Protecting Objects of Scientific Interest in the Cascade-Siskiyou National Monument: Status, Threats and Management Recommendations

Total Page:16

File Type:pdf, Size:1020Kb

Protecting Objects of Scientific Interest in the Cascade-Siskiyou National Monument: Status, Threats and Management Recommendations Protecting Objects of Scientific Interest in the Cascade-Siskiyou National Monument: Status, Threats and Management Recommendations Compiled and Edited by Dennis C. Odion Odion Botanical Consulting and University of California, Santa Barbara and Evan J. Frost Wildwood Environmental Consulting Ashland, OR December 2002 1 Protecting Objects of Scientific Interest in the Cascade-Siskiyou National Monument: Status, Threats and Management Recommendations Compiled and Edited by Dennis C. Odion Odion Botanical Consulting, and University of California, Santa Barbara and Evan J. Frost Wildwood Environmental Consulting Ashland, OR Prepared for the World Wildlife Fund Klamath-Siskiyou Regional Program Ashland, OR This project was supported by funds generously provided to the World Wildlife Fund from the Wyss Foundation, Bullitt Foundation, and Wilburforce Foundation Protecting Objects of Scientific Interest in the Cascade-Siskiyou National Monument 2 TABLE OF CONTENTS Introduction . .3 Summary Table . 5 I. Plant Species and Communities Vegetation Patterns, Rare Plants and Plant Associations, by Richard Brock . 8 Mixed Conifer Forests, with an Emphasis on Late-Successional / Old-Growth Conditions, by Dominick A. DellaSala . 25 Chaparral and Other Shrub-Dominated Vegetation, by Dennis C. Odion . 38 II. Fish and Wildlife Species Birds of the Cascade-Siskiyou National Monument, by Pepper W. Trail . 42 Peregrine Falcons, by Joel E. Pagel . 53 Butterflies and Moths, by Erik Runquist . 57 Aquatic Environments and Associated Fauna, by Michael S. Parker . 69 III. Key Ecosystem Processes Fire as an Object of Scientific Interest and Implications for Forest Management, by Evan J. Frost and Dennis C. Odion . 76 Landscape and Habitat Connectivity as an Object of Scientific Interest, by Dominick A. DellaSala . 92 IV. Appendices I. Presidential Proclamation, Cascade-Siskiyou National Monument . 114 II. Contributor Biographies . 117 Protecting Objects of Scientific Interest in the Cascade-Siskiyou National Monument 3 Introduction The primary objective of this document is to supply the USDI, Bureau of Land Management (BLM) with outside expertise with regard to managing the Cascade-Siskiyou National Monument (hereafter referred to as “the monument” or “CSNM” by various authors). This expertise is provided by the most knowledgeable independent authorities who have considerable expertise with the monument’s unique attributes and biological resources. As explained in this report, the proposed management needs to be ecologically-based, and there is some new information regarding the “Objects of Scientific Interest” for which the monument was designated to protect. The specific objectives of this document are: 1. To provide a brief overview and state-of-knowledge on selected “Objects of Scientific Interest” (OSI) as identified in the Presidential Proclamation that established the monument (Appendix I); 2. To describe the status and condition of the OSIs in relation to ecological integrity on the monument and surrounding area; 3. To provide management recommendations consistent with protecting and restoring ecological integrity in the monument. 4. Offer evidence from independent researchers. The Bureau of Land Management has established the National Landscape Conservation System (NLCS) to help protect some of the nation's most remarkable and biologically diverse landscapes. This report is consistent with the mission of this new entity and providing assistance in achieving goals in common. The management guidelines herein follow directly from the intent of the Presidential Proclamation (Appendix I) and its mandate that preserving the OSIs shall take precedence over any other considerations (i.e. “shall be the dominant reservation”). The biological objects of interest specifically identified include: • A spectacular variety of rare and beautiful species of plants and animals • the rich mosaic of grass and shrublands • Garry and California black oak woodlands • Juniper scablands • Mixed conifer and white fir forests • Wet meadows, and riparian forests • The exceptional range of fauna • One of the highest diversities of butterfly species in the United States • Center of diversity for freshwater snails • Three endemic fish species • Important populations of small mammals, reptiles, amphibians and ungulates • Important winter habitat for deer • Old-growth habitat crucial to the threatened northern spotted owl These OSIs occur in an area of unique geology, biology, climate and topography set in the interface of the Cascade, Klamath, and Siskiyou ecoregions, a true “biological crossroads.” Protecting Objects of Scientific Interest in the Cascade-Siskiyou National Monument 4 In order to ensure the mandate to protect this “rich enclave of natural resources,” it is vital that management is ecosystem-based; that is, a balanced approach emphasizing interconnectedness and integrity of all species and communities across the landscape and the processes that have sustained them. Ecological integrity may be succinctly defined as, “A system’s wholeness, including presence of all appropriate elements and occurrence of all processes at appropriate rates” (Angermeier and Karr 1994). Indicators of ecological integrity include: 1) maintenance of native species, or lack of species extirpation 2) occurrence of natural processes, and 3) complex biophysical structure resulting from these processes. We believe that it is necessary for an agency such as BLM to have outside scientific assistance to best assure that the language in the Presidential Proclamation is strictly adhered. To protect OSIs, it is requisite for BLM to have independent scientific support for any management activities, demonstrating consistency with ecological integrity principles, BLM’s NLCS program and the mandate set forth in the Proclamation language, i.e. “activities that maintain or enhance the monument’s objects of interest shall be permitted.” Moreover, this support must necessarily come from experts on the ecology and systematics of the objects of interest. The local experts that contributed to this report should be considered in a scientific capacity for assisting BLM in implementing management approaches for the monument. The best strategy for maintaining the diverse array of biological objects of interest in the monument would be to provide the same processes and conditions that shaped and sustained the ecosystem over evolutionary time. This is not entirely possible due to lack of understanding and the realities, and, at the present time managing for human safety around homes interspersed in the monument landscape. For example, it is unclear what the monument area will be like once it adjusts to the present climate, which is warmer than most of the last millennia, and which is warming further (Millar and Wolfenden 1999). Despite these constraints, management can be improved by being more compatible with evolutionary history as best we know. The most significant threats to the ecological integrity of the monument are the accumulation of direct and indirect human disturbances that have occurred and are still occurring, in and immediately adjacent to the monument. Preventing additional human disturbance (and reducing the effects of past disturbance) generally will provide the best approach to maintenance of the objects of scientific interest. A common theme among the management recommendations included here is that the impacts of proposed treatments, especially those that are unprecedented in the evolutionary history of the flora and fauna, are not adequately considered or understood. Therefore, we applaud the idea of rigorously experimenting with treatments as mentioned in the preferred alternative. However, more specifics and scientific guidance are needed to ensure that experiments are designed, undertaken, and analyzed with sufficient rigor and proper hypothesis testing at the appropriate spatio-temporal scales. This guidance would also be invaluable to applying the results of experiments through the adaptive management process. Literature Cited Angermeier, P.L. and J.R. Karr. 1994. Biological integrity versus biological diversity as policy directives. Bioscience 44: 690-697. Millar, C. I. And W. B. Woolfenden. 1999. The role of climate change in interpreting historical variability. Ecological Applications 9: 1207-1216. Protecting Objects of Scientific Interest in the Cascade-Siskiyou National Monument 5 Summary Table of Objects of Scientific Interest in the Cascade-Siskiyou National Monument addressed by authors in this report, with existing threats and recommended management actions for addressing these threats. Object of Scientific Interest Existing Threats Management Recommendations Rare/endemic plant species Habitat degradation from non- Enhance habitats and populations of rare species by (R. Brock) native weeds. containing the spread of invasive weeds and controlling weed populations where feasible. This will require increased restriction of vehicles and livestock grazing, as well as a well-funded weed eradication program. Initial focus should be on key problem areas, including the I-5 corridor. Rare/unique vegetation Active management activities (e.g. Adopt a three-tiered approach to management based on types and naturally diverse fuel reduction) that disturb level of available knowledge and risks of adverse impacts: vegetation mosaic vegetation types and patterns. • Ecological knowledge is unavailable: delay (R. Brock) management activities until research generates an understanding of community
Recommended publications
  • Calochortus Flexuosus S. Watson (Winding Mariposa Lily): a Technical Conservation Assessment
    Calochortus flexuosus S. Watson (winding mariposa lily): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project July 24, 2006 Susan Spackman Panjabi and David G. Anderson Colorado Natural Heritage Program Colorado State University Fort Collins, CO Peer Review Administered by Center for Plant Conservation Panjabi, S.S. and D.G. Anderson. (2006, July 24). Calochortus flexuosus S. Watson (winding mariposa lily): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http://www.fs.fed.us/r2/projects/scp/assessments/calochortusflexuosus.pdf [date of access]. ACKNOWLEDGMENTS This research was facilitated by the helpfulness and generosity of many experts, particularly Leslie Stewart, Peggy Fiedler, Marilyn Colyer, Peggy Lyon, Lynn Moore, and William Jennings. Their interest in the project and time spent answering questions were extremely valuable, and their insights into the distribution, habitat, and ecology of Calochortus flexuosus were crucial to this project. Thanks also to Greg Hayward, Gary Patton, Jim Maxwell, Andy Kratz, and Joy Bartlett for assisting with questions and project management. Thanks to Kimberly Nguyen for her work on the layout and for bringing this assessment to Web publication. Jane Nusbaum and Barbara Brayfield provided crucial financial oversight. Peggy Lyon and Marilyn Colyer provided valuable insights based on their experiences with C. flexuosus. Leslie Stewart provided information specific to the San Juan Resource Area of the Bureau of Land Management, including the Canyons of the Ancients National Monument. Annette Miller provided information on C. flexuosusseed storage status. Drs. Ron Hartman and Ernie Nelson provided access to specimens of C.
    [Show full text]
  • Botany Biological Evaluation
    APPENDIX I Botany Biological Evaluation Biological Evaluation for Threatened, Endangered and Sensitive Plants and Fungi Page 1 of 35 for the Upper Truckee River Sunset Stables Restoration Project November 2009 UNITED STATES DEPARTMENT OF AGRICULTURE – FOREST SERVICE LAKE TAHOE BASIN MANAGEMENT UNIT Upper Truckee River Sunset Stables Restoration Project El Dorado County, CA Biological Evaluation for Threatened, Endangered and Sensitive Plants and Fungi PREPARED BY: ENTRIX, Inc. DATE: November 2009 APPROVED BY: DATE: _____________ Name, Forest Botanist, Lake Tahoe Basin Management Unit SUMMARY OF EFFECTS DETERMINATION AND MANAGEMENT RECOMMENDATIONS AND/OR REQUIREMENTS One population of a special-status bryophyte, three-ranked hump-moss (Meesia triquetra), was observed in the survey area during surveys on June 30, 2008 and August 28, 2008. The proposed action will not affect the moss because the population is located outside the project area where no action is planned. The following species of invasive or noxious weeds were identified during surveys of the Project area: cheatgrass (Bromus tectorum); bullthistle (Cirsium vulgare); Klamathweed (Hypericum perforatum); oxe-eye daisy (Leucanthemum vulgare); and common mullein (Verbascum Thapsus). The threat posed by these weed populations would not increase if the proposed action is implemented. An inventory and assessment of invasive and noxious weeds in the survey area is presented in the Noxious Weed Risk Assessment for the Upper Truckee River Sunset Stables Restoration Project (ENTRIX 2009). Based on the description of the proposed action and the evaluation contained herein, we have determined the following: There would be no significant effect to plant species listed as threatened, endangered, proposed for listing, or candidates under the Endangered Species Act of 1973, as amended (ESA), administered by the U.S.
    [Show full text]
  • Macrolepidoptera Inventory of the Chilcotin District
    Macrolepidoptera Inventory of the Chilcotin District Aud I. Fischer – Biologist Jon H. Shepard - Research Scientist and Crispin S. Guppy – Research Scientist January 31, 2000 2 Abstract This study was undertaken to learn more of the distribution, status and habitat requirements of B.C. macrolepidoptera (butterflies and the larger moths), the group of insects given the highest priority by the BC Environment Conservation Center. The study was conducted in the Chilcotin District near Williams Lake and Riske Creek in central B.C. The study area contains a wide variety of habitats, including rare habitat types that elsewhere occur only in the Lillooet-Lytton area of the Fraser Canyon and, in some cases, the Southern Interior. Specimens were collected with light traps and by aerial net. A total of 538 species of macrolepidoptera were identified during the two years of the project, which is 96% of the estimated total number of species in the study area. There were 29,689 specimens collected, and 9,988 records of the number of specimens of each species captured on each date at each sample site. A list of the species recorded from the Chilcotin is provided, with a summary of provincial and global distributions. The habitats, at site series level as TEM mapped, are provided for each sample. A subset of the data was provided to the Ministry of Forests (Research Section, Williams Lake) for use in a Flamulated Owl study. A voucher collection of 2,526 moth and butterfly specimens was deposited in the Royal BC Museum. There were 25 species that are rare in BC, with most known only from the Riske Creek area.
    [Show full text]
  • Ashland Ranger District Rogue River National Forest APPENDICES
    'L-JCUMENU A 13.66/2: B 42x/APP./c.4 I V 0) C) oa)4e EN D\ Ashland Ranger District Rogue River National Forest APPENDICES APPENDIX A: KEY ISSUES & KEY QUESTIONS APPENDIX B: FIRE Identification of Specific Vegetation Zones for the Bear Watershed Analysis Area Fire Behavior Fuel Model Key Fuel Model Assignments Chronology of Events APPENDIX C: GEOLOGY, GEOMORPHOLOGY & SOILS Geology and Geomorphology of the Bear Watershed Analysis Area Characteristics of Soil Productivity APPENDIX D: HYDROLOGY What Sort of Debris is Transported Stream Classification Bibliography of Water Quality Studies Map: Drainageways Crossed Map: Dominant Precipitation Patterns APPENDIX E: FISHERIES Historic and Current Miles of Fish Habitat River Mile Index APPENDIX F: AQUATIC AND RIPARIAN HABITAT Habitat Comparison Chart Relative Comparison of Stream Gradients With Coarse Woody Debris Historic and Current Conditions for Aquatic Processes and Functions Maps: Reach Breaks of Neil Creek, West Fork & East Forks of Ashland Creek Table: Processes & Human Influences on Aquatic and Riparian Ecosystems Map: U.S. Fish & Wildlife Surveyed Wetlands Map: Supplemental Water Distribution System Broad Level Delineation of Major Stream Types (Rosgen) Delineative Criteria for Major Stream Types (Rosgen) APPENDIX G: HERITAGE RESOURCES Cultural Uses in the Bear Watershed Analysis Area Chronology of Important Dates APPENDIX A I KEY ISSUES & KEY QUESTIONS Key Questions IMPORTANT TO REMEMBER: These questions drive the analysis for Chapter II: Historic and Current Conditions and Future Trends. CLIMATE Identification of the atmospheric/climate regimes under which the ecosystem of the Bear Watershed Analysis Area have developed is important to this analysis. Attributes to be discussed in this analysis include periods of flood and drought, storm patterns in the winter and summer, occurrence of severe lightning and wind storms, rain on snow events, etc.
    [Show full text]
  • Distribution Patterns of Calochortus Greenii on the Cascade-Siskiyou National Monument
    Habitat and Landscape Distribution of Calochortus greenei S. Watson (Liliaceae) Across the Cascade-Siskiyou National Monument, Southwest Oregon Evan Frost and Paul Hosten1 ABSTRACT The Cascade-Siskiyou National Monument includes a wide range of slope, elevation, soil types, and historic management activities. Calochortus greenei occupies a wide range of habitats primarily defined by topographic and edaphic factors. Several environmental factors are confounded with patterns of livestock use, making it difficult to separate the influence of individual factors. The inclusion of many environmental variables in multivariate models with little predictive power suggests that few generalizations about C. greenei abundance relative to environmental factors are valid across the larger landscape. Distance from vegetation edge was an important biotic variable incorporated in models of C. greenei population density across the landscape, suggesting that ecotones between soil types may play a role in defining suitable habitat. The varied localized influence of edaphic factors may indicate their indirect importance to C. greenei habitat by controlling the expression of mixed shrub and hardwood vegetation. Habitat analyses and examination of population size and change over time are similarly confounded by environmental and management factors. However, an examination within three areas of C. greenei aggregation with distinct soils and elevation indicate that the relative proportion of native perennial and non-native short-lived grasses are correlated with population size. These results suggest that invasive annual and short- lived perennial grasses may prevent the successful establishment and persistence of C. greenei seedlings, resulting in the long-term decline of populations in habitats and circumstances prone to invasion by ruderal species, including high livestock use areas.
    [Show full text]
  • Circumscription of Apiaceae Tribe Oenantheae
    South African Journal of Botany 2004, 70(3): 393–406 Copyright © NISC Pty Ltd Printed in South Africa — All rights reserved SOUTH AFRICAN JOURNAL OF BOTANY ISSN 0254–6299 Circumscription of Apiaceae tribe Oenantheae TM Hardway1, K Spalik2, MF Watson3, DS Katz-Downie1 and SR Downie1* 1 Department of Plant Biology, University of Illinois, Urbana 61801, United States of America 2 Department of Plant Systematics and Geography, Warsaw University, Aleje Ujazdowskie 4, 00-478 Warsaw, Poland 3 Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland, United Kingdom * Corresponding author, email: [email protected] Received 18 August 2003, accepted in revised form 17 November 2003 Previous molecular systematic investigations into the Sium and Trepocarpus. Relationships inferred from higher-level relationships of Apiaceae subfamily phylogenetic analyses of nuclear rDNA ITS sequences Apioideae have revealed a strongly supported clade from 64 accessions representing all 17 genera reveal recognised as tribe Oenantheae Dumort. These plants that four genera are not monophyletic. Bifora and may have clusters of fibrous or tuberous-thickened Cryptotaenia have members that fall outside of the tribe; roots, corky-thickened fruits, and other adaptations for Berula and Sium each comprise two or more lineages existence in wet or aquatic habitats. In some species, within Oenantheae. The St Helena endemics, Sium the leaves may be finely dissected or linear-septate and bracteatum and S. burchellii, ally with African Berula much reduced. We have initiated collaborative studies erecta; this clade is sister to the African endemic to produce a comprehensive estimate of phylogeny of species Sium repandum and Afrocarum imbricatum, the tribe, but such investigations are thwarted because and this entire group is allied closely with north tem- information on the composition of the tribe is lacking.
    [Show full text]
  • Gentner™S Fritillary
    U.S. Fish and Wildlife Service Draft Recovery Plan for Fritillaria gentneri (Gentner’s fritillary) Cover photo: Fritillaria gentneri (Gentner’s fritillary) by Brad Tong, Medford District, Bureau of Land Management, used with permission. DRAFT RECOVERY PLAN FOR Fritillaria gentneri (Gentner’s fritillary) Region 1 U.S. Fish and Wildlife Service Portland, Oregon Approved: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX Regional Director, Region 1, U.S. Fish and Wildlife Service Date: DISCLAIMER Recovery plans delineate reasonable actions that are believed to be required to recover and/or protect listed species. Plans published by the U.S. Fish and Wildlife Service are sometimes prepared with the assistance of recovery teams, contractors, State agencies, and other affected and interested parties. Objectives of this plan will be attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Recovery plans do not obligate other parties to undertake specific tasks and may not represent the views or the official positions or approval of any individuals or agencies involved in the plan formulation, other than the U.S. Fish and Wildlife Service. Recovery plans represent the official position of the U.S. Fish and Wildlife Service only after they have been signed by the Director or Regional Director as approved. Approved recovery plans are subject to modification as dictated by new findings, changes in species status, and the completion of recovery tasks. Literature citation of this document should read as follows: U.S. Fish and Wildlife Service. 2002. Draft recovery plan for Fritillaria gentneri (Gentner’s fritillary).
    [Show full text]
  • Butterflies, Birds and Blossoming Plants … a Continuing Study of Populations on Boulder County Parks and Open Space with a Look at Herptiles
    Butterflies, Birds and Blossoming Plants … A Continuing Study of Populations On Boulder County Parks and Open Space With A Look at Herptiles Cover Photos by Jan Chu: Woodland Skipper, Sage Thrasher, Fence Lizard By Janet Chu December 12, 2013 ii Table of Contents I. Acknowledgments .......................................................................................... 1 II. Abstract ........................................................................................................... 1 III. Introduction .................................................................................................... 1 IV. Objectives ....................................................................................................... 2 V. Research Methods .......................................................................................... 2 VI. Discussion of the Butterfly Records for 2013 ................................................ 3 A. Southeast Buffer ....................................................................................... 3 B. Anne U. White-Fourmile .......................................................................... 3 C. Heil-Geer Watershed ................................................................................ 4 D. Heil-Plumely Canyon ............................................................................... 4 E. Heil-North, Red Gulch.............................................................................. 5 F. Walker Ranch-Meyer’s Homestead Trail ...............................................
    [Show full text]
  • Moths & Butterflies of Grizzly Peak Preserve
    2018 ANNUAL REPORT MOTHS & BUTTERFLIES OF GRIZZLY PEAK PRESERVE: Inventory Results from 2018 Prepared and Submi�ed by: DANA ROSS (Entomologist/Lepidoptera Specialist) Corvallis, Oregon SUMMARY The Grizzly Peak Preserve was sampled for butterflies and moths during May, June and October, 2018. A grand total of 218 species were documented and included 170 moths and 48 butterflies. These are presented as an annotated checklist in the appendix of this report. Butterflies and day-flying moths were sampled during daylight hours with an insect net. Nocturnal moths were collected using battery-powered backlight traps over single night periods at 10 locations during each monthly visit. While many of the documented butterflies and moths are common and widespread species, others - that include the Western Sulphur (Colias occidentalis primordialis) and the noctuid moth Eupsilia fringata - represent more locally endemic and/or rare taxa. One geometrid moth has yet to be identified and may represent an undescribed (“new”) species. Future sampling during March, April, July, August and September will capture many more Lepidoptera that have not been recorded. Once the site is more thoroughly sampled, the combined Grizzly Peak butterfly-moth fauna should total at least 450-500 species. INTRODUCTION The Order Lepidoptera (butterflies and moths) is an abundant and diverse insect group that performs essential ecological functions within terrestrial environments. As a group, these insects are major herbivores (caterpillars) and pollinators (adults), and are a critical food source for many species of birds, mammals (including bats) and predacious and parasitoid insects. With hundreds of species of butterflies and moths combined occurring at sites with ample habitat heterogeneity, a Lepidoptera inventory can provide a valuable baseline for biodiversity studies.
    [Show full text]
  • Butterflies and Moths of San Bernardino County, California
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • The Taxonomic Report of the INTERNATIONAL LEPIDOPTERA SURVEY
    Volume 7 1 February 2010 Number 3 The Taxonomic Report OF THE INTERNATIONAL LEPIDOPTERA SURVEY TIPS ON COLLECTING AND REARING IMMATURES OF 375 BUTTERFLY AND SKIPPER TAXA JACQUE WOLFE 459 East 2700 South Apt 16, Salt Lake City, UT 84115 JACK HARRY 47 San Rafael Court, West Jordan, UT 84088 TODD STOUT 1 1456 North General Drive, Salt Lake City, UT 84116 ABSTRACT: Rearing techniques are discussed for 375 different butterfly and skipper taxa from Utah and beyond. Additional keywords: ova, larvae, pupae, over wintering, obtaining and caring for immatures INTRODUCTION The authors of this paper, Jacque Wolfe, Jack Harry, and Todd Stout, with contributions from Dale Nielson have over 100 years combined experience collecting and rearing butterflies. This publication includes natural and lab host plants. We hope that this information will help you avoid some of the mistakes and losses we have experienced. We also hope that this publication will encourage someone who has only collected adults to give rearing a try. For those new to rearing we encourage starting small. Not only can rearing provide perfect specimens but also provide knowledge regarding the life histories of butterflies, which includes how to find caterpillars or how to entice live females to lay eggs. The advantages justify the time and effort it requires. Another advantage of rearing is that some species, like Papilio indra and Megathymus species, are difficult to collect as adults. Therefor, rearing them can be much easier. For example, collecting larvae or netting a single live female can result in obtaining a nice series of perfect specimens.
    [Show full text]
  • Gut Content Metabarcoding Unveils the Diet of a Flower‐Associated Coastal
    ECOSPHERE NATURALIST No guts, no glory: Gut content metabarcoding unveils the diet of a flower-associated coastal sage scrub predator PAUL MASONICK , MADISON HERNANDEZ, AND CHRISTIANE WEIRAUCH Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, California 92521 USA Citation: Masonick, P., M. Hernandez, and C. Weirauch. 2019. No guts, no glory: Gut content metabarcoding unveils the diet of a flower-associated coastal sage scrub predator. Ecosphere 10(5):e02712. 10.1002/ecs2.2712 Abstract. Invertebrate generalist predators are ubiquitous and play a major role in food-web dynamics. Molecular gut content analysis (MGCA) has become a popular means to assess prey ranges and specificity of cryptic arthropods in the absence of direct observation. While this approach has been widely used to study predation on economically important taxa (i.e., pests) in agroecosystems, it is less frequently used to study the broader trophic interactions involving generalist predators in natural communities such as the diverse and threatened coastal sage scrub communities of Southern California. Here, we employ DNA metabarcoding-based MGCA and survey the taxonomically and ecologically diverse prey range of Phymata pacifica Evans, a generalist flower-associated ambush bug (Hemiptera: Reduviidae). We detected predation on a wide array of taxa including beneficial pollinators, potential pests, and other predatory arthropods. The success of this study demonstrates the utility of MGCA in natural ecosystems and can serve as a model for future diet investigations into other cryptic and underrepresented communities. Key words: biodiversity; blocking primers; DNA detectability half-life; Eriogonum fasciculatum; food webs; intraguild predation; natural enemies. Received 24 January 2019; accepted 11 February 2019.
    [Show full text]