Late Mesozoic Or Early Tertiary Melanges in the Western Cascades of Washington

Total Page:16

File Type:pdf, Size:1020Kb

Late Mesozoic Or Early Tertiary Melanges in the Western Cascades of Washington Washington Division of Geology and Earth Resources Bulletin 77, 1987 129 LATE MESOZOIC OR EARLY TERTIARY MELANGES IN THE WESTERN CASCADES OF WASHINGTON Virgil A. Frizzell, Jr. U.S. Geological Survey 2255 North Gemini Flagstaff, Arizona 86001 Rowland W. Tabor Robert E. Zartman Charles D. Blome U.S. Geological Survey U.S. Geological Survey U.S. Geological Survey 345 Middlefield Road Denver Federal Center Denver Federal Center Menlo Park, California 94025 Denver, Colorado 80225 Denver, Colorado 80225 ABSTRACT Marine rocks west of the Straight Creek fault, from Snoqualmie Pass to the Pilchuck River, are highly deformed and varied in lithology. These rocks, referred to various formations or stratigraphic units by earlier workers, should be considered two lithologically distinct melange belts. Immediately west of the Straight Creek fault from the Weden Creek area to Snoqualmie Pass, the discontinuous melange of the eastern belt consists of strongly hornfelsed rocks including chert, metabasalt, graywacke, argiUite, marble, and ultramafic rocks. Marble near Skykomish yields Permian fusu1inids with Tethyan affinities. Zircons from tonalitic gneiss northwest of Skykomish are 190 million years old, and metagabbro near Snoqualmie Pass is 165 million years old. In the western foothills, the melange of the western belt consists of pervasively sheared argillite and graywacke studded with outcrop- to mountain-scale steep-sided phacoids of chert, limestone, pillow basalt, gabbro, and tonalite; ultramafic rocks are rare. Strikes of bedding and cleavage and trends of small fold axes are mostly north-northwest to north-northeast. Rare macrofossils in foliated sedimentary rocks and radiolarians in chert phacoids are Late Jurassic to Early Cretaceous in age. Tonalite associated with gabbro and diabase yields zircon U-Th-Pb ages of 150 to 170 million years in the Woods Creek area, at Mount Si, at Winter Lake, and on the North Fork of the Snoqualmie River. The general Late Jurassic age of both igneous and marine sedimentary components of this western belt suggests that most of these rocks were derived from a contemporaneous, if not common, oceanic sequence; the metaplutonic rocks therein may represent the oceanic basement of the sedimen­ tary rocks. Although we cannot rule out the possibility that the isolated tectonic blocks of metatonalite and metagabbro in the melanges are klippen of the proposed Haystack thrust to the northwest, we think that imbrication of the oceanic basement with its sedimentary and volcanic cover during formation of the melanges is a more probable origin for the blocks. The melange belts probably were formed by accretion, perhaps after the widespread Late Cretaceous metamorphic event in the Cascades to the east, but before the Eocene. Post-Late Cretaceous right-lateral strike­ slip faulting along the Straight Creek fault has moved the rocks to their present position. INTRODUCTION crop out west of the fault more or less between the Pre-Tertiary rocks in the central and northern Pilchuck River and the South Fork of the Snoqualmie Cascade Range of Washington consist of weakly meta­ River. morphosed to unmetamorphosed Paleozoic and Meso­ Previously, many of these rocks have been consid­ zoic sedimentary and igneous rocks west of the ered to be conventional stratified formations of sedi­ Straight Creek fault and medium- to high-grade meta­ mentary rocks and assigned a variety of formation morphic rocks east of the fault (Fig. 1). Some of the names and ages. (See table l of Dungan, 1974.) medium- to high-grade rocks east of the fault are Because of the intense penetrative deformation and described in a companion article (Tabor and others, scattering of exotic components in the rocks, we con­ this volume). We describe here two lithologically dis­ sider them to be melanges. They appear to constitute tinct belts of pervasively deformed marine rocks that two melange belts: an eastern belt that contains pre- 130 Selected papers on the geology of Washington 123° data suggest that both belts contain Paleozoic and Mesozoic components. Numerous workers, primarily students from the University of Washington, have investigated these and similar rocks; their endeavors, summarized briefly below, were of great value to us. Because much remains to be learned about the lithologies, ages, and relations of the rocks in the melanges, we refrain from using the formation names assigned by earlier workers, except when referring to work of others or correlations made by others with rocks outside the area of this report. Although Silberling and others (1984, p. C-22 - C-27) have correlated the melanges of the eastern and western belts with regional terranes called the San Juan and Olney Pass terranes, respectively, mapping and correlation of the melanges with regional terranes are still in progress. The origin of these disrupted oceanic Paleozoic and Mesozoic rocks and their subse­ quent accretion to the North American continent have EXPLANATION ~ been considered by many students of Northwest geol­ ECl) ogy (for instance, Danner, 1977; Davis and others, 0 Surficial deposits :, 1978; Coney and others, 1980; Vance and others, 0 u 5 1980; Whetten and others, 1980). N 0 We describe the melanges in two formats. The Intrusive rocks z w u general description of early work, naming and correla­ tions, overall structure, and age are discussed in the Sedimentary and volcanic rocks .,, :, text under "Description of Melange Belts." More 0 Cl)"' detailed lithologic descriptions of melange components l''~',':',, '''l" ~~ -oco ...J- 0 Plutonlc and metamorphic rocks I!? accompany Figure 2. New radiometric ages are given u ~~ uO in Appendix Tables Al and A2. -N nmmm 00 NW Melange Undifferentiated melange 0...J (/) <l "DEFINITION" OF MELANGE and marine sedimentary wn. and volcanic rocks ~ The term "melange", first applied on the West - -- Contact Coast by Bailey (1941, p. 30) to the Franciscan assem­ --- Fault blage "because of extreme contortion of the structures as well as the variability of the rock types," was popularized in the United States by Hsu (1968), whose work, also in the Franciscan, precipitated much discus­ Figure 1.-Simplified geologic map of northwestern sion. Although attempts have been made to formally Washington, showing location of melange belts in define the term "melange" (for example, Berkland and relation to other major rock groups and structures. others, 1972, p. 2296), participants at the 1978 Pen­ rose Conference on Melanges tried to arrive at a single dominantly chert and volcanic materials, and a west­ comprehensive definition without complete success. ern belt that contains predominantly elastic materials. However, the usage that grew from those discussions Two recent studies (Fox, 1983; Jones and others, (Silver and Buetner, 1980, p. 32 [after Hsu, 1968]) is 1978) describing the distribution and composition of applicable to rocks discussed in this paper. melanges on the West Coast omitted these rocks, even " 'Melange' is a general term though they underlie a significant area in western describing a mappable (at 1:25,000 or Washington. In a previous report (Frizzell and others, smaller scale), internally fragmented 1982), we indicated that the melange of the eastern and mixed rock body containing a belt contained both Paleozoic and Mesozoic compo­ variety of blocks, commonly in a per­ nents, whereas the melange of the western belt con­ vasively deformed matrix. The term tained mostly Late Jurassic and Early Cretaceous refers to rock mixtures formed by tec­ components. More recent field work and new fossil tonic movements, sedimentary sliding, Melanges in the Western Cascades I 3 I or any combination of such processes, nation is possible because the specimens have appar­ with no mixing process excluded. It ently been lost, Duror's descriptive report on the does not imply a particular mixing brachiopod and trilobite fauna (in Smith, 1916, p. 580- process. 'Melange' is a handy 582) includes line drawings. Duror concluded from her descriptive term, alerting the reader examination that the fossils were "Trenton age" and to the possibility that such a body had not been recorded in rocks younger than Ordovi­ may not conform to classic principles cian. Dedicated sleuthing by W. R. Danner (reported of superposition and stratigraphic in Galster, 1956, p. 20-21) failed to unearth either the succession [our emphasis]." specimens originally described by Duror or corrobora­ tive samples from Lowe Gulch, but the line drawings We would add to this general definition that exotic indicate that the fossils were correctly identified (J. T. blocks-tectonic inclusions detached from rocks for­ Dutro, Jr., personal commun., 1983). eign to the main body of the melange-should be Danner ( 1957) was successful, however, in produc­ present to distinguish a melange from a broken forma­ ing the first truly comprehensible regional strati­ tion (Hsu, 1968, p. 1065). graphic history of the pre-Tertiary rocks of western Washington. He (1957, p. 230-249) detailed the occur­ DESCRIPTION OF MELANGE BELTS rence of marble (discussed below) in the Skykomish area that he referred to his Stillaguamish Group Melange of the Eastern Belt (Danner, 1957); he has since called these rocks the The melange of the eastern belt consists predomi­ "Trafton sequence" (Danner, 1966, p. 363). Galster nantly of a mixture of mafic volcanic rocks and chert (I 956, p. 14-22) mapped rocks southwest of with minor argillite and graywacke. Marble is conspic­ Skykomish, which he also referred to the Stil­ uous locally, and large and small pods of ultramafic laguamish (now the Trafton). rocks occur throughout the belt. Mafic migmatitic Yeats ( 1964, p. 556) referred a prominent area of gneiss, metadiabase, and metatonalite are also present outcrop northwest of Skykomish to his (restricted) in the eastern belt. The rocks are considerably Gunn Peak Formation and Barclay Creek Formation. deformed, slightly metamorphosed (mostly to green­ The Gunn Peak Formation, composed predominantly schist facies), and locally overprinted to pyroxene of ribbon chert and quartzite (metachert) and contain­ hornfels by Tertiary plutons.
Recommended publications
  • Seismicity in Cascadia
    Lithos 332–333 (2019) 55–66 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Seismicity in Cascadia Michael G. Bostock ⁎, Nikolas I. Christensen, Simon M. Peacock Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Canada article info abstract Article history: We examine spatio-geometric patterns in the density of seismicity within the Cascadia forearc to gain insight into Received 11 July 2018 controls on seismogenesis. Tremor epicenters exhibit the most regular distribution defining a 40–80 km wide 27 December 2018 band extending along almost the entire convergent margin from the southern terminus of Gorda plate subduc- Accepted 23 February 2019 tion in northern California to the central Explorer plate below northern Vancouver Island. Based on prior charac- Available online 26 February 2019 terization of constituent low-frequency earthquakes, the up- and down-dip limits of tremor are assumed to fl Keywords: represent slab isodepth contours at nominal values of 28 and 45 km, between which uids at near-lithostatic Seismicity overpressures are trapped within the subducting slab. Epicenters of earthquakes within the North American Tremor crust are anticorrelated with those of tremor, and concentrated in Washington and northern California where Cascadia they are sandwiched between tremor and the Cascade volcanic arc. Seismicity within the subducting plate Fluids possesses the most limited epicentral distribution. Seismicity is confined to shallow depths off Vancouver Island Subduction and in northern California, and projects to greater depths beneath Washington and southern British Columbia. Forearc Comparison of seismicity patterns with long-wavelength slab geometry and thermo-petrologic constraints sug- Serpentinization gests that seismicity occurrence in Cascadia is governed by an interplay between slab strain, metamorphic dehy- Eclogitization dration within the subducting oceanic plate, and a plate boundary seal that controls where fluids enter the Volcanism overriding plate.
    [Show full text]
  • USGS Geologic Investigations Series I-1963, Pamphlet
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP I-1963 U.S. GEOLOGICAL SURVEY GEOLOGIC MAP OF THE SKYKOMISH RIVER 30- BY 60 MINUTE QUADRANGLE, WASHINGTON By R.W. Tabor, V.A. Frizzell, Jr., D.B. Booth, R.B. Waitt, J.T. Whetten, and R.E. Zartman INTRODUCTION From the eastern-most edges of suburban Seattle, the Skykomish River quadrangle stretches east across the low rolling hills and broad river valleys of the Puget Lowland, across the forested foothills of the North Cascades, and across high meadowlands to the bare rock peaks of the Cascade crest. The quadrangle straddles parts of two major river systems, the Skykomish and the Snoqualmie Rivers, which drain westward from the mountains to the lowlands (figs. 1 and 2). In the late 19th Century mineral deposits were discovered in the Monte Cristo, Silver Creek and the Index mining districts within the Skykomish River quadrangle. Soon after came the geologists: Spurr (1901) studied base- and precious- metal deposits in the Monte Cristo district and Weaver (1912a) and Smith (1915, 1916, 1917) in the Index district. General geologic mapping was begun by Oles (1956), Galster (1956), and Yeats (1958a) who mapped many of the essential features recognized today. Areas in which additional studies have been undertaken are shown on figure 3. Our work in the Skykomish River quadrangle, the northwest quadrant of the Wenatchee 1° by 2° quadrangle, began in 1975 and is part of a larger mapping project covering the Wenatchee quadrangle (fig. 1). Tabor, Frizzell, Whetten, and Booth have primary responsibility for bedrock mapping and compilation.
    [Show full text]
  • Kinematic Reconstruction of the Caribbean Region Since the Early Jurassic
    Earth-Science Reviews 138 (2014) 102–136 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Kinematic reconstruction of the Caribbean region since the Early Jurassic Lydian M. Boschman a,⁎, Douwe J.J. van Hinsbergen a, Trond H. Torsvik b,c,d, Wim Spakman a,b, James L. Pindell e,f a Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands b Center for Earth Evolution and Dynamics (CEED), University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway c Center for Geodynamics, Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7491 Trondheim, Norway d School of Geosciences, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa e Tectonic Analysis Ltd., Chestnut House, Duncton, West Sussex, GU28 OLH, England, UK f School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3YE, UK article info abstract Article history: The Caribbean oceanic crust was formed west of the North and South American continents, probably from Late Received 4 December 2013 Jurassic through Early Cretaceous time. Its subsequent evolution has resulted from a complex tectonic history Accepted 9 August 2014 governed by the interplay of the North American, South American and (Paleo-)Pacific plates. During its entire Available online 23 August 2014 tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, and the oceanic crust has been overlain by the Caribbean Large Igneous Province (CLIP) since ~90 Ma. The consequent Keywords: absence of passive margins and measurable marine magnetic anomalies hampers a quantitative integration into GPlates Apparent Polar Wander Path the global circuit of plate motions.
    [Show full text]
  • Geologic Map of the Simcoe Mountains Volcanic Field, Main Central Segment, Yakama Nation, Washington by Wes Hildreth and Judy Fierstein
    Prepared in Cooperation with the Water Resources Program of the Yakama Nation Geologic Map of the Simcoe Mountains Volcanic Field, Main Central Segment, Yakama Nation, Washington By Wes Hildreth and Judy Fierstein Pamphlet to accompany Scientific Investigations Map 3315 Photograph showing Mount Adams andesitic stratovolcano and Signal Peak mafic shield volcano viewed westward from near Mill Creek Guard Station. Low-relief rocky meadows and modest forested ridges marked by scattered cinder cones and shields are common landforms in Simcoe Mountains volcanic field. Mount Adams (elevation: 12,276 ft; 3,742 m) is centered 50 km west and 2.8 km higher than foreground meadow (elevation: 2,950 ft.; 900 m); its eruptions began ~520 ka, its upper cone was built in late Pleistocene, and several eruptions have taken place in the Holocene. Signal Peak (elevation: 5,100 ft; 1,555 m), 20 km west of camera, is one of largest and highest eruptive centers in Simcoe Mountains volcanic field; short-lived shield, built around 3.7 Ma, is seven times older than Mount Adams. 2015 U.S. Department of the Interior U.S. Geological Survey Contents Introductory Overview for Non-Geologists ...............................................................................................1 Introduction.....................................................................................................................................................2 Physiography, Environment, Boundary Surveys, and Access ......................................................6 Previous Geologic
    [Show full text]
  • Geologic History of Siletzia, a Large Igneous Province in the Oregon And
    Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Wells, R., Bukry, D., Friedman, R., Pyle, D., Duncan, R., Haeussler, P., & Wooden, J. (2014). Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot. Geosphere, 10 (4), 692-719. doi:10.1130/GES01018.1 10.1130/GES01018.1 Geological Society of America Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Downloaded from geosphere.gsapubs.org on September 10, 2014 Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Ray Wells1, David Bukry1, Richard Friedman2, Doug Pyle3, Robert Duncan4, Peter Haeussler5, and Joe Wooden6 1U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025-3561, USA 2Pacifi c Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, 6339 Stores Road, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 3Department of Geology and Geophysics, University of Hawaii at Manoa, 1680 East West Road, Honolulu, Hawaii 96822, USA 4College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Building, Corvallis, Oregon 97331-5503, USA 5U.S. Geological Survey, 4210 University Drive, Anchorage, Alaska 99508-4626, USA 6School of Earth Sciences, Stanford University, 397 Panama Mall Mitchell Building 101, Stanford, California 94305-2210, USA ABSTRACT frames, the Yellowstone hotspot (YHS) is on southern Vancouver Island (Canada) to Rose- or near an inferred northeast-striking Kula- burg, Oregon (Fig.
    [Show full text]
  • Top 26 Trails in Grant County 2020
    and 12 Watchable Wildlife Units For more information, please contact: Grant County Tourism Commission P.O. Box 37, Ephrata, WA 98823 509.765.7888 • 800.992.6234 In Grant County, Washington TourGrantCounty.com TOP TRAILS Grant County has some of the most scenic and pristine vistas, hiking trails and outdoor 26 recreational opportunities in Washington State. and 12 Watchable Wildlife Units Grant County is known for its varied landscapes on a high desert plateau with coulees, lakes, in Grant County Washington reservoirs, sand dunes, canals, rivers, creeks, and other waterways. These diverse ecosystems Grant County Tourism Commission For Additional copies please contact: support a remarkable variety of fish and PO Box 37 Jerry T. Gingrich wildlife species that contribute to the economic, Ephrata, Washington 98837 Grant County Tourism Commission recreational and cultural life of the County. www.tourgrantcounty.com Grant County Courthouse PO Box 37 Ephrata, WA 98837 No part of this book may be reproduced in (509) 754-2011, Ext. 2931 any form, or by any electronic, mechanical, or other means, without permission in For more information on writing from the Grant County Tourism Grant County accommodations Commission. www.tourgrantcounty.com © 2019, Grant County Tourism Commission Second printing, 10m Trails copy and photographs Book, map and cover design by: provided by: Denise Adam Graphic Design Cameron Smith, Lisa Laughlin, J. Kemble, Veradale, WA 99037 Shawn Cardwell, Mark Amara, (509) 891-0873 Emry Dinman, Harley Price, [email protected] Sebastian Moraga and Madison White Printed by: Rewriting and editing by: Mark Amara Pressworks 2717 N. Perry Street Watchable Wildlife copy and Spokane, Washington 99207 photographs provided by: (509) 462-7627 Washington Department of [email protected] Fish and Wildlife Photograph by Lisa Laughlin CONTENTS CONTENTS Grant County Trails and Hiking Grant County Watchable Wildlife Viewing Upper Grand Coulee Area 1.
    [Show full text]
  • Primitive Magmas at Five Cascade Volcanic Fields 413
    397 The Canadian M ine ralo g i st Vol. 35, pp. 397423 (1997) PRIMITIVEMAGMAS AT FIVECASCADE VOLCANIC FIELDS: MELTSFROM HOT, HETEROGENEOUS SUB.ARC MANTLE CHARLES R. BACONI, PEGGY E. BRUGGMAN, ROBERT L. CHRISTIANSEN, MICHAEL A. CLYNNE" JULIE M. DONNELLY-NOLAN ANDWES HILDRETH U.S.Geological Survey, 345 Mitdl.efield Road" Mmlo Parh Califurnia94025-3591,U.SA. ABSTRACT Major and trace elementconcenftations, including REE by isotopedilution, and Sr, Nd, Pb, and O isotoperatios have been determinedfor 38 mafic lavasfrom the Mount Adams,Crater Lake, Mount ShastaMedicine Lake, and Lassenvolcanic flelds, in the Cascadearc, northwestempart of the United States.Many of the sampleshave a high Mg# tl@Mg/(Mg + FeD > 601and Ni content(>140 ppm) suchthat we considerthem to be primitive. We rccognlzerhree end-member p:,jmillrve magma groups in the Cascades,characterized mainly by their trace-elementand alkali-metal abundances:(1) High-alumina olivine tholeiite (HAOT) hastrace element abundaaces similarto N-MORB, exceptfor slightly elevatedLllE, andhas Eu/Eu* > 1. (2) Arc basalt andbasaltic andesite have notably higher L/lE contents,generally have higher SiO2contents, are more oxidized andhave higher Cr for a given Ni abundancethan HAOT. Theselavas show relative depletioninl/F.i4 havelowerl/ftEE andhigherl,ftEEthan HAOT, andhave smallerEulEu* (0.94-1.06).(3) Alkali basaltfrom the Simcoevolcanic field eastof Mount Adamsreprcsents the third end-membr, which contributesan intraplate geochemicalsigpature to magna compositions.Notable geochemical featuresamong
    [Show full text]
  • GEOLOGIC FRAMEWORK, TECTONIC EVOLUTION, and DISPLACEMENT HISTORY of the ALEXANDER TERRANE Georgee
    TECTONICS, VOL. 6, NO. 2, PAGES 151-173, APRIL 1987 GEOLOGIC FRAMEWORK, TECTONIC EVOLUTION, AND DISPLACEMENT HISTORY OF THE ALEXANDER TERRANE GeorgeE. Gehrels1 and Jason B. Saleeby Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena Abstract. The Alexander terrane consists of Devonian (Klakas orogeny). The second phase is upper Proterozoic(?)-Cambrian through marked by Middle Devonian through Lower Middle(?) Jurassic rocks that underlie much of Permian strata which accumulated in southeastern (SE) Alaska and parts of eastern tectonically stable marine environments. Alaska, western British Columbia, and Devonian and Lower Permian volcanic rocks and southwestern Yukon Territory. A variety of upper Pennsylvanian-Lower Permian syenitic to geologic, paleomagnetic, and paleontologic dioritic intrusive bodies occur locally but do not evidence indicates that these rocks have been appear to represent major magmatic systems. displaced considerable distances from their The third phase is marked by Triassic volcanic sites of origin and were not accreted to western and sedimentary rocks which are interpreted to North America until Late Cretaceous-early have formed in a rift environment. Previous Tertiary time. Our geologic and U-Pb syntheses of the displacement history of the geochronologic studies in southern SE Alaska terrane emphasized apparent similarities with and the work of others to the north indicate rocks in the Sierra-Klamath region and that the terrane evolved through three distinct suggested that the Alexander terrane evolved in tectonic phases. During the initial phase, from proximity to the California continental margin late Proterozoic(?)-Cambrian through Early during Paleozoic time. Our studies indicate, Devonian time, the terrane probably evolved however, that the geologic record of the along a convergent plate margin.
    [Show full text]
  • Unraveling the Geologic History of the Avalon Terrane in MA Erin Nevens
    Undergraduate Review Volume 2 Article 12 2006 Unraveling the Geologic History of the Avalon Terrane in MA Erin Nevens Follow this and additional works at: http://vc.bridgew.edu/undergrad_rev Part of the Geology Commons Recommended Citation Nevens, Erin (2006). Unraveling the Geologic History of the Avalon Terrane in MA. Undergraduate Review, 2, 56-66. Available at: http://vc.bridgew.edu/undergrad_rev/vol2/iss1/12 This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts. Copyright © 2006 Erin Nevens 56 Unraveling the Geologic History ofthe Avalon Terrane in MA BY ERIN NEYENS Erin Nevens wrote this piece under the Abstract mentorship of Dr. Michael Krol. "PO-. ield and petrographic analysis of rocks at Black Rock Beach in Co­ 10_.. hasset, MA record at least two phases of metamorphism and mag­ matic activity and three episodes ofdeformation. The earliest phase of metamorphism and deformation are recorded by mafic gneiss xenoliths. These xenoliths preserve a mylonitic texture, which represents de­ velopment in a ductile deformation environment. The xenoliths occur as large blocks that were later incorporated into the intruding magma of the Dedham granodiorite. Following crystallization, the Dedham granodiorite experienced an episode of plastic deformation. This event resulted in the development of a weak foliation defined by aligned feldspar porphyroclasts. Quartz and feldspar microstructures indicate deformation occurred between 350-450"C. A second phase of magmatic activity was associated with the intrusion ofseveral 1·2 me· ter wide porphyritic basalt dikes that cross-cut both the xenoliths and grano­ diorite,.and resulted in the brittle cataclasis of the Dedham granodiorite, The basalt dikes were emplaced during a time ofcrustal extension and subsequently experienced a late-stage hydrothermal alteration.
    [Show full text]
  • Eastern Washington Pheasant Enhancement Program Annual Report Washington Department of Fish and Wildlife
    State of Washington DEPARTMENT OF FISH AND WILDLIFE Mailing Address: P.O. Box 43200, Olympia, WA 98504-3200 • (360) 902-2200 • TDD (360) 902-2207 Main Office Location: Natural Resources Building, 1111 Washington Street SE, Olympia, WA November 10, 2020 The Honorable Christine Rolfes The Honorable Timm Ormsby Chair, Senate Ways and Means Chair, House Appropriations 303 John A. Cherberg Building 315 John L. O’Brien Building Post Office Box 40466 Post Office Box 40600 Olympia, WA 98504-0466 Olympia, WA 98504-0600 The Honorable Kevin Van De Wege The Honorable Brian Blake Chair, Senate Agriculture, Water Chair, House Rural Development, Natural Resources, and Parks Agriculture & Natural Resources 212 John A. Cherberg Building 437A Legislative Building Post Office Box 40424 Post Office Box 40600 Olympia, Olympia, WA 98504 WA 98504 Dear Chairpersons Rolfes, Ormsby, Van De Wege, and Blake: I am writing to provide you with the Washington Department of Fish and Wildlife’s (Department) annual report regarding the Eastern Washington Pheasant Enhancement Program (EWPEP). The Department is required to submit an annual report (per RCW 77.12.820) summarizing the Department’s eastern Washington pheasant activities under the program. Pheasant harvest has declined in Eastern Washington over the past two decades. To address hunting success rates and pheasant habitat loss, the Department created the EWPEP. The EWPEP completes habitat enhancement to benefit wild pheasant populations and targets the decline by releasing adult rooster pheasants on public lands. The Washington State Legislature funded the EWPEP in 1997 with a dedicated account called the Eastern Washington Pheasant Enhancement account. The funding is derived from a portion of small game hunting licenses, based on the proportion of purchasers who hunt pheasants in eastern Washington.
    [Show full text]
  • Dr. Brett R. Lenz
    COLONIZER GEOARCHAEOLOGY OF THE PACIFIC NORTHWEST REGION A Dissertation DR. BRETT R. LENZ COLONIZER GEOARCHAEOLOGY OF THE PACIFIC NORTHWEST REGION, NORTH AMERICA Thesis submitted for the degree of Doctor of Philosophy at the University of Leicester By Brett Reinhold Lenz Department of Archaeology and Ancient History University of Leicester June 2011 1 DEDICATION This work is dedicated to Garreck, Haydn and Carver. And to Hank, for teaching me how rivers form. 2 Abstract This dissertation involves the development of a geologic framework applied to upper Pleistocene and earliest Holocene archaeological site discovery. It is argued that efforts to identify colonizer archaeological sites require knowledge of geologic processes, Quaternary stratigraphic detail and an understanding of basic soil science principles. An overview of Quaternary geologic deposits based on previous work in the region is presented. This is augmented by original research which presents a new, proposed regional pedostratigraphic framework, a new source of lithic raw material, the Beezley chalcedony, and details of a new cache of lithic tools with Paleoindian affinities made from this previously undescribed stone source. 3 ACKNOWLEDGEMENTS The list of people who deserve my thanks and appreciation is large. First, to my parents and family, I give the greatest thanks for providing encouragement and support across many years. Without your steady support it would not be possible. Thanks Mom and Dad, Steph, Jen and Mellissa. To Dani and my sons, I appreciate your patience and support and for your love and encouragement that is always there. Due to a variety of factors, but mostly my own foibles, the research leading to this dissertation has taken place over a protracted period of time, and as a result, different stages of my personal development are likely reflected in it.
    [Show full text]
  • Little Butte Creek Watershed Assessment
    Little Butte Creek Watershed Assessment Little Butte Creek Watershed Council August 2003 Abstract The Little Butte Creek Watershed Assessment has been prepared for the Little Butte Creek Watershed Council with funding from the Oregon Watershed Enhancement Board (OWEB). The Assessment was prepared using the guidelines set forth in the Governor’s Watershed Enhancement Board’s 1999 Oregon Watershed Assessment Manual. The purpose of this document is to assess the current conditions and trends of human caused and ecologic processes within the Little Butte Creek Watershed and compare them with historic conditions. Many important ecological processes within the watershed have been degraded over the last 150 years of human activity. This Assessment details those locations and processes that are in need of restoration as well as those that are operating as a healthy system. The Assessment was conducted primarily at the 5th field watershed level, that of the entire Little Butte Creek Watershed. List and describe field watershed levels below. Where possible, the analyses was refined to the smaller 6th field watershed level, thirteen of which exist within the Little Butte Creek Watershed. The assessment also notes gaps in data and lists recommendations for future research and data collection. It is intended that this document, and the Little Butte Creek Watershed Action Plan be used as guides for future research and watershed protection and enhancement over the next decade. The document was developed using existing data. No new data was collected for this project. Where data was lacking, it was detailed for future work and study. Acknowledgements This assessment was compiled and written by Steve Mason.
    [Show full text]