Geology Background Booklet with Updated
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pilot Rock - Soda Mountain 6089 Ft Elev
Pilot Rock Cascade-Siskiyou BLM BLM archives Rising 570 ft to an elevation of 5910 ft., Pilot Rock is perhaps the most striking feature of Cascade- Siskyou National Monument. Visible from much of the Shasta Valley in northern California and parts of Oregon’s Rogue Valley, the Rock serves as a friendly beacon to some five million vehicles and their passengers that travel the I-5 corridor annually. Competing Theories Pilot Rock is part of the Cascade Range, a mountain Put simply, a “plug” is an intrusive body formed by mag- range notable for its string of volcanic peaks stretching ma which cooled underground and was later exposed by from British Columbia to northern California’s Lassen erosion. Peak. The Monument’s proclamation refers to Pilot Rock as “a volcanic plug,” describing it as “a remnant of a Recent Research feeder vent left after a volcano eroded away, leaving an Recent research regarding Pilot Rock suggests that 25 outstanding example of the inside of a volcano.” Pilot million years ago, magma oozed through a weak spot Rock is composed mostly of volcanic andesite and has in the earth’s crust, but did not reach the surface. As a sheer, vertical faces with classic columnar jointing created result, some geologists refer to Pilot Rock as technically by the cooling of its andesite composition. a “volcanic plug,” but NOT as defined in the Monument’s proclamation. (The proclamation evidently uses “plug” Plug or a Neck or both? and “neck” interchangeably.) However “plugs”and Many geologists use the terms “neck” and “plug” in- “necks” are defined, what they both have in common is terchangeably, while others believe the terms apply to erosion. -
Ashland Ranger District Rogue River National Forest APPENDICES
'L-JCUMENU A 13.66/2: B 42x/APP./c.4 I V 0) C) oa)4e EN D\ Ashland Ranger District Rogue River National Forest APPENDICES APPENDIX A: KEY ISSUES & KEY QUESTIONS APPENDIX B: FIRE Identification of Specific Vegetation Zones for the Bear Watershed Analysis Area Fire Behavior Fuel Model Key Fuel Model Assignments Chronology of Events APPENDIX C: GEOLOGY, GEOMORPHOLOGY & SOILS Geology and Geomorphology of the Bear Watershed Analysis Area Characteristics of Soil Productivity APPENDIX D: HYDROLOGY What Sort of Debris is Transported Stream Classification Bibliography of Water Quality Studies Map: Drainageways Crossed Map: Dominant Precipitation Patterns APPENDIX E: FISHERIES Historic and Current Miles of Fish Habitat River Mile Index APPENDIX F: AQUATIC AND RIPARIAN HABITAT Habitat Comparison Chart Relative Comparison of Stream Gradients With Coarse Woody Debris Historic and Current Conditions for Aquatic Processes and Functions Maps: Reach Breaks of Neil Creek, West Fork & East Forks of Ashland Creek Table: Processes & Human Influences on Aquatic and Riparian Ecosystems Map: U.S. Fish & Wildlife Surveyed Wetlands Map: Supplemental Water Distribution System Broad Level Delineation of Major Stream Types (Rosgen) Delineative Criteria for Major Stream Types (Rosgen) APPENDIX G: HERITAGE RESOURCES Cultural Uses in the Bear Watershed Analysis Area Chronology of Important Dates APPENDIX A I KEY ISSUES & KEY QUESTIONS Key Questions IMPORTANT TO REMEMBER: These questions drive the analysis for Chapter II: Historic and Current Conditions and Future Trends. CLIMATE Identification of the atmospheric/climate regimes under which the ecosystem of the Bear Watershed Analysis Area have developed is important to this analysis. Attributes to be discussed in this analysis include periods of flood and drought, storm patterns in the winter and summer, occurrence of severe lightning and wind storms, rain on snow events, etc. -
Geologic History of Siletzia, a Large Igneous Province in the Oregon And
Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Wells, R., Bukry, D., Friedman, R., Pyle, D., Duncan, R., Haeussler, P., & Wooden, J. (2014). Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot. Geosphere, 10 (4), 692-719. doi:10.1130/GES01018.1 10.1130/GES01018.1 Geological Society of America Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Downloaded from geosphere.gsapubs.org on September 10, 2014 Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Ray Wells1, David Bukry1, Richard Friedman2, Doug Pyle3, Robert Duncan4, Peter Haeussler5, and Joe Wooden6 1U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025-3561, USA 2Pacifi c Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, 6339 Stores Road, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 3Department of Geology and Geophysics, University of Hawaii at Manoa, 1680 East West Road, Honolulu, Hawaii 96822, USA 4College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Building, Corvallis, Oregon 97331-5503, USA 5U.S. Geological Survey, 4210 University Drive, Anchorage, Alaska 99508-4626, USA 6School of Earth Sciences, Stanford University, 397 Panama Mall Mitchell Building 101, Stanford, California 94305-2210, USA ABSTRACT frames, the Yellowstone hotspot (YHS) is on southern Vancouver Island (Canada) to Rose- or near an inferred northeast-striking Kula- burg, Oregon (Fig. -
Little Butte Creek Watershed Assessment
Little Butte Creek Watershed Assessment Little Butte Creek Watershed Council August 2003 Abstract The Little Butte Creek Watershed Assessment has been prepared for the Little Butte Creek Watershed Council with funding from the Oregon Watershed Enhancement Board (OWEB). The Assessment was prepared using the guidelines set forth in the Governor’s Watershed Enhancement Board’s 1999 Oregon Watershed Assessment Manual. The purpose of this document is to assess the current conditions and trends of human caused and ecologic processes within the Little Butte Creek Watershed and compare them with historic conditions. Many important ecological processes within the watershed have been degraded over the last 150 years of human activity. This Assessment details those locations and processes that are in need of restoration as well as those that are operating as a healthy system. The Assessment was conducted primarily at the 5th field watershed level, that of the entire Little Butte Creek Watershed. List and describe field watershed levels below. Where possible, the analyses was refined to the smaller 6th field watershed level, thirteen of which exist within the Little Butte Creek Watershed. The assessment also notes gaps in data and lists recommendations for future research and data collection. It is intended that this document, and the Little Butte Creek Watershed Action Plan be used as guides for future research and watershed protection and enhancement over the next decade. The document was developed using existing data. No new data was collected for this project. Where data was lacking, it was detailed for future work and study. Acknowledgements This assessment was compiled and written by Steve Mason. -
Medford Area Geology Report
._.. April GEOLOGICAL NE1/lS - w..""'TTER 33 1948 GEOLOGY IN THE MEDFORD AREA. OREGON By Hollis M. Dole* This paper is a review of the geology of part of southwestern Oregon as worked out and mapped by Diller, Winchell, Wells, and Wilkinson.** The area described is of special interest because it affords an opportunity to observe the seldom exposed "basement" rocks of the Cascade Range. The geologic column of this area includes possible Proterozoic, Paleozoic, Mesozoic, and 0-enozoic rocks. The ee-nozoTc -rock-s- are represented in the rocks of the western Cascades and in the sediments and volcanics of Bear Creek and Rogue Ri ver valleys. The Mesozoic rocks occur along the southwestern edge of Bear Creek Valley and in isolated spots on the adjacent foothills. The oldest rocks are to the south and west of Medford in the Klamath geomorphic province, and they, in this area, are called the Siskiyou Mount~ . Old schists are found near the California line almost due south of Medford. These schists undoubtedly are some of the oldest rocks in Oregon, although there is no definite paleontological evidence to prove this. They consist of highly altered, crenulated and folded rocks, the most abundant of which are plagioclase hornblende schists. Sericite and graphitic schists are also common. The plagio clase-hornblende schists are interpreted as highly altered andesite or basalt flows, the sericite schists as altered dacite or rhyolite, and the graphitic schists as altered organic sedimentary rocks. The age of these rocks is Paleozoic or older, and their character indicates both volcanism in Oregon in earliest times and the existence of ancient seas. -
Cordilleran Section Meeting
Vol. 51, No. 4 Cordilleran Section Meeting 15–17 May Portland, Oregon, USA www.geosociety.org/cd-mtg 115th Annual Meeting of the Cordilleran Section Geological Society of America Portland, Oregon, USA 15–17 May 2019 Oregon Convention Center Local Program Committee Meeting Co-chairs . Martin Streck, Jim O’Connor Technical Program . Matt Brunengo, Erick Burns, Anita Grunder Field Trips . Jason McClaughry, Clark Niewendorp, Bob Houston Workshops, Exhibits, and Student Volunteers . Frank Granshaw Sponsorship . Scott Burns GSA Cordilleran Section Officers 2018–2019 Chair . Michael Wells Vice Chair . Jeffrey Lee Past Chair . Susan M . Cashman Secretary and Accounting Officer . Calvin G . Barnes Student Representative . Jason Womer GSA Councilors . Nathan Niemi, Jeff Rubin, Wendy Bohrson Sponsors We are grateful to the following sponsors who have graciously contributed financial and logistical support . Association of Women Geoscientists The Paleontological Society Portland State University NOTICE By registering for this meeting you have acknowledged that you have read and will comply with the GSA Code of Conduct for Events (full code of conduct found on inside back cover) . If you have any concerns about behavior that may violate the Code, please contact: GSA Executive Director, Vicki McConnell, vmconnell@geosociety .org GSA Ethics and Compliance Officer, Nan Stout, gsaeventscode@gmail .com You may also stop by the registration desk or the GSA Bookstore to have the named individuals directly contacted via phone . 50% Total Recovered Fiber 30% Post-Consumer General Information Location about 250 feet west of the Holladay Lobby entrance. The The 115th Annual Meeting of the Cordilleran Section DoubleTree by Hilton Hotel Portland is across the street from of the Geological Society of America will be held at the the Holladay Park MAX station, also served by the Red, Blue, Oregon Convention Center (OCC), Portland, Oregon, and Green Lines. -
Northwest Regional Conference Brochure
The Oregon Trail State Volkssporting Association and Rogue Oregon Trail State Volkssporting Valley Walkers proudly invite you to attend the 25-28 June 2020 Northwest Regional Conference in Medford, Oregon. This fun event Association and Rogue Valley Walkers will provide a daily featured walk in Ashland, Jacksonville, Medford, Proudly present the 25-28 June 2020 and Casey State Park. Also offered are 3 self-guided challenge hikes Northwest Regional Conference in the Rogue River Gorge, Grizzly Peak, and Mount Ashland Meadows, a peaceful bike along the Bear Creek Greenway and a in Medford, Oregon swim. To enhance your experience, the Rogue River Walkers will ➢ 4 Featured Walks/3 Challenge Hikes/Bike/Swim have all 12 of their year round event directions and stamps available • Forest Therapy with Shakespeare, Ashland at the Inn throughout the conference. All sporting events are open to • Gold Mining Trails and Town, Jacksonville the public for a small $3.00 participation fee. No dogs allowed in • Medford Regional Director’s Meander, Medford Ashland’s Lithia Park. Wear hats, sunscreen and take water with you. • Casey State Park Caper Registration: Pre-registration required by 31 May 2020. Pre- • 3 Challenge Hikes in Rogue River Gorge, Grizzly Peak, registered walkers will be able to check in after noon on Wed, 24 Jun and Mount Ashland Meadows 2020 in the lobby of the Inn at the Commons. All other registration will • Bike along Bear Creek Greenway/Swim at pool be 7:00-4:00 Thu-Sat, 7:00-noon Sun. ➢ 12 nearby Rogue River Valley year round events ➢ Meet and Greet Social (Thursday) Meet and Greet: Thu, 25 Jun 2020, 4:30-6:00, light appetizers, and ➢ 4 Training Sessions (Friday) no host bar in The Meadows, Inn at the Commons. -
Scenic Bikeways! Safety Tips Please Be Aware That the Bikeway Information Here Is in 2009, Oregon Became the First State to Develop Only Advisory
Explore Oregon’s Scenic Bikeways! Safety Tips Please be aware that the bikeway information here is In 2009, Oregon became the first state to develop only advisory. You assume all risks as far as the quality a statewide Scenic Bikeway program. Ten years and accuracy of the information; in other words, you’re later this innovative program now includes 17 agreeing to use it at your own risk. Scenic Bikeway designated bicycle routes that showcase Oregon’s routes include roads with car and truck traffic, and are breathtaking landscapes, cultural treasures and for cyclists that are comfortable riding in some amount western hospitality. of traffic. Cyclists must obey the rules of the road. For car-free riding, check out the Banks-Vernonia State Trail Scenic Bikeways are Oregon’s best of the best bicycle rides on the Tualatin Valley Bikeway and the Row River Trail for exploring this beautiful state. Everyone can find a ride section of the Covered Bridges Bikeway. that fits their style, from a half-day, family-friendly outing A must-know: in Oregon, a bicycle is legally considered to a multi-day, remote and challenging route. Ride one or a vehicle (and the same laws apply). Riding with the connect a series of bikeways for an epic adventure. Official direction of traffic is the law; it’s also the best way to be route signs are posted along each bikeway. seen by motorists. Painted Hills Scenic Bikeway Crooked River Canyon Bikeway Scenic Bikeways are nominated by locals and then tested To demonstrate the best riding etiquette and promote and vetted by a statewide advisory committee of cyclists, good relations with motorists, please ride single-file. -
Protecting Objects of Scientific Interest in the Cascade-Siskiyou National Monument: Status, Threats and Management Recommendations
Protecting Objects of Scientific Interest in the Cascade-Siskiyou National Monument: Status, Threats and Management Recommendations Compiled and Edited by Dennis C. Odion Odion Botanical Consulting and University of California, Santa Barbara and Evan J. Frost Wildwood Environmental Consulting Ashland, OR December 2002 1 Protecting Objects of Scientific Interest in the Cascade-Siskiyou National Monument: Status, Threats and Management Recommendations Compiled and Edited by Dennis C. Odion Odion Botanical Consulting, and University of California, Santa Barbara and Evan J. Frost Wildwood Environmental Consulting Ashland, OR Prepared for the World Wildlife Fund Klamath-Siskiyou Regional Program Ashland, OR This project was supported by funds generously provided to the World Wildlife Fund from the Wyss Foundation, Bullitt Foundation, and Wilburforce Foundation Protecting Objects of Scientific Interest in the Cascade-Siskiyou National Monument 2 TABLE OF CONTENTS Introduction . .3 Summary Table . 5 I. Plant Species and Communities Vegetation Patterns, Rare Plants and Plant Associations, by Richard Brock . 8 Mixed Conifer Forests, with an Emphasis on Late-Successional / Old-Growth Conditions, by Dominick A. DellaSala . 25 Chaparral and Other Shrub-Dominated Vegetation, by Dennis C. Odion . 38 II. Fish and Wildlife Species Birds of the Cascade-Siskiyou National Monument, by Pepper W. Trail . 42 Peregrine Falcons, by Joel E. Pagel . 53 Butterflies and Moths, by Erik Runquist . 57 Aquatic Environments and Associated Fauna, by Michael S. Parker . 69 III. Key Ecosystem Processes Fire as an Object of Scientific Interest and Implications for Forest Management, by Evan J. Frost and Dennis C. Odion . 76 Landscape and Habitat Connectivity as an Object of Scientific Interest, by Dominick A. -
Geology of the Districts
GEOLOGY OF THE DISTRICTS The Hilt and Colestin Fire Districts are located south of the jagged crest of the Siskiyou Mountains along the watershed divide between the Rogue and Klamath River drainages. The district boundaries lie within the Klamath Mountain geologic province and are largely drained by the main and east forks of Cottonwood Creek and their tributaries. The Klamath Mountains are steep, rugged mountains consisting mainly of metamorphic and igneous rocks that formed beneath the ocean and subsequently collided with the North American continent about 150 million years ago. Complexly folded and faulted rocks are bounded by belts of sparsely vegetated bands of serpentine. Rocks, including igneous, metamorphic, and sedimentary types, are very diverse and interspersed. The Klamath Mountains were formed, in part, by the rotation and westward movement of what was once the northern Sierra Nevada Mountains. Other rock types, including limestone and serpentine, formed under the ocean floor, were uplifted, and attached to the continent. Still other rocks (granites) formed from the melting and subsequent uplift caused by the sinking of the Pacific plate under the North American plate. The Klamath Mountains are irregular and do not form well defined ranges. Most of the short ranges which do occur in the Klamath Mountains run east-west, an unusual characteristic for mountains in North America. The northern portion of the Klamath range is known as the Siskiyou Mountains They extend in an east-west arc for approximately 100 mi (160 km) from east of Crescent City, California northeast along the north side of the Klamath River into Josephine and Jackson counties in Oregon. -
Re and Os Isotopes of the Central Oregon Cascades and Along the Arc Indicate Variable Homogenization and Mafic Growth in the Deep Crust
Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 109 (2013) 345–364 www.elsevier.com/locate/gca Re and Os isotopes of the central Oregon Cascades and along the arc indicate variable homogenization and mafic growth in the deep crust Mariek E. Schmidt a,⇑, Anita L. Grunder a,1, Michael C. Rowe a,2, John T. Chesley b,3 a Department of Geosciences, Oregon State University Corvallis, OR 97333, United States b Department of Geosciences, University of Arizona, Tucson, AZ 85721, United States Received 2 May 2012; accepted in revised form 1 February 2013; available online 14 February 2013 Abstract The rhenium–osmium isotopic system has the potential to track the maturation of arc crust at lower crustal levels because the 187Os/188Os in magmas is sensitive to the age and composition of crust with which they interact. We here present Re and Os iso- topic data for a suite of samples from the extensional central Oregon Cascade arc that includes diverse, primitive (high Mg) bas- alts and low- and medium-K basaltic andesites from North Sister and Little Brother volcanoes. The basaltic andesites contain higher 187Os/188Os than the two most common basalt types, calc-alkaline basalt and low-K tholeiites (0.17–0.19 vs. 0.14– 0.15), indicating interaction with mafic crust. The evolution of 187Os/188Os in the deep crust depends on Re partitioning that in turn depends on sulfide and magnetite stability and oxygen fugacity. We estimate bulk mineral-melt partition coefficients for Re to be 4atfO2 QFM and 10 at fO2 +1 to +3 DQFM in keeping with near liquidus phase equilibria at deep crustal conditions (Mercer and Johnston, 2008) and on fO2 of central Oregon primitive magmas (Rowe et al., 2009). -
Vol. 23, No. the ORE.-BIN January 1961 STATE of OREGON Portland
THE ORE BIN Volume 23, 1961 Vol. 23, No. THE ORE.-BIN January 1961 STATE OF OREGON Portland, Oregon DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES Head Office: 1069 State Office Bldg., Portland 1, Oregon Telephone: CApitol 6-2161, Ext. 488 State Governing Board Hollis M. Dole, Director William Kennedy, Chairman, Portland Harold Banta Baker Stoff Earl S. Mollard Riddle R. G. Bowen Geologist Field Offices R. E. Corcoran Geologist 2033 First Street, Boker L. L. Hoogland Assayer and Chemist N. S. Wagner, Field Geologist Rolph S. Mason Mining Engineer H. C. Brooks, Field Geologist T. C. Matthews Spectroscopist 239 S. E. "H" Street, Grants Pass V. C. Newton, Jr. Petroleum Engineer Len Ramp, Field Geologist H. G. Schlicker Geologist Norman Peterson, Field Geologist M. L. Steere Geologist * * * * * * * * * * * * * * * * * * OREGON MINERAL PRODUCTION IN 1960 By Ralph S. Mason* Oregon's mineral industry produced its second highest value of row minerals in 1960. Following a nation-wide economic trend during the year, the industry was off approximately $3 million from lost year's record-breaking high of $49.8 million, according to preliminary estimates mode by the U. S. Bureau of Mines. The heavy construction commodities, crushed stone and sand and grovel, reflected construction log and were responsible for most of the change from lost year. Metal mining, aside from nickel, was quiet. The state's only uronium mine and one of the two mercury producers shut down. Industrial mineral products showed both gains and losses as compared to the previous year. Cement production was up 12 percent while clays declined 15 percent and diatomite 3 percent.