Turbine Layout for and Optimization of Solar Chimney Power Conversion Units
Total Page:16
File Type:pdf, Size:1020Kb
Turbine Layout for and Optimization of Solar Chimney Power Conversion Units by Thomas Peter Fluri Dissertation presented for the degree of Doctor of Mechanical Engineering at the University of Stellenbosch Department of Mechanical and Mechatronic Engineering University of Stellenbosch Private Bag X1, Matieland 7602 , South Africa. Promoter: Prof. T.W.Von Backström 2008 Declaration I, the undersigned, hereby declare that the work contained in this dissertation is my own original work and that I have not previously in its entirety or in part submitted it at any university for a degree. Signature: ............................... T.P.Fluri Date: .................................... Copyright © 2008 University of Stellenbosch All rights reserved. i Abstract Turbine Layout for and Optimization of Solar Chimney Power Conversion Units T.P.Fluri Department of Mechanical and Mechatronic Engineering University of Stellenbosch Private Bag X1, Matieland 7602 , South Africa. Dissertation: PhDEng (Mech) 2008 The power conversion unit of a large solar chimney power plant converts the fluid power, first into mechanical power, and then into electrical power. In this dissertation a tool is developed to determine the layout and the number of tur- bines of the solar chimney power conversion unit providing the lowest cost of electricity. First, the history of the solar chimney concept and the related fields of re- search are presented. Potential features and configurations of the power conver- sion unit are introduced, and it is shown how the solar chimney power conver- sion unit compares to those of other applications. An outline of the dissertation is given, and its potential impact is discussed. An analytical turbine model is developed. Several modelling approaches and the performance of single rotor and counter rotating turbine layouts are com- pared. Preliminary turbine designs are investigated, experimentally and numer- ically. The main aim of the experimental investigation is to verify the applicability of the loss model used in the analytical turbine model. The aim of the numerical investigation is to evaluate a commercial software package as a tool in context with solar chimney turbines. For each component of the power conversion unit an analytical performance model is introduced. Using these models, the single vertical axis, multiple verti- cal axis and multiple horizontal axis turbine configurations are compared from an efficiency and energy yield point of view, and the impact of the various losses on the overall performance is highlighted. A detailed cost model for the power conversion unit is also presented. To optimize for cost of electricity this cost model is then linked to the performance models, and the resulting optimization scheme is applied to several plant configurations. ii Abstract iii It is shown that for a large solar chimney power plant the power conversion unit providing minimal cost of electricity consists of multiple horizontal axis tur- bines using a single rotor layout including inlet guide vanes. Uittreksel Turbine-Uitleg vir en Optimering van Sonskoorsteen-Drywingsomsettingseenhede T.P.Fluri Departement Meganiese en Megatroniese Ingenieurswese Universiteit van Stellenbosch Privaat Sak X1, Matieland 7602, Suid-Afrika Proefskrif: PhDIng (Meg) 2008 Die drywingsomsettingseenheid van ’n groot sonskoorsteenaanleg sit die vloei- drywing om, eers in meganiese drywing en dan in elektriese drywing. In hierdie proefskrif word ’n gereedskapstuk ontwikkel om die uitleg en aantal turbines van die sonskoorsteen-drywingsomsettingseenheid te bepaal wat die laagste koste van elektrisiteit lewer. Eerstens word die geskiedenis van die sonskoorsteen en verwante navors- ingsvelde behandel. Moontlike eienskappe en konfigurasies vir die drywingsom- settingseenheid word voorgestel,en daar word aangetoon hoe die sonskoorsteen- drywingsomsettings-eenheid vergelyk met ander toepassings. ’n Raamwerk van die proefskrif word gegee, en die potensiële trefkrag daarvan word bespreek. ’n Analitiese turbine-model word ontwikkel. Verskeie nabootsingsbenader- ings en die vertoning van ’n enkelrotor en teenroterende turbine-uitlegte word vergelyk. Voorlopige turbine-ontwerpe word ondersoek, eksperimenteel en nu- meries. Die hoofdoel van die eksperimentele ondersoek is om die toepaslikheid van die verliesmodel in die analitiese turbine-model te bevestig. Die doel van die numeriese ondersoek is om kommersiële sagteware op te weeg as ’n gereedskap- stuk in die konteks van sonskoorsteenturbines. Vir elke onderdeel van die drywingsomsettingseenheid word ’n analitiese mo- del voorgestel. Met gebruik van hierdie modelle word die enkele vertikale-as, die veelvoudige vertikale-as an die veelvoudige horisontale-as turbinekonfigurasies vergelyk vanuit ’n benuttingsgraad- en energie-opbrengsoogpunt,en die uitwerk- ing van die verkillende verliese op die algehele gedrag word uitgewys. ’n Koste- model in besonderhede word vir die drywingsomsettingseenheid aangebied. Om vir die koste van elektrisiteit te optimeer word hierdie kostemodel dan gekoppel aan die vertoningsmodelle,en die gevolglikeoptimeringskemaword toegepas op verskeie aanlegkonfigurasies. iv Uittreksel v Daar word aangetoon dat vir ’n groot sonskoorsteenaanleg die drywingsom- settingsenheid wat die minimum koste van elektrisiteit gee, bestaan uit veelvou- dige horisontale-as turbines met enkelrotoruitleg en inlaatleilemme. Acknowledgments The present dissertation was only possible with the contribution of mainly the following people: Professor Theo Von Backström, my mentor and promoter, gave the initial out- line for this work and always had an open ear and useful advice ready. Hannes Pretorius and Cobus Van Dyk, my fellow solar chimney PhD students, and their promoters, Professors Detlev Kröger and Gideon Van Zijl, offered plenty of inspi- ration and insight from their areas of expertise. Hannes Pretorius also provided the plant performance data. Andrew Gill helped setting up and operating the experimental rig. Emile Coetzer designed and manufactured the turbine used for the experimental work. Cobus Zietsman and his team in the mechanical workshop mademanufacturing of parts and setting up the experiment a smooth process. Thomas Hildebrandt of NU- MECA supplied a free license and gave excellent support for their software pack- age. Volker Wittwer of the Fraunhofer-Institute for Solar Energy Systems pro- vided valuable information on glass used in solar engineering. Danie Els gave expert LATEX supportand helped with the layout of thisdocument. Marco Bernar- des proof read the dissertation and gave useful feedback. Nicola Cencelli, Keegan Thomas, Giovanni Milandri,Carl Kirstein,Sandisiwe Mvi- mbi and Andrew Gill (in order of appearance) made theoffice I shared with them a friendly and motivating work environment. My friends in South Africa,of whom some have already been mentioned,made Stellenbosch a home away from home; my friends and family in Switzerland and in other parts of the world never tired of giving moral support. The work presented in this dissertation was funded by the German Volkswagen- Stiftung and the South African National Research Foundation. Thank you. vi Contents Declaration i Abstract ii Uittreksel iv Acknowledgments vi Contents vii List of Tables xi List of Figures xiii Nomenclature xv Chapter 1. Introduction 1 1.1 TheSolarChimneyPowerPlant . 1 1.1.1 ASolarChimneyTimeline. 2 1.1.2 MainFieldsofResearch . 3 1.1.3 OtherFieldsofResearch. 5 1.1.4 ComparisontoOtherPowerSchemes . 7 1.2 TheSolarChimneyPowerConversionUnit(SCPCU) . 8 1.2.1 VariousFeaturesandConfigurationsofSCPCUs . 8 1.2.2 ComparisontootherApplications . 10 1.3 DissertationOutline............................ 11 1.3.1 Method............................... 12 1.4 PotentialImpactofthisDissertation . ... 13 1.4.1 PlantPerformanceDataandYieldEvaluation . 14 1.4.2 ModelsforPlantCostandO&MCost . 15 1.4.3 CostofElectricityEvaluation . 16 1.4.4 Results ............................... 17 Chapter 2. Turbine Modelling and Layouts 19 2.1 LiteratureReview ............................. 19 2.2 DescriptionofLayouts .... ....... ....... ....... 20 2.3 TurbineModelling............................. 21 vii Contents viii 2.3.1 StructureoftheProgram. 21 2.3.2 MathematicalTurbineModels . 23 2.3.3 GeometryandOperatingConditions . 28 2.4 Results.................................... 28 2.4.1 ComparisonofLayouts . 28 2.4.2 ComparisonofVariousModellingApproaches . 31 2.5 SummaryandConclusions. 32 Chapter 3. Experiments on Turbine Models 33 3.1 SingleTurbineRig ............................. 34 3.2 MultipleTurbineRig............................ 35 3.2.1 TurbineDesignandManufacture . 35 3.2.2 ExperimentalSetup . 36 3.2.3 PostProcessing .......................... 39 3.2.4 ExperimentalResults. 40 3.3 SummaryandConclusions. 43 Chapter 4. CFD Analysis of Turbine Models 45 4.1 Tools..................................... 46 4.2 Method ................................... 46 4.2.1 TheComputationalGrids . 46 4.2.2 FlowModelling .......................... 47 4.2.3 Convergence............................ 47 4.2.4 BoundaryConditions . 48 4.2.5 PostProcessing .......................... 48 4.3 Results.................................... 48 4.4 Conclusions................................. 52 Chapter 5. Performance of the PCU 53 5.1 AerodynamicLosses............................ 54 5.1.1 IntakeLosses ........................... 54 5.1.2 TurbineLosses .......................... 54 5.1.3 DiffusionLosses ......................... 55 5.1.4 MixingLosses ........................... 55 5.1.5