Nanoscale Organization of the Small Gtpase Rac1

Total Page:16

File Type:pdf, Size:1020Kb

Nanoscale Organization of the Small Gtpase Rac1 The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2018 Nanoscale Organization of the Small GTPase Rac1 Kelsey Maxwell Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Biochemistry Commons, Biophysics Commons, Medicine and Health Sciences Commons, and the Molecular Biology Commons Recommended Citation Maxwell, Kelsey, "Nanoscale Organization of the Small GTPase Rac1" (2018). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 851. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/851 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. NANOSCALE ORGANIZATION OF THE SMALL GTPASE RAC1 Approval Page by Kelsey Maxwell, B.S. APPROVED: _______________________________ John F. Hancock, M.A., M.B., B.Chir., Ph.D. Advisory ProFessor _______________________________ JeFFrey A. Frost, Ph.D. _______________________________ Alemayehu A. Gorfe, Ph.D. _______________________________ Kartik Venkatachalam, Ph.D. _______________________________ Darren F. Boehning, Ph.D. APPROVED: _______________________________ Dean, The University oF Texas MD AnDerson Cancer Center UTHealth GraDuate School oF BiomeDical Sciences NANOSCALE ORGANIZATION OF THE SMALL GTPASE RAC1 A DISSERTATION PresenteD to the Faculty oF The University oF Texas MD AnDerson Cancer Center UTHealth GraDuate School oF BiomeDical Sciences in Partial FulFillment oF the Requirements For the Degree oF DOCTOR OF PHILOSOPHY by Kelsey Nicole Maxwell, B.S. Houston, TX May 2018 Title Page Dedication To Matty, Mom, DaD, AmanDa anD William iii Acknowledgements I woulD like to thank my aDvisor, Dr. John Hancock, For his continueD guiDance anD support through my training. There are many challenges on the roaD toward a PhD— FaileD experiments, DeFining positive anD negative controls, and coming up with new ideas—to name a Few. I am a better scientist because oF his leaDership through these challenges anD more. I woulD also like to speciFically acknowleDge two others in our lab who have proviDeD many hours oF guiDance. First, Dr. Yong Zhou, who has been instrumental to the Development oF this project. Dr. Zhou has given many hours to brainstorming sessions, answering enDless questions, anD eDiting over the last six years. SeconD, Dr. Jin Cho, For not only helping me with technical aspects For possibly every experiment I ever laiD hanDs on but, more importantly, For simply being an encouraging FrienD. I woulD like to speciFically thank the members oF my aDvisory committee: Dr. Alemayehu Gorfe, Dr. JeFF Frost, Dr. Kartik Venkatachalam, Dr. John Putkey, anD Dr. Darren Boehning: thank you For caring about me, this project, anD For all oF your creative iDeas that maDe this work what it is toDay. Thank you also to the Faculty anD staFF oF the Department oF Integrative Biology anD Pharmacology For their open Doors, training, anD support. To Xiaoping Ma, Wei Chen, anD Hong Liang, thank you For helping me with so many experiments, always encouraging me, anD For all the canDies. The lab woulD Fall apart without you. To the University oF Texas MD AnDerson UTHealth GraDuate School oF BiomeDical Sciences Faculty, staFF, anD Deans, Dr. Michael Blackburn anD Dr. Michelle Barton: thank you For all that you Do For our school anD stuDents. I woulD also like to thank iv the Rosalie B. Hite GraDuate Fellowship in Cancer Research anD the Hite Fellowship Committee For FunDing me these past three years, anD Mrs. Roquemore For her generous contributions to GSBS through the FaDine Jackson Roquemore Scholarship in Cancer Research that has also proviDeD me with generous Financial support. Without the FrienDship oF my Fellow stuDents anD colleagues my time in Houston woulD have been very lonely. To Dr. RanDi Fitzgibbon, Dr. Dhananjay Thakur, Brittany Jewell, Mimi Le, Tanya BalDwin, Ashabari Mukherjee, Janani Subramanian, Rachel Tay, Sam Berkey, Courtney Olsen, Stephanie Bsaibes, anD Stephanie Tabor: thank you For all oF the laughter, venting sessions, soliDarity, lunch Dates, Ruben puppy-sitting, and motivation. I am lucky to have such Driven anD inspiring FrienDs! Most importantly, I woulD like to thank my Family. To my niece, Evelyn Milam, who was born During the writing oF this Dissertation –you’re only six ten weeks olD but you’re a great motivator! To my siblings, AmanDa Milam and William Maxwell, thank you For being my best FrienDs anD the amazing people that you are. To my brother-in-law Jason Milam, who actually reaD this entire thesis anD proviDeD eDits: thank you For Doing that! To my aunts, uncles, granDDaDDy Ervin Englert, anD granDma Marie Maxwell: thank you For always encouraging me to work hard anD believing that I have the capacity –and stubbornness– to achieve my goals. To my granD-mama GlaDys Englert anD granDpa Bill Maxwell, who unFortunately never got to see me enter graDuate school but were always supportive oF my eDucation: we miss you. To my in-laws: For loving me anD helping me along the way. To my parents: For their unconDitional love anD countless sacriFices For our eDucation, happiness, anD well-being, your eFForts are so appreciateD. To my liFe partner, Matt Acosta: thank you For your patience anD your enDless well oF encouragement. I love you! v NANOSCALE ORGANIZATION OF THE SMALL GTPASE RAC1 Abstract Kelsey Maxwell, B.S. Advisory ProFessor: John F. Hancock, M.A., M.B., B.Chir., Ph.D. Rac1 is a small, guanine-nucleotiDe binDing protein that cycles between an inactive GDP-bounD anD active GTP-bounD state to regulate actin-meDiateD motility, migration, anD aDhesion. Plasma membrane (PM) localization is essential For its biological activity. Rac1 PM targeting is DirecteD by a C-terminal membrane anchor that encompasses a geranylgeranyl-cysteine-methyl-ester, palmitoyl, anD a polybasic Domain (PBD) oF contiguous lysine anD arginine resiDues. Using high-resolution imaging combineD with spatial mapping analysis, I found that Rac1 Forms nanoclusters on the PM. Cycling between the GTP- and GDP-bounD states, Rac1 Forms nanoclusters that are non-overlapping, consequently unDergoing guanine nucleotiDe-dependent spatial segregation. I Further FounD that Rac1 selectively associates with phosphatiDic aciD (PA) anD phosphoinositol (3,4,5)-trisphosphate (PIP3), resulting in nanoclusters enricheD in these anionic lipiDs. I FounD these lipiDs to be structurally important as Depleting the PM oF PA or PIP3 impaireD both Rac1 PM targeting anD nanoclustering. LipiD binDing speciFicity oF Rac1 is encoDeD in the C-terminal PBD amino aciD sequence in combination with the aDjacent lipiD anchors. Point mutations within the PBD, incluDing highly conserveD arginine to lysine substitutions or mutations exchanging the geranylgeranyl For Farnesyl, proFounDly altered Rac1 lipiD binDing speciFicity without changing electrostatics oF the protein anD resulted in impaireD macropinocytosis anD DecreaseD cell spreaDing. In this thesis, I proposeD that Rac1 nanoclusters act as lipiD-baseD signaling platForms emulating the spatiotemporal organization oF Ras proteins anD Further vi showed that the Rac1 PBD-prenyl anchor has a biological Function that extenDs beyonD simple electrostatic engagement with the PM. vii Table of Contents Approval Page ................................................................................................................ iii Title Page ....................................................................................................................... iv DeDication ...................................................................................................................... iii AcknowleDgements ........................................................................................................ iv Abstract .......................................................................................................................... vi List oF Illustrations .......................................................................................................... xii List oF Tables ................................................................................................................ xiv Abbreviations ................................................................................................................. xv Chapter 1 ......................................................................................................................... 1 IntroDuction ...................................................................................................................... 1 1.1 Membrane Domains anD plasma membrane complexity ....................................... 2 1.2 Signaling complexes .............................................................................................. 7 1.2.1 Ras nanoclusters ...........................................................................................
Recommended publications
  • Small Cell Ovarian Carcinoma: Genomic Stability and Responsiveness to Therapeutics
    Gamwell et al. Orphanet Journal of Rare Diseases 2013, 8:33 http://www.ojrd.com/content/8/1/33 RESEARCH Open Access Small cell ovarian carcinoma: genomic stability and responsiveness to therapeutics Lisa F Gamwell1,2, Karen Gambaro3, Maria Merziotis2, Colleen Crane2, Suzanna L Arcand4, Valerie Bourada1,2, Christopher Davis2, Jeremy A Squire6, David G Huntsman7,8, Patricia N Tonin3,4,5 and Barbara C Vanderhyden1,2* Abstract Background: The biology of small cell ovarian carcinoma of the hypercalcemic type (SCCOHT), which is a rare and aggressive form of ovarian cancer, is poorly understood. Tumourigenicity, in vitro growth characteristics, genetic and genomic anomalies, and sensitivity to standard and novel chemotherapeutic treatments were investigated in the unique SCCOHT cell line, BIN-67, to provide further insight in the biology of this rare type of ovarian cancer. Method: The tumourigenic potential of BIN-67 cells was determined and the tumours formed in a xenograft model was compared to human SCCOHT. DNA sequencing, spectral karyotyping and high density SNP array analysis was performed. The sensitivity of the BIN-67 cells to standard chemotherapeutic agents and to vesicular stomatitis virus (VSV) and the JX-594 vaccinia virus was tested. Results: BIN-67 cells were capable of forming spheroids in hanging drop cultures. When xenografted into immunodeficient mice, BIN-67 cells developed into tumours that reflected the hypercalcemia and histology of human SCCOHT, notably intense expression of WT-1 and vimentin, and lack of expression of inhibin. Somatic mutations in TP53 and the most common activating mutations in KRAS and BRAF were not found in BIN-67 cells by DNA sequencing.
    [Show full text]
  • PARD6A (Human) IP-WB Antibody Pair
    PARD6A (Human) IP-WB Antibody Pair Catalog # : H00050855-PW1 規格 : [ 1 Set ] List All Specification Application Image Product This IP-WB antibody pair set comes with one antibody for Immunoprecipitation-Western Blot Description: immunoprecipitation and another to detect the precipitated protein in western blot. Reactivity: Human Quality Control Immunoprecipitation-Western Blot (IP-WB) Testing: Immunoprecipitation of PARD6A transfected lysate using rabbit polyclonal anti-PARD6A and Protein A Magnetic Bead (U0007), and immunoblotted with mouse polyclonal anti-PARD6A. Supplied Antibody pair set content: Product: 1. Antibody pair for IP: rabbit polyclonal anti-PARD6A (300 ul) 2. Antibody pair for WB: mouse polyclonal anti-PARD6A (50 ul) Storage Store reagents of the antibody pair set at -20°C or lower. Please aliquot Instruction: to avoid repeated freeze thaw cycle. Reagents should be returned to - 20°C storage immediately after use. MSDS: Download Applications Immunoprecipitation-Western Blot Protocol Download Gene Information Entrez GeneID: 50855 Gene Name: PARD6A Gene Alias: PAR-6A,PAR6,PAR6C,PAR6alpha,TAX40,TIP-40 Gene par-6 partitioning defective 6 homolog alpha (C. elegans) Description: Omim ID: 607484 Gene Ontology: Hyperlink Page 1 of 2 2016/5/23 Gene Summary: This gene is a member of the PAR6 family and encodes a protein with a PSD95/Discs-large/ZO1 (PDZ) domain and a semi-Cdc42/Rac interactive binding (CRIB) domain. This cell membrane protein is involved in asymmetrical cell division and cell polarization processes as a member of a multi-protein complex. The protein also has a role in the epithelial-to-mesenchymal transition (EMT) that characterizes the invasive phenotype associated with metastatic carcinomas.
    [Show full text]
  • Regulation of Cdc42 and Its Effectors in Epithelial Morphogenesis Franck Pichaud1,2,*, Rhian F
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs217869. doi:10.1242/jcs.217869 REVIEW SUBJECT COLLECTION: ADHESION Regulation of Cdc42 and its effectors in epithelial morphogenesis Franck Pichaud1,2,*, Rhian F. Walther1 and Francisca Nunes de Almeida1 ABSTRACT An overview of Cdc42 Cdc42 – a member of the small Rho GTPase family – regulates cell Cdc42 was discovered in yeast and belongs to a large family of small – polarity across organisms from yeast to humans. It is an essential (20 30 kDa) GTP-binding proteins (Adams et al., 1990; Johnson regulator of polarized morphogenesis in epithelial cells, through and Pringle, 1990). It is part of the Ras-homologous Rho subfamily coordination of apical membrane morphogenesis, lumen formation and of GTPases, of which there are 20 members in humans, including junction maturation. In parallel, work in yeast and Caenorhabditis elegans the RhoA and Rac GTPases, (Hall, 2012). Rho, Rac and Cdc42 has provided important clues as to how this molecular switch can homologues are found in all eukaryotes, except for plants, which do generate and regulate polarity through localized activation or inhibition, not have a clear homologue for Cdc42. Together, the function of and cytoskeleton regulation. Recent studies have revealed how Rho GTPases influences most, if not all, cellular processes. important and complex these regulations can be during epithelial In the early 1990s, seminal work from Alan Hall and his morphogenesis. This complexity is mirrored by the fact that Cdc42 can collaborators identified Rho, Rac and Cdc42 as main regulators of exert its function through many effector proteins.
    [Show full text]
  • Cell Division Symmetry Control and Cancer Stem Cells
    AIMS Molecular Science, 7(2): 82–98. DOI: 10.3934/molsci.2020006 Received: 15 February 2020 Accepted: 26 April 2020 Published: 06 May 2020 http://www.aimspress.com/journal/Molecular Review Cell division symmetry control and cancer stem cells Sreemita Majumdar and Song-Tao Liu* Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA * Correspondence: Email: [email protected]; Tel: +14195307853. Table S1. Genes encoding polarity and fate-determinant proteins involved in asymmetric cell division. C. elegans1 D. melanogaster 1 Mammals1 Description2 Associated with/ Interactors 3 Cellular Localization (mammalian cell)4 Serine/threonine protein microtubule-associated protein cell membrane, peripheral and lateral, par-1 par-1 MARK1/2/3/4 kinase MAPT/TAU cytoplasm, dendrite RING, Lipid binding par-2 - - domain PDZ for membrane, cell junction, adherens junction, cell cortex, par-3 baz PARD3 Oligomerization domain at actin, PARD6 endomembrane system, NTD Continued on next page 2 C. elegans1 D. melanogaster 1 Mammals1 Description2 Associated with/ Interactors 3 Cellular Localization (mammalian cell)4 Serine/threonine-protein nucleus, mitochondria, cytoplasm, par-4 Lkb1 STK11/LKB1 STRAD complex kinase membrane 14-3-3 domain binding par-5 14-3-3 YWHAB phosphoserine/ adapter to many proteins cytoplasm phosphothreonine motif cell membrane, centriolar satellite, actin par-6 par-6 PARD6A/B/G PB1, CRIB, PDZ PARD3 cytoskeleton,centrosome, cytoplasm ,ruffles PARD3, and a PARD6 protein PB1, AGC-Kinase (PARD6A, PARD6B or PARD6G) pkc-3 aPKC PRKCI/Z domain, DAG binding, cytoplasm, nucleus, membrane and a GTPase protein (CDC42 or Zinc finger domain RAC1), LLGL1,ECT2 LRR and PDZ protein Cadherin, Scrib-APC-beta-catenin nucleoplasm, basolateral plasma membrane, let-413 scrib SCRIB family.
    [Show full text]
  • Transcriptome Analyses of Rhesus Monkey Pre-Implantation Embryos Reveal A
    Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double strand break (DSB) repair in primate oocytes and early embryos Xinyi Wang 1,3,4,5*, Denghui Liu 2,4*, Dajian He 1,3,4,5, Shengbao Suo 2,4, Xian Xia 2,4, Xiechao He1,3,6, Jing-Dong J. Han2#, Ping Zheng1,3,6# Running title: reduced DNA DSB repair in monkey early embryos Affiliations: 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 3 Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 University of Chinese Academy of Sciences, Beijing, China 5 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China 6 Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China * Xinyi Wang and Denghui Liu contributed equally to this work 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press # Correspondence: Jing-Dong J. Han, Email: [email protected]; Ping Zheng, Email: [email protected] Key words: rhesus monkey, pre-implantation embryo, DNA damage 2 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA) and cell fate commitment.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Four-Dimensional Live Imaging of Apical Biosynthetic Trafficking Reveals a Post-Golgi Sorting Role of Apical Endosomal Intermediates
    Four-dimensional live imaging of apical biosynthetic trafficking reveals a post-Golgi sorting role of apical endosomal intermediates Roland Thuenauera,b,1,2, Ya-Chu Hsua, Jose Maria Carvajal-Gonzaleza,3, Sylvie Debordea,4, Jen-Zen Chuanga, Winfried Römerc,d, Alois Sonnleitnerb, Enrique Rodriguez-Boulana,5, and Ching-Hwa Sunga,5 aMargaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10065; bCenter for Advanced Bioanalysis Linz, 4020 Linz, Austria; and cInstitute of Biology II, and dBIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Edited by Keith E. Mostov, University of California School of Medicine, San Francisco, CA, and accepted by the Editorial Board January 17, 2014 (received for review March 11, 2013) Emerging data suggest that in polarized epithelial cells newly is an important regulator of biological processes that require synthesized apical and basolateral plasma membrane proteins apical trafficking, e.g., lumen formation during epithelial tubu- traffic through different endosomal compartments en route to the logenesis (11), apical secretion of discoidal/fusiform vesicles in respective cell surface. However, direct evidence for trans-endo- bladder umbrella cells (12), and apical microvillus morphogenesis somal pathways of plasma membrane proteins is still missing and and rhodopsin localization in fly photoreceptors (13). However, the mechanisms involved are poorly understood. Here, we imaged despite the physiological importance of trans-endosomal traf- the entire biosynthetic route of rhodopsin-GFP, an apical marker in ficking, the underlying mechanisms remain largely unclear. epithelial cells, synchronized through recombinant conditional ag- Previous studies on trans-endosomal trafficking in polarized gregation domains, in live Madin-Darby canine kidney cells using epithelial cells have relied on pulse chase/cell fractionation pro- spinning disk confocal microscopy.
    [Show full text]
  • The Polarity Protein Par6 Induces Cell Proliferation and Is Overexpressed in Breast Cancer
    Research Article The Polarity Protein Par6 Induces Cell Proliferation and Is Overexpressed in Breast Cancer Marissa E. Nolan,1,3 Victoria Aranda,3 Sangjun Lee,4 Balasubramanian Lakshmi,3 Srinjan Basu,2 D. Craig Allred,4 and Senthil K. Muthuswamy1,2,3 1Graduate Program in Genetics, Stony Brook University, Stony Brook, New York; 2Watson School ofBiological Sciences, 3Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; and 4Department ofPathology and Immunology, Washington University School ofMedicine, St. Louis, Missouri Abstract proteins Cdc42/Rac (12–15). These interactions are required for The polarity protein complex Par6/atypical protein kinase Par6 regulation ofcell biological processes. For instance, Par6 (aPKC)/Cdc42 regulates polarization processes during regulates aPKC-induced phosphorylation ofLgl (16), Par1 (17), and epithelial morphogenesis, astrocyte migration, and axon Numb proteins (18) during establishment ofapical-basal polarity in epithelial cells. Likewise, Par6-associated aPKC regulates glycogen specification. We, as well as others, have shown that this h h complex is also required for disruption of apical-basal polarity synthase kinase 3 (GSK3 ) activity to induce polarized migration during the oncogene ErbB2-induced transformation and trans- ofastrocytes (19) and promote cell death during three-dimensional forming growth factor B–induced epithelial-mesenchymal epithelial morphogenesis (6). Thus, the Par6 complex can serve as a transition ofmammary epithelial cells. Here, we report that signaling node that regulates diverse biological processes by controlling activation ofdownstream pathways. expression ofPar6 by itselfin mammary epithelial cells induces epidermal growth factor–independent cell proliferation and In addition to its role during normal cell biology, Par6 also development ofhyperplastic three-dimensional acini without regulates initiation and progression ofcell transformation.For affecting apical-basal polarity.
    [Show full text]
  • Functional Role of the C-Terminal Amphipathic Helix 8 of Olfactory Receptors and Other G Protein-Coupled Receptors
    International Journal of Molecular Sciences Review Functional Role of the C-Terminal Amphipathic Helix 8 of Olfactory Receptors and Other G Protein-Coupled Receptors Takaaki Sato 1,*, Takashi Kawasaki 1, Shouhei Mine 1 and Hiroyoshi Matsumura 2 1 Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorioka, Ikeda, Osaka 563-8577, Japan; [email protected] (T.K.); [email protected] (S.M.) 2 College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-72-751-8342 Academic Editor: Kathleen Van Craenenbroeck Received: 28 September 2016; Accepted: 14 November 2016; Published: 18 November 2016 Abstract: G protein-coupled receptors (GPCRs) transduce various extracellular signals, such as neurotransmitters, hormones, light, and odorous chemicals, into intracellular signals via G protein activation during neurological, cardiovascular, sensory and reproductive signaling. Common and unique features of interactions between GPCRs and specific G proteins are important for structure-based design of drugs in order to treat GPCR-related diseases. Atomic resolution structures of GPCR complexes with G proteins have revealed shared and extensive interactions between the conserved DRY motif and other residues in transmembrane domains 3 (TM3), 5 and 6, and the target G protein C-terminal region. However, the initial interactions formed between GPCRs and their specific G proteins remain unclear. Alanine scanning mutagenesis of the murine olfactory receptor S6 (mOR-S6) indicated that the N-terminal acidic residue of helix 8 of mOR-S6 is responsible for initial transient and specific interactions with chimeric Gα15_olf, resulting in a response that is 2.2-fold more rapid and 1.7-fold more robust than the interaction with Gα15.
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • Open Questions: What About the 'Other' Rho Gtpases?
    Ridley BMC Biology (2016) 14:64 DOI 10.1186/s12915-016-0289-7 COMMENT Open Access Open questions: what about the ‘other’ Rho GTPases? Anne J. Ridley Abstract know if they interact with and/or regulate the activity of other family members. Indeed, by studying only RhoA, Rho GTPases have many and diverse roles in cell Rac1 and Cdc42, we are likely to be missing the real physiology, and some family members are very well functions of many GEFs and GAPs because their targets studied, including RhoA, Rac1 and Cdc42. But many in cells are among the other Rho GTPases. are relatively neglected, and fundamental questions Interestingly, four family members—Rnd1, Rnd2, Rnd3 about their mechanisms and functions remain open. and RhoH—are ‘atypical’, in that they are known to be constitutively GTP-bound and do not hydrolyse GTP: much less is known about how these family members Rho GTPases are household names for anyone who are regulated. RhoU and RhoV have high intrinsic GDP/ works on eukaryotic cell migration and their functions GTP exchange rates, so are unlikely to need GEFs for in cell migration, cell division and cell polarity are de- activation but could still be turned off by GAPs [1, 4]. scribed in most textbooks on cell biology. Yet most of For two other members, RhoBTB1 and RhoBTB2, the what we know about Rho GTPases comes from studying Rho domains are quite divergent in sequence from other a small subset of the many different family members, family members and they are unlikely to be regulated by namely RhoA, Rac1 and Cdc42.
    [Show full text]
  • PAR6 (PARD6A) (NM 016948) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC221092L3 PAR6 (PARD6A) (NM_016948) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: PAR6 (PARD6A) (NM_016948) Human Tagged ORF Clone Tag: Myc-DDK Symbol: PARD6A Synonyms: PAR-6A; PAR6; PAR6alpha; PAR6C; TAX40; TIP-40 Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC221092). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_016948 ORF Size: 1038 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 PAR6 (PARD6A) (NM_016948) Human Tagged ORF Clone – RC221092L3 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_016948.1 RefSeq Size: 1269 bp RefSeq ORF: 1041 bp Locus ID: 50855 UniProt ID: Q9NPB6 Protein Families: Druggable Genome, Transcription Factors Protein Pathways: Endocytosis, Tight junction MW: 37.2 kDa Gene Summary: This gene is a member of the PAR6 family and encodes a protein with a PSD95/Discs- large/ZO1 (PDZ) domain and a semi-Cdc42/Rac interactive binding (CRIB) domain.
    [Show full text]