. Samwer,2 and A. Zaccone1, 3 1Statistical Physics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, CB2 3RA Cambridge, U.K. 2I. Physikalisches Institut, Universit¨atG¨ottingen, Friedrich-Hund-Platz 1, 37077 G¨ottingen,Germany 3Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, U.K. (Dated: February 22, 2017) Within the shoving model of the glass transition, the relaxation time and the viscosity are related to the local cage rigidity. This approach can be extended down to the atomic-level in terms of the interatomic interaction, or potential of mean-force. We applied this approach to both real metallic glass-formers and model Lennard-Jones glasses. The main outcome of this analysis is that in metallic glasses the thermal expansion contribution is mostly independent of composition and is uncorrelated with the interatomic repulsion: as a consequence, the fragility increases upon increasing the interatomic repulsion steepness. In the Lennard-Jones glasses, the scenario is opposite: thermal expansion and interatomic repulsion contributions are strongly correlated, and the fragility decreases upon increasing the repulsion steepness. This framework allows one to tell apart systems where "soft atoms make strong glasses" from those where, instead, "soft atoms make fragile glasses". Hence, it opens up the way for the rational, atomistic tuning of the fragility and viscosity of widely different glass-forming materials all the way from strong to fragile. I. INTRODUCTION fundamental observation in terms of the underlying microstructure, dynamics and interaction picture.
    [Show full text]
  • Development of Interatomic Potentials in the Tersoff-Albe Formalism For
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto M.Sc. thesis Computational physics Development of interatomic potentials in the Tersoff-Albe formalism for metal compounds Jesper Byggmästar 2016 Supervisors: Morten Nagel Krister Henriksson Examiners: Krister Henriksson Kai Nordlund UNIVERSITY OF HELSINKI DEPARTMENT OF PHYSICS PL 64 (Gustaf Hällströmin katu 2) 00014 Helsingin yliopisto HELSINGIN YLIOPISTO | HELSINGFORS UNIVERSITET | UNIVERSITY OF HELSINKI Tiedekunta/Osasto | Fakultet/Sektion | Faculty Laitos | Institution | Department Faculty of Science Department of Physics Tekij¨a | F¨orfattare | Author Jesper Byggm¨astar Ty¨on nimi | Arbetets titel | Title Development of interatomic potentials in the Tersoff-Albe formalism for metal compounds Oppiaine | L¨aro¨amne | Subject Fysik Ty¨on laji | Arbetets art | Level Aika | Datum | Month and year Sivum¨a¨ar¨a | Sidoantal | Number of pages M.Sc. 08/2016 57 Tiivistelm¨a | Referat | Abstract Interatomic potentials are used to describe the motion of the individual atoms in atomistic simula- tions. An accurate treatment of the interatomic forces in a system of atoms requires heavy quantum mechanical calculations, which are not computationally feasible in large-scale simulations. Intera- tomic potentials are computationally more efficient analytical functions used for calculating the potential energy of a system of atoms, allowing simulations of larger systems or longer time scales than in quantum mechanical simulations. The interatomic potential functions must be fitted to known properties of the material the poten- tial describes. Developing a potential for a specific material typically involves fitting a number of parameters included in the functional form, against a database of important material properties, such as cohesive, structural, and elastic properties of the relevant crystal structures.
    [Show full text]
  • MBN Explorer Users' Guide
    Ilia A. Solov’yov, Gennady Sushko and Andrey V. Solov’yov MBN Explorer Users’ Guide Version 3.0 Ilia A. Solov'yov Department of Physics, Chemistry and Pharmacy University of Southern Denamrk Odense, Denmark Gennady Sushko MBN Research Center gGmbH Frankfurt, Germany Andrey V. Solov'yov MBN Research Center gGmbH Frankfurt, Germany MesoBioNano Science Publishing ⃝c MBN Research Center gGmbH 2017. All rights reserved. This book is subject to a copyright agreement, where the Publisher reserves the rights of translation, copying, reprinting, advertising and reproduction of the whole book or its parts by physical, electronic or similar methodology developed by today or hereafter. The use of specic and general terms, abbreviates, descriptive and registered names, trade and service marks, included in this book does not imply that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The responsibility to inquire about such possibility is with the individual customer. The information provided in this book is true and accurate to the best knowledge of the publisher and the authors at the date of the publication. The publisher and the authors do not provide any warranty with respect to the material contained in this book or for any error or omissions that may have been made. The publisher and the authors do not take responsibility for any damages related to the use of the material contained in this book. The publisher remains neutral with regard to any jurisdictional claims in published maps and institutional aliations. The registered company is MBN Research Center gGmbH. The company address is Altenhöferallee 3, 60438 Frankfurt am Main, Germany.
    [Show full text]
  • Development of Embedded Atom Method Interatomic Potentials for Ge-Sn-Si Ternary and Constituent Binary Alloys for Modeling Material Crystallization
    DEVELOPMENT OF EMBEDDED ATOM METHOD INTERATOMIC POTENTIALS FOR GE-SN-SI TERNARY AND CONSTITUENT BINARY ALLOYS FOR MODELING MATERIAL CRYSTALLIZATION A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By SUDIP ACHARYA B.S., Tribhuvan University, Nepal, 2017 2020 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL July 30, 2020 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Sudip Acharya ENTITLED “Development of Embedded Atom Method Interatomic Potentials for Ge-Sn-Si Ternary and Constituent Binary Alloys for Modeling Material Crystallization” BE ACCEPTED IMPARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. _________________________________ Amit Sharma, Ph. D. Thesis Advisor _________________________________ Jason Deibel, Ph.D. Chair, Department of Physics Final Examination Committee _________________________________ Amit Sharma, Ph. D. _________________________________ Brent D. Foy, Ph. D. _________________________________ Sarah F. Tebbens, Ph. D. __________________________________ Barry Milligan, Ph. D. Interim Dean of the Graduate School Abstract Acharya, Sudip. M.S. Department of Physics, Wright State University, 2020. Development of Embedded Atom Method Interatomic Potentials for Ge-Sn-Si Ternary and Constituent Binary Alloys for Modeling Material Crystallization. Group IV elements based nanoelectronics devices (mainly Si and Ge based devices) have been developed and improved over a long period of time and are the most influencing
    [Show full text]
  • Hybrid Bond-Order Potential for Silicon Suleiman Oloriegbe Clemson University, [email protected]
    Clemson University TigerPrints All Dissertations Dissertations 12-2008 Hybrid Bond-Order Potential for Silicon Suleiman Oloriegbe Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Physical Chemistry Commons Recommended Citation Oloriegbe, Suleiman, "Hybrid Bond-Order Potential for Silicon" (2008). All Dissertations. 328. https://tigerprints.clemson.edu/all_dissertations/328 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. HYBRID BOND-ORDER POTENTIAL FOR SILICON _____________________________________ A Dissertation Presented to the Graduate School of Clemson University ___________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Chemistry _____________________________________ by Suleiman Yahaya Oloriegbe December 2008 _____________________________________ Accepted by: Dr. Steven J. Stuart, Committee Chair Dr. Brian Dominy Dr. Jason McNeill Dr. Robert Latour ABSTRACT A new hybrid bond-order potential for silicon is developed. The functional form of the potential is derived from hybrid of expressions from empirical bond-order formalism and first principles approximations. The total energy is expressed as the sum of attractive, repulsive and promotion energies. By introducing a screening function derived from approximations to first principles expressions, the potential is made long-ranged by allowing covalent interactions beyond the first nearest neighbor shell of atoms in agreement with quantum mechanical descriptions of the bonding in silicon. Environment- dependent promotion energy is introduced that accurately accounts for energetic interactions due to changes in hybridization state of atoms during chemical bonding.
    [Show full text]
  • Bond Order Potentials for Covalent Elements
    Bond order potentials for covalent elements. This chapter will be dedicated to a short history of the so called \bond order" potentials [1, 2, 3, 4, 5, 6, 7] (BOPs), that represent an interesting class of the rather scattered family of analytic potentials. Analytic interatomic potentials (sometimes referred to as empirical, semi-empirical or clas- sical potentials) are used for a variety of purposes, ranging from the estimation of minimum energy structures for surface reconstruction, grain boundaries or related defects, to the descrip- tion of the liquid structure. All analytic potentials are de¯ned through a functional form of the interatomic interactions, whose parameters are ¯tted to a selected database. According to Brenner [8], an analytic potential needs to be: ² Flexible: the function should be flexible enough to accommodate the inclusion of a relatively wide range of structures in a ¯tting database. ² Accurate: the potential function must be able to accurately reproduce quantities such energies, bond lengths, elastic constant, and related properties entering a ¯tting database. ² Transferable: the functional form of the potential should be able to reproduce related prop- erties that are not included in the ¯tting database. In practise the potential should be able to give a good description of the energy landscape for any possible realistic con¯guration characterized by the set of atomic positions frig. ² Computationally e±cient: the function should be of such a form that it is tractable for a desired calculation, given the available computing resources. We note that one of the paradigms that has led science through its development, i.e. the Occam razor (\Entities should not be multiplied beyond necessity"), is not mentioned here.
    [Show full text]
  • Atomic-Scale Expressions for Viscosity and Fragile-Strong Behavior in Metal Alloys Based on the Zwanzig-Mountain Formula
    PHYSICAL REVIEW RESEARCH 2, 033134 (2020) Atomic-scale expressions for viscosity and fragile-strong behavior in metal alloys based on the Zwanzig-Mountain formula G. Chevallard,1 K. Samwer,2 and A. Zaccone 1,3 1Department of Physics “A. Pontremoli,” University of Milan, via Celoria 16, 20133 Milan, Italy 2I. Physikalisches Institut, Universität Göttingen, D-37077 Göttingen, Germany 3Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom (Received 12 May 2020; revised 23 June 2020; accepted 30 June 2020; published 24 July 2020) We combine the shoving model of T -dependent viscosity of supercooled liquids with the Zwanzig-Mountain formula for the high-frequency shear modulus using the g(r) of molecular dynamics simulations of metal alloys as the input. This scheme leads to a semianalytical expression for the viscosity as a function of temperature, which provides a three-parameter model fitting of experimental data of viscosity for the same alloy for which g(r) was calculated. The model provides direct access to the influence of atomic-scale physical quantities such as the interatomic potential φ(r) on the viscosity and fragile-strong behavior. In particular, it is established that a steeper interatomic repulsion leads to fragile liquids, or, conversely, that “soft atoms make strong liquids.” DOI: 10.1103/PhysRevResearch.2.033134 I. INTRODUCTION the activation energy is expressed via the product of the high-frequency shear modulus of the liquid and an activation Different views of the glass transition have led to quite volume, which follows from the analysis of the work done by different descriptions of the viscosity of supercooled liquids.
    [Show full text]