Effect of Transgenic Bt Rice on the Survival of Three Nontarget Stored Product Insect Pests

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Transgenic Bt Rice on the Survival of Three Nontarget Stored Product Insect Pests TRANSGENIC PLANTS AND INSECTS Effect of Transgenic Bt Rice on the Survival of Three Nontarget Stored Product Insect Pests 1,2 1 1 3 JORDI RIUDAVETS, ROSA GABARRA, M. JOSE´ PONS, AND JOAQUIMA MESSEGUER Environ. Entomol. 35(5): 1432Ð1438 (2006) ABSTRACT The effects of Bacillus thuringiensis (Bt) transgenic Ariete and Senia rice lines devel- Downloaded from https://academic.oup.com/ee/article/35/5/1432/341097 by guest on 23 September 2021 oped for the control of Chilo suppressalis Walker were evaluated on three nontarget stored product insect pests: the lepidopteran Plodia interpunctella (Hu¨ bner), the coleopteran Sitophilus oryzae L., and the psocid Liposcelis bostrichophila (Badonnel). Two different cry genes (cry1B and cry1Aa) under the control of a constitutive plant promoter (ubi) and a wound inducible promoter (mpi) were tested. Plodia interpunctella was unable to survive in rice semolina obtained from the two Ariete and Senia lines, which contained the ubi:cry1B gene. A reduction in S. oryzae adult progeny was observed in cultivar Senia rice containing the ubi:cry1B gene but not in cultivar Ariete rice. Moreover, a sublethal effect on S. oryzae adult progeny weight was observed in both of the rice cultivar treatments that constitutively expressed this gene. The number of L. bostrichophila emerging from Ariete rice containing the ubi:cry1B gene also was reduced. Both a reduction in the number of emerged adults and a delay in the development of P. interpunctella were observed for Ariete rice semolina containing the mpi:cry1B gene. However, no lethal or sublethal effects were observed for P. interpunctella reared on a transformed Senia rice line expressing the ubi:cry1Aa gene, suggesting possible tolerance to the toxin present in the rice grains. Although no increase in mortality was observed with S. oryzae fed ubi:cry1Aa rice, there was a sublethal effect on adult progeny weight. KEY WORDS Bacillus thuringiensis, transgenic rice, Plodia interpunctella, Sitophilus oryzae, Lipo- scelis bostrychophila Bacillus thuringiensis (Bt) produces a variety of insec- pollinators, decomposers, and natural enemies (Losey ticide crystal proteins on sporulation that are encoded et al. 2004, OÕCallaghan et al. 2005). by a number of cry genes. These proteins are highly With regard to rice crops, transgenic Bt lines have toxic to lepidopteran, dipteran, and coleopteran in- been developed as alternative tools for preventing sects, interacting with the larval midgut epithelium losses caused by the incidence of the striped stem and causing a disruption in membrane integrity, ulti- borer, Chilo suppressalis Walker (Lepidoptera: Pyrali- mately leading to insect death (Gill et al. 1992). Bt cry dae) (Dirie et al. 2000, Breitler et al. 2004). Transgenic genes have been successfully engineered into a num- rice lines have been obtained with high expression of ber of crops. Several insect-resistant transgenic plant genes encoding insecticidal cry proteins through the cultivars of maize, cotton, and potato have been use of constitutive promoters. An alternative to the widely commercialized (James 2004). In these crops, continuous expression of insecticidal proteins through Bt toxins produced by plant tissues reduce attacks all of a plantÕs tissues is a conditional expression di- from target pest species such as the European corn rected by a wound inducible promoter, which could borer, Ostrinia nubilalis (Hu¨ bner) (Lepidoptera: direct toxin production both spatially and temporally Pyralidae), the noctuids Heliothis spp. and Helicoverpa (Breitler et al. 2004). spp. (Lepidoptera: Noctuidae), and the Colorado po- Several stored product pest species such as Plodia tato beetle, Leptinotarsa decemlineata (Say) (Co- interpunctella (Hu¨ bner) (Lepidoptera: Pyralidae) leoptera: Chrysomelidae). A beneÞt of Bt crops is the (Indianmeal moth), Sitophilus oryzae L. (Coleoptera: reduced reliance on broad-spectrum insecticide treat- Curculionidae) (Rice weevil), and Liposcelis ments (Shelton et al. 2002). Bt toxins also may have a bostrychophila (Badonnel) (Psocoptera: Liposcelidi- negative effect on other nontarget insect herbivores, dae) (Booklouse psocid) are common in rice and cause high economic losses during the postharvest period (Cogburn and Vick 1981, Riudavets et al. 2002). 1 Departament de Proteccio´ Vegetal, IRTA, Centre de Cabrils, Ctra. All three species are polyphagous, and P. interpunctella Cabrils s/n, 08348 Cabrils (Barcelona), Spain. and L. bostrychophila are pests of cereals and semi- 2 Corresponding author, e-mail: [email protected]. processed products, whereas S. oryzae is a pest of 3 Consorci laboratori CSICÐIRTA de Gene`tica Molecular Vegetal, Departament de Gene`tica Vegetal, IRTA, Centre de Cabrils, Ctra. whole grain cereals (Gorham 1991). Brown rice, with Cabrils s/n, 08348 Cabrils (Barcelona), Spain. its external grain layers and embryo, is more favorable 0046-225X/06/1432Ð1438$04.00/0 ᭧ 2006 Entomological Society of America October 2006 RIUDAVETS ET AL.: EFFECT OF TRANSGENIC Bt RICE ON STORED PRODUCT PESTS 1433 for S. oryzae preimaginal development, survival, and Table 1. List of Ariete and Senia Bt-transformed lines tested reproduction than is white polished rice (Lucas and against P. interpunctella and L. bostrichophila on semolina and Riudavets 2000). S. oryzae on white rice In the United States, Bt has been commercially Line Treatment Gene Promoter applied for stored-product insect control since the Ariete AControl Non-Bt 1970s (Golob et al. 2002), while high levels of insec- A3.4 cry1B ubi ticidal activity have been observed in laboratory stud- A3.4E cry1B ubi ies involving the use of different cry protoxins and A9.1 cry1B mpi toxins against P. interpunctella (Herrero et al. 2001). A9.1E cry1B mpi Senia SControl Non-Bt Nevertheless, the resistance of some P. interpunctella S98.9 cry1B ubi strains to sprayable Bt proteins has been shown (Mc- S05 cry1Aa ubi Gaughey 1985, McGaughey and Johnson 1994). Cry proteins present in transgenic maize kernels from hy- Brown rice semolina treatments (A3.4E and A9.1E) containing the Downloaded from https://academic.oup.com/ee/article/35/5/1432/341097 by guest on 23 September 2021 brids with the CaMV/35s promoter expressing cry1Ab embryo and endosperm only were tested against P. interpunctella. and cry9C genes reduced the survival and reproduc- tion of P. interpunctella, and developmental time also ler et al. 2000) or through Agrobacterium, following was delayed (Giles et al. 2000, Hanley et al. 2004). the procedures detailed in Sallaud et al. (2003) and Similarly, Sedlacek et al. (2001) found that emergence Pons et al. (2000) for Ariete and Senia, respectively. and fecundity of P. interpunctella were lower and de- Synthetic cry1B and cry1Aa genes are Bt ␦-endo- velopmental times longer for individuals reared on Bt toxin genes. The synthetic cry1B gene corresponds to transgenic maize hybrids expressing cry1Ab genes. In the 1Ð1,944 region of the cry1Ba1 gene originally iso- contrast, no differences in P. interpunctella develop- lated from Bt strain HD2 by Brizzard and Whiteley mental time and survival were observed between (1988) and encodes the active toxin plus 29 amino transgenic maize hybrids with the phosphoenolpyru- acids at the N-terminal end. The synthetic cry1Aa vate carboxylase promoter expressing the same gene (M. Royer, unpublished data) corresponds to the cry1Ab genes or transgenic hybrids expressing cry1Ac 1Ð1,854 region of the cry1Aa gene isolated from Bt versus their isolines (Giles et al. 2000). strain FU2Ð7 by Udayasuriyan et al. (1994). In an artiÞcial maize seed bioassay, Bt cry1A and Homozygous Ariete line A3.4 and Senia S05 and cry1B toxins had no effect on S. oryzae mortality (Pit- S98.9 integrated the cry gene under the control of the tendrigh et al. 1997). However, transgenic rice ex- maize ubiquitin (ubi) promoters Þrst intron and Þrst pressing the trypsin inhibitor Itr1 gene encoding the exon (Christensen and Quail 1996), whereas Ariete BTI-CMe toxin reduced the survival rate of S. oryzae line A9.1 integrated the cry gene under the control of (Alfonso-Rubõ´ et al. 2003). The effects of Bt toxins the wound inducible (mpi) promoter (Breitler et al. produced by transgenic rice on stored-product rice 2001). Details of the materials used from each one of pests have not been reported. these lines are provided in Table 1. Transgenic commercial rice lines will be approved Insect Cultures. All colonies were originally estab- in the near future in several countries. One of the Þrst lished from individuals collected in 1997 from storage candidates likely will be rice lines resistant to attack by areas located in the northeast of Spain. P. interpunc- stem borers. The objective of this study was to eval- tella was reared on a diet based on wheat bran and uate the extent to which harvested grain from trans- glycerin. S. oryzae was reared on brown rice (cultivar genic rice expressing the cry1B and cry1Aa genes, Tebre). L. bostrichophila was reared on a diet of wheat especially designed for controlling C. suppressalis, ßour and yeast. Rearing and experiments were con- could affect nontarget pests present in stored rice such ducted in a climatic chamber at 25 Ϯ 1ЊC, 75 Ϯ 15% as the lepidopteran P. interpunctella, the coleopteran RH, and at a photoperiod of 16:8 (L:D). S. oryzae, and the psocid L. bostrichophila. We eval- Testing Method. The experimental arenas were uated the effect of transgenic rice lines harboring the ventilated glass jars (110 ml) containing 30 g of rice cry1B gene with constitutive and wound inducible kernels or 20 g of rice semolina. Brown rice (with promoters and the cry1A gene with a constitutive embryo and external layers) was polished to obtain promoter on adult weight and survival rates. Addi- white rice (only endosperm) using a laboratory pol- tionally, the effects of the cry1B gene under the con- isher (Univeral Brevetto 65378, vertical type; A. trol of both promoters in brown and white rice on GuidÕetti, Italy), and white rice was milled to obtain P. interpunctella life parameters were studied.
Recommended publications
  • PESTS of STORED PRODUCTS a 'Pest of Stored Products' Can Refer To
    PESTS OF STORED PRODUCTS A ‘pest of stored products’ can refer to any organism that infests and damages stored food, books and documents, fabrics, leather, carpets, and any other dried or preserved item that is not used shortly after it is delivered to a location, or moved regularly. Technically, these pests can include microorganisms such as fungi and bacteria, arthropods such as insects and mites, and vertebrates such as rodents and birds. Stored product pests are responsible for the loss of millions of dollars every year in contaminated products, as well as destruction of important documents and heritage artifacts in homes, offices and museums. Many of these pests are brought indoors in items that were infested when purchased. Others originate indoors when susceptible items are stored under poor storage conditions, or when stray individual pests gain access to them. Storage pests often go unnoticed because they infest items that are not regularly used and they may be very small in size. Infestations are noticed when the pests emerge from storage, to disperse or sometimes as a result of crowding or after having exhausted a particular food source, and search for new sources of food and harborage. Unexplained occurrences of minute moths and beetles flying in large numbers near stored items, or crawling over countertops, walls and ceilings, powdery residues below and surrounding stored items, and stale odors in pantries and closets can all indicate a possible storage pest infestation. Infestations in stored whole grains or beans can also be detected when these are soaked in water, and hollowed out seeds rise to the surface, along with the adult stages of the pests, and other debris.
    [Show full text]
  • Ichneumonid Wasps (Hymenoptera, Ichneumonidae) in the to Scale Caterpillar (Lepidoptera) [1]
    Central JSM Anatomy & Physiology Bringing Excellence in Open Access Research Article *Corresponding author Bui Tuan Viet, Institute of Ecology an Biological Resources, Vietnam Acedemy of Science and Ichneumonid Wasps Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam, Email: (Hymenoptera, Ichneumonidae) Submitted: 11 November 2016 Accepted: 21 February 2017 Published: 23 February 2017 Parasitizee a Pupae of the Rice Copyright © 2017 Viet Insect Pests (Lepidoptera) in OPEN ACCESS Keywords the Hanoi Area • Hymenoptera • Ichneumonidae Bui Tuan Viet* • Lepidoptera Vietnam Academy of Science and Technology, Vietnam Abstract During the years 1980-1989,The surveys of pupa of the rice insect pests (Lepidoptera) in the rice field crops from the Hanoi area identified showed that 12 species of the rice insect pests, which were separated into three different groups: I- Group (Stem bore) including Scirpophaga incertulas, Chilo suppressalis, Sesamia inferens; II-Group (Leaf-folder) including Parnara guttata, Parnara mathias, Cnaphalocrocis medinalis, Brachmia sp, Naranga aenescens; III-Group (Bite ears) including Mythimna separata, Mythimna loryei, Mythimna venalba, Spodoptera litura . From these organisms, which 15 of parasitoid species were found, those species belonging to 5 families in of the order Hymenoptera (Ichneumonidae, Chalcididae, Eulophidae, Elasmidae, Pteromalidae). Nine of these, in which there were 9 of were ichneumonid wasp species: Xanthopimpla flavolineata, Goryphus basilaris, Xanthopimpla punctata, Itoplectis naranyae, Coccygomimus nipponicus, Coccygomimus aethiops, Phaeogenes sp., Atanyjoppa akonis, Triptognatus sp. We discuss the general biology, habitat preferences, and host association of the knowledge of three of these parasitoids, (Xanthopimpla flavolineata, Phaeogenes sp., and Goryphus basilaris). Including general biology, habitat preferences and host association were indicated and discussed.
    [Show full text]
  • Selective Arcing Electrostatically Eradicates Rice Weevils in Rice Grains
    insects Article Selective Arcing Electrostatically Eradicates Rice Weevils in Rice Grains Koji Kakutani 1, Yoshihiro Takikawa 2,* and Yoshinori Matsuda 3 1 Pharmaceutical Research and Technology Institute and Anti-Aging Centers, Kindai University, Osaka 577-8502, Japan; [email protected] 2 Plant Center, Institute of Advanced Technology, Kindai University, Wakayama 642-0017, Japan 3 Laboratory of Phytoprotection Science and Technology, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan; [email protected] * Correspondence: [email protected] Simple Summary: Rice stored in warehouses is frequently attacked by rice weevils, which must therefore be controlled. We developed an electrostatic method as an alternative to pesticides. An arc discharge exposer (ADE) kills insects entering an electric field. The apparatus has pairs of identical metal plates, one of which is linked to a voltage generator for negative charging, the other is grounded. A −7 kV electric field forms between the two plates. When an insect enters the electric field it is arced by the charged plate and killed. We combined this method with a technique that lures insects hiding in rice grains. When a vessel containing rice and insects was rotated and then returned to the initial position, the weevils climbed up the vessel walls and entered the ADE. Dead insects were collected to minimize rice contamination. This method efficiently killed pests in stored rice. Abstract: We developed an arc discharge exposer (ADE) that kills rice weevils nesting in dried rice. The ADE features multiple identical metal plates, half of these are linked to a voltage generator and Citation: Kakutani, K.; Takikawa, Y.; the others are grounded.
    [Show full text]
  • Rice Striped Stem Borer (412)
    Pacific Pests and Pathogens - Fact Sheets https://apps.lucidcentral.org/ppp/ Rice striped stem borer (412) Photo 1. Adult Asiatic stem borer, Scirpophaga Photo 2. Adult Asiatic stem borer, Scirpophaga suppressalis. suppressalis. Photo 4. Damage ('deadheart') to rice stem by Chilo Photo 3. Eggs of the Asiatic stem borer, Scirpophaga auricilius (damage to Scirpophaga suppressalis is suppressalis, laid in rows. similar). Photo 5. 'Whitehead' - a symptom caused by stem borers: the base of the panicle is damaged preventing it from emerging or, if already emerged, the grain is unfilled and white. Common Name Striped rice stem borer; it is also known as the Asiatic rice borer. Scientific Name Chilo suppressalis. A moth in the Crambidae. Distribution Restricted. South, East and Southeast Asia, North America (Hawaii), Europe, Oceania. It is recorded from Australia, and Papua New Guinea. Hosts Rice, sorghum and maize are major hosts, but it is also found on sugarcane, millet, and many wild grasses. Symptoms & Life Cycle The larvae is a serious pest of rice, more under temperate and sub-tropical than tropical conditions. The larvae feed on the stems causing similar symptoms to other rice stem borers (see Fact Sheets nos. 408, 409, 410, 411). The larvae tunnel into the stems, through the internodes towards the base of the plant, causing stems to wilt and die, a condition known as 'deadheart'. The stems are easily pulled out (Photo 4). Feeding at the base of the panicles may prevent emergence or result in white unfilled grain of those that have emerged, a symptom called 'whitehead' (Photo 5). Eggs are scale-like, white turning yellow as they mature, up to 60 in several rows on the leaves, sometimes on the leaf sheaths (Photo 3).
    [Show full text]
  • Diatomaceous Earth As Insecticide Rice Weevil
    Pest Control Newsletter Issue No.43 July 2016 Published by the Rice weevil Pest Control Advisory Section Issue No.43 JULY 2016 The rice weevil, Sitophilus oryzae, is one of the 300 to 400 eggs in her average lifetime of four INSIDE Diatomaceous Earth most economically important pests of stored whole to five months. The egg hatches into a legless THIS Rice weevil grains in the world. This weevil is widely distributed larva which has a short, stout, whitish body and ISSUE as Insecticide worldwide in warmer regions. They are usually tan head. It feeds on the interior of the grain found in grain storage facilities or processing plants, kernel. When mature, the larva changes to a infesting rice, wheat, oats, corn, nuts, rye, and barley. white pupa and later emerges as an adult beetle. At home, infestations are generally found in rice, The adult can fly and is attracted to light. They feign Diatomaceous Earth as Insecticide beans, sunflower seeds, whole corn, and occasionally death when disturbed by drawing their legs close to in old pasta such as macaroni and spaghetti. the body and then lying still for several minutes. Rice weevils are harmless to people, pets, furniture Diatomaceous Earth (DE) is a naturally occurring, soft, or get into the eyes. To achieve effective pest control, and clothes. They do not bite, sting or transmit siliceous sedimentary rock that is easily crumbled into sanitation efforts are keys. Elimination of food sources diseases. The damage they do is destruction of the a fine white powder. It contains fossilized remains of and harbouraging places for pests are the basic and grains they infest.
    [Show full text]
  • The Genome Sequence of the Cereal Pest Sitophilus Oryzae: an Unprecedented Transposable Element Content
    The genome sequence of the cereal pest Sitophilus oryzae: an unprecedented transposable element content PARISOT Nicolas1,$, VARGAS-CHAVEZ Carlos1,2,†,$, GOUBERT Clément3,4,‡,$, BAA-PUYOULET Patrice1, BALMAND Séverine1, BERANGER Louis1, BLANC Caroline1, BONNAMOUR Aymeric1, BOULESTEIX Matthieu3, BURLET Nelly3, CALEVRO Federica1, CALLAERTS PatricK5, CHANCY THéo1, CHARLES Hubert1,6, COLELLA Stefano1,§, DA SILVA BARBOSA André7, DELL’AGLIO Elisa1, DI GENOVA Alex3,6,8, FEBVAY Gérard1, GABALDON Toni9,10,11, GALVÃO FERRARINI Mariana1, GERBER Alexandra12, GILLET Benjamin13, HUBLEY Robert14, HUGHES Sandrine13, JACQUIN-JOLY Emmanuelle7, MAIRE Justin1,‖, MARCET-HOUBEN Marina9, MASSON Florent1,£, MESLIN Camille7, MONTAGNE Nicolas7, MOYA Andrés2,15, RIBEIRO DE VASCONCELOS Ana Tereza12, RICHARD Gautier16, ROSEN Jeb14, SAGOT Marie- France3,6, SMIT Arian F.A.14, STORER Jessica M.14, VINCENT-MONEGAT Carole1, VALLIER Agnès1, VIGNERON Aurélien1,#, ZAIDMAN-REMY Anna1, ZAMOUM Waël1, VIEIRA Cristina3,6,*, REBOLLO Rita1,*, LATORRE Amparo2,15,* and HEDDI Abdelaziz1,* 1 Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France. 2 Institute for Integrative Systems Biology (I2SySBio), Universitat de València and SpanisH ResearcH Council (CSIC), València, Spain. 3 Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France. 4 Department of Molecular Biology and Genetics, 526 Campus Rd, Cornell University, ItHaca, New YorK 14853, USA. 5 KU Leuven, University of Leuven, Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, B-3000, Leuven, Belgium. 6 ERABLE European Team, INRIA, Rhône-Alpes, France. 7 INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France. 8 Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, CHile.
    [Show full text]
  • Rice Weevil,Sitophilus Oryzae
    ENY261 Rice Weevil, Sitophilus oryzae (Coleoptera: Curculionidae)1 P. G. Koehler2 Appearance Habits The rice weevil (Figure 1) is small, 1/10 inch (2 to 3 mm) and The rice weevil is one of the most serious stored grain pests stout in appearance. It is very similar in appearance to the worldwide. This pest of whole grain originated in India granary weevil. However, the rice weevil is reddish-brown and has been spread worldwide by commerce. It now has a to black in color with four light yellow or reddish spots on cosmopolitan distribution. It is a serious pest in the south- the corners of the elytra (the hard protective forewings). ern United States. The rice weevil is replaced by the granary The snout is long (1 mm), almost 1/3 of the total length. weevil north of North Carolina and Tennessee. Both the The head with snout is as long as the prothorax or the adults and larvae feed on whole grains. They attack wheat, elytra. The prothorax (the body region behind the head) corn, oats, rye, barley, sorghum, buckwheat, dried beans, is strongly pitted and the elytra have rows of pits within cashew nuts, wild bird seed, and cereal products, especially longitudinal grooves. The larva is legless and stays inside macaroni. The adult rice weevil can fly and is attracted to the hollowed grain kernel. It is fat with a cream colored lights. When disturbed, adults pull in their legs, fall to the body and dark head capsule. ground, and feign death. The larval rice weevil must com- plete its development inside a seed kernel or a man-made equivalent, like macaroni products.
    [Show full text]
  • Rice Weevil Fact Sheet
    Rice weevil fact sheet Rice weevils are usually found in grain storage facilities or processing plants, infesting wheat, oats, rye, barley, rice, and corn. Although not often found in the home, they are sometimes found infesting beans, birdseed, sunflower seeds, dried corn, and too a lesser degree macaroni and spaghetti. Rice weevils do not bite, nor do they damage wood or furniture. Life cycle The adult female rice weevil lays an average of four eggs per day and may live for four to five months (producing 250-400 eggs). A single generation can be completed in around twenty eight days. The eggs hatch in about 3 days. The larvae feed inside the grain kernel for an average of eighteen days. The pupal stage lasts an average of six days (5-16 range). The new adult will remain in the seed for three to four days while it's cuticle hardens and matures. Description Adult weevils are about 3/32 to 1/8 inch long (2-3mm). The adult rice weevil is a dull reddish-brown to black with round or irregularly shaped pits on the thorax and four light reddish or yellowish spots on the elytra (wing covers). The adult weevil can fly and is attracted to lights. The larval stage is legless, humpbacked, and white to creamy white, with a small tan head. The maize weevil is very similar to the rice weevil, but larger. Control Control of these insects involves inspection and removal of infested food products, discarding the heavily infested material, repackaging material in new containers, and vacuuming kitchen cabinets.
    [Show full text]
  • Rice Weevil (Pantry Pest)
    Rice Weevil (Pantry Pest) Fact Sheet Latin Name Sitophilus oryzae Appearance Adult rice weevils measure approximately 4 mm in length and are reddish brown in color. Their wings feature faint yellow or red patterns. Deep, irregular pits are found behind the heads of these weevils, and their snouts can grow as long as 1 mm. Behaviour, Diet & Habits Although rice weevils are not known to cause direct harm to humans, their destructive feeding habits can lead to grain loss. Contrary to their name, rice weevils feed on a variety of grains, including barley, wheat, corn, oats, rye and sorghum. They may even infest processed cereal goods such as macaroni. Reproduction Each female rice weevil is capable of laying four eggs a day and can produce up to 300 eggs in her lifetime. Females perforate kernels or seeds in order to lay single eggs inside. After doing so, the affected grain is sealed with gelatinous secretions. Larvae consume the kernel from the inside out, leaving behind an emptied husk. In colder temperatures, the development cycle of the rice weevil may span more than 32 days. However, on average, larvae emerge within three days and develop into pupae within 18. Six days afterwards, adults emerge from the husk. Adults may live as long as six months. Control Measures Controlling Weevil starts with a careful inspection to identify all the infestation’s food sources. Pay particular attention to items that have remained in the cupboard for long periods or foods that are loosely sealed or are in thin wrapping. you need to first go thru your pantry throw out all items past their use by date, open all cereals, nuts, cake mixes, raisins, packages, even if unopened and sort thru.
    [Show full text]
  • Survey of Susceptibilities to Monosultap, Triazophos, Fipronil, and Abamectin in Chilo Suppressalis (Lepidoptera: Crambidae)
    INSECTICIDE RESISTANCE AND RESISTANCE MANAGEMENT Survey of Susceptibilities to Monosultap, Triazophos, Fipronil, and Abamectin in Chilo suppressalis (Lepidoptera: Crambidae) YUE PING HE,1,2 CONG FEN GAO,1,2 MING ZHANG CAO,3 WEN MING CHEN,1 LI QIN HUANG,4 1 1 1,5 5,6 WEI JUN ZHOU, XU GAN LIU, JIN LIANG SHEN, AND YU CHENG ZHU J. Econ. Entomol. 100(6): 1854Ð1861 (2007) ABSTRACT To provide a foundation for national resistance management of the Asiatic rice borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae), a study was carried out to determine doseÐ response and susceptibility changes over a 5-yr period in the insect from representative rice, Oryza sativa L., production regions. In total, 11 populations were collected from 2002 to 2006 in seven rice-growing provinces in China, and they were used to examine their susceptibility levels to mo- nosultap, triazophos, Þpronil, and abamectin. Results indicated that most populations had increased tolerance to monosultap. Several Þeld populations, especially those in the southeastern Zhejiang Province, were highly or extremely highly resistant to triazophos (resistance ratio [RR] ϭ 52.57Ð 899.93-fold), and some populations in Anhui, Jiangsu, Shanghai, and the northern rice regions were susceptible or had a low level of resistance to triazophos (RR ϭ 1.00Ð10.69). Results also showed that most Þeld populations were susceptible to Þpronil (RR Ͻ 3), but the populations from Ruian and Cangnan, Zhejiang, in 2006 showed moderate levels of resistance to Þpronil (RR ϭ 20.99Ð25.35). All 11 Þeld populations collected in 2002Ð2006 were susceptible to abamectin (RR Ͻ 5).
    [Show full text]
  • RNA-Seq of Rice Yellow Stem Borer, Scirpophaga Incertulas Reveals Molecular Insights During Four Larval Developmental Stages
    G3: Genes|Genomes|Genetics Early Online, published on July 21, 2017 as doi:10.1534/g3.117.043737 1 RNA-seq of Rice Yellow Stem Borer, Scirpophaga incertulas reveals molecular insights 2 during four larval developmental stages 3 4 Renuka. P,* Maganti. S. Madhav,*.1 Padmakumari. A. P,† Kalyani. M. Barbadikar,* Satendra. K. 5 Mangrauthia,* Vijaya Sudhakara Rao. K,* Soma S. Marla‡, and Ravindra Babu. V§ 6 *Department of Biotechnology, ICAR-Indian Institute of Rice Research, Hyderabad, India, 7 †Department of Entomology, ICAR- Indian Institute of Rice Research, Hyderabad, India, 8 ‡Division of Genomic Resources, ICAR-National Bureau of plant Genomic Resources, New 9 Delhi, India, 10 §Department of Plant Breeding, ICAR- Indian Institute of Rice Research, Hyderabad, India. 11 1Corresponding author 12 Correspondence: 13 Maganti Sheshu Madhav, 14 Principal Scientist 15 Department of Biotechnology, 16 Crop Improvement Section, 17 ICAR-Indian Institute of Rice Research, 18 Rajendranagar, Hyderabad 19 Telangana State-500030, India. 20 Telephone-+91-40-24591208 21 FAX-+91-40-24591217 22 E-mail: [email protected] 23 1 © The Author(s) 2013. Published by the Genetics Society of America. 24 ABSTRACT 25 The yellow stem borer (YSB), Scirpophaga incertulas is a prominent pest in the rice cultivation 26 causing serious yield losses. The larval stage is an important stage in YSB, responsible for 27 maximum infestation. However, limited knowledge exists on biology and mechanisms 28 underlying growth and differentiation of YSB. To understand and identify the genes involved in 29 YSB development and infestation, so as to design pest control strategies, we performed de novo 30 transcriptome at 1st, 3rd, 5th and 7th larval developmental stages employing Illumina Hi-seq.
    [Show full text]
  • Strategies to Control Weevils in Grain Storage Facilities
    Strategies to Control Weevils in Grain Storage Facilities Weevils in grain storage facilities can be difficult pests to control. There are many species, such as the rice weevil (Sitophilus oryzae), maize weevil (Sitophilus zeamais), and the granary weevil (Sitophilus granarius). These weevils are easily identified from other grain insects by their long proboscis or snout. Their mouthparts are at the end of the snout. The female chews a hole in a kernel of grain and deposits an egg inside the kernel. She then seals the egg inside the grain where the juvenile will go through its entire life cycle and emerge as an adult. Go to http://ento.psu.edu/ extension/factsheets/weevils-on-stored-grain* for details on the insect’s biology. Because of the way weevils transform from egg to adult and isolate themselves inside the grain kernel, they can be difficult to control. However, an effective way to control them is to kill the adults on contact with a tank mix of Centynal™ EC Insecticide and PBO-8® Synergist or Diacon® IGR PLUS and PBO-8® Synergist. As weevils proliferate across the U.S., there are unique situations where the control of the weevil requires a specific approach for effective control. • SITUATION #1 - the insects are not common but have been introduced into a few grain handling THE RICE WEEVIL facilities from harborage in the surrounding area and are spreading as new grain enters storage. • SITUATION #2 - the insect is common, but is not dispersed widely in the environment. • SITUATION #3 - weevils infest the field, the grain facilities, and the grounds surrounding THE GRANARY WEEVIL grain storage areas.
    [Show full text]