Plants, Gardeners, and Air Pollution-Norman L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neighborwoods Right Plant, Right Place Plant Selection Guide
“Right Plant, Right Place” Plant Selection Guide Compiled by Samuel Kelleher, ASLA April 2014 - Shrubs - Sweet Shrub - Calycanthus floridus Description: Deciduous shrub; Native; leaves opposite, simple, smooth margined, oblong; flowers axillary, with many brown-maroon, strap-like petals, aromatic; brown seeds enclosed in an elongated, fibrous sac. Sometimes called “Sweet Bubba” or “Sweet Bubby”. Height: 6-9 ft. Width: 6-12 ft. Exposure: Sun to partial shade; range of soil types Sasanqua Camellia - Camellia sasanqua Comment: Evergreen. Drought tolerant Height: 6-10 ft. Width: 5-7 ft. Flower: 2-3 in. single or double white, pink or red flowers in fall Site: Sun to partial shade; prefers acidic, moist, well-drained soil high in organic matter Yaupon Holly - Ilex vomitoria Description: Evergreen shrub or small tree; Native; leaves alternate, simple, elliptical, shallowly toothed; flowers axillary, small, white; fruit a red or rarely yellow berry Height: 15-20 ft. (if allowed to grow without heavy pruning) Width: 10-20 ft. Site: Sun to partial shade; tolerates a range of soil types (dry, moist) Loropetalum ‘ZhuZhou’-Loropetalum chinense ‘ZhuZhou’ Description: Evergreen; It has a loose, slightly open habit and a roughly rounded to vase- shaped form with a medium-fine texture. Height: 10-15 ft. Width: 10-15ft. Site: Preferred growing conditions include sun to partial shade (especially afternoon shade) and moist, well-drained, acidic soil with plenty of organic matter Japanese Ternstroemia - Ternstroemia gymnanthera Comment: Evergreen; Salt spray tolerant; often sold as Cleyera japonica; can be severely pruned. Form is upright oval to rounded; densely branched. Height: 8-10 ft. Width: 5-6 ft. -
Indiana's Native Magnolias
FNR-238 Purdue University Forestry and Natural Resources Know your Trees Series Indiana’s Native Magnolias Sally S. Weeks, Dendrologist Department of Forestry and Natural Resources Purdue University, West Lafayette, IN 47907 This publication is available in color at http://www.ces.purdue.edu/extmedia/fnr.htm Introduction When most Midwesterners think of a magnolia, images of the grand, evergreen southern magnolia (Magnolia grandiflora) (Figure 1) usually come to mind. Even those familiar with magnolias tend to think of them as occurring only in the South, where a more moderate climate prevails. Seven species do indeed thrive, especially in the southern Appalachian Mountains. But how many Hoosiers know that there are two native species Figure 2. Cucumber magnolia when planted will grow well throughout Indiana. In Charles Deam’s Trees of Indiana, the author reports “it doubtless occurred in all or nearly all of the counties in southern Indiana south of a line drawn from Franklin to Knox counties.” It was mainly found as a scattered, woodland tree and considered very local. Today, it is known to occur in only three small native populations and is listed as State Endangered Figure 1. Southern magnolia by the Division of Nature Preserves within Indiana’s Department of Natural Resources. found in Indiana? Very few, I suspect. No native As the common name suggests, the immature magnolias occur further west than eastern Texas, fruits are green and resemble a cucumber so we “easterners” are uniquely blessed with the (Figure 3). Pioneers added the seeds to whisky presence of these beautiful flowering trees. to make bitters, a supposed remedy for many Indiana’s most “abundant” species, cucumber ailments. -
Iris for the Home Gardener a Rainbow of Colors in Many Shapes and Sizes Bob Lyons
Iris for the Home Gardener A Rainbow of Colors in Many Shapes and Sizes Bob Lyons FEW PLANTS HAVE AS MUCH HISTORY and affection among gardeners than iris. In Greek mythology, Iris is the personification of the rainbow and messenger of the Gods, and indeed, Iris appear in many magical colors—a large and diverse genus. Some have large showy flowers, others more I. ‘Black Gamecock’ understated; some grow in clumps, others spread; some prefer I. ensata ‘Angelic Choir’ it dry, others are more partial to moist, even wet conditions; and some grow from bulbs, while others return each year from rhizomes just beneath the soil surface. How does one tell them apart and make the right choice for a home garden? Fortunately, horticulturists and iris enthusiasts have developed a system of organization to make sense out of the vast world of irises. Three groups that account for more than 75% of the commercial iris market today are the Bearded Iris, Siberian Iris, and Japanese Iris. Each group recognizes the best of the best with prestigious national awards, noted in the descriptions that follow. The Dykes Medal is awarded to the finest iris of any class. More iris plants are described in the “Plant Descriptions: I. ×pseudata ‘Aichi no Kagayaki’ I. ensata ‘Cascade Crest’ Perennial” section. Latin Name Common Name Mature Size Light Soil Pot Size Price Iris ‘Black Gamecock’ Louisiana Iris 2–3 .8 d 1 g $14 Late; stunning blue black, velvet-colored flowers; hummingbird haven; can grow in 4 inches of standing water; DeBaillon Medal. Iris ×pseudata ‘Aichi no Kagayaki’ Iris Hybrid 2 . -
STEVEN and ERIN FORD GARDEN Botanical Name Common Name
STEVEN AND ERIN FORD GARDEN Botanical Name Common Name Abutilon Flowering Maple Acer buergerianum Trident Maple Acer japonicum Full Moon Maple Acer palmatum Japanese Maple Acer palmatum 'Bloodgood' Japanese Maple Achillea millefolium Yarrow Adiantum Maidenhair Fern Agapanthus Lily of the Nile Ajuga Alcea rosea Ajuga Alcea rosea Hollyhock Anemone japonica Japanese Anemone Antirrhinum majus Snapdragon Aquilegia Columbine Aralia Japanese Aralia Artemisia stelleriana Dusty Miller Artemisia stelleriana Powis Castle Artemisia Asparagus densiflorus Asparagus Fern Asparagus densiflorus 'Sprengeri' Sprenger Asparagus Fern Asparagus retrofractus Ming Fern Azalea Azalea Azalea 'Hino' Basil Begonia Berberis thumbergii 'Golden Nugget' Japanese Barberry Bletilla striata Chinese Ground Orchid Boysenberries Buddleja Butterfly Bush Buxus sempervirens Common Boxwood Calendula officinalis Pot Marigold Camellia japonica Camellia sasanqua Carex oshimensis Sedge Carex variegata Sedge Caryopteris Bluebird Ceanothus Cedrus deodara Deodar Cedar Centranthus ruber Jupiter's Beard Cercis canadensis Eastern Rudbud Chives Chrysanthemum Chrysanthemum maximum Shasta Daisy Citrus Dwarf Blood Orange Citrus Dwarf Grapefruit 1 Citrus Dwarf Tangerine Citrus Navel Orange Citrus Variegated Lemon Clematis Cornus Dogwood Cornus kousa Kousa Dogwood Cornus stolonifera Redtwig Dogwood Cotinus Smoke Tree Cryptomeria japonica Japanese Cryptomeria Cyathea cooperi Australian Tree Fern Cyclamen Delphinium Dianella tasmanica 'Yellow Stripe' Flax Lily Dianthus Pink Dianthus barbatus Sweet -
Plant Life MagillS Encyclopedia of Science
MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D. -
Scanned Document
~ l ....... , .,. ... , •• 1 • • .. ,~ . · · . , ' .~ . .. , ...,.,, . ' . __.... ~ •"' --,~ ·- ., ......... J"'· ·····.-, ... .,,,.."" ............ ,... ....... .... ... ,,··~·· ....... v • ..., . .......... ,.. •• • ..... .. .. ... -· . ..... ..... ..... ·- ·- .......... .....JkJ(o..... .. I I ..... D · . ··.·: \I••• . r .• ! .. THE SPECIES IRIS STUDY GROUP OF THE AMERICAN IRIS SOCIETY \' -... -S:IGNA SPECIES IRIS GROUP OF NORTH AMERICA APRIL , 1986 NO. 36 OFFICERS CHAIRMAN: Elaine Hulbert Route 3, Box 57 Floyd VA 24091 VICE--CHAI.RMAN: Lee Welsr, 7979 W. D Ave. ~<alamazoo MI 4900/i SECRETARY: Florence Stout 150 N. Main St. Lombard, IL 6014~ TREASURER: Gene Opton 12 Stratford Rd. Berkelew CA 9470~ SEED EXCHANGE: Merry&· Dave Haveman PO Box 2054 Burling~rne CA 94011 -RO:E,IN DIRECTOR: Dot HuJsak 3227 So. Fulton Ave. Tulsc1, OK 74135 SLIDE DIRECTO~: Colin Rigby 2087 Curtis Dr . Penngrove CA 9495~ PUBLICATIONS SALES: Alan McMu~tr1e 22 Calderon Crescent Willowdale, Ontario, Canada M2R 2E5 SIGNA EDITOR : .Joan Cooper 212 W. Count~ Rd. C Roseville MN 55113 SIGNA PUBLISl-!ER:. Bruce Richardson 7 249 Twenty Road, RR 2 Hannon, Ontario, Canada L0R !Pe CONTENTS--APRIL, 1986--NO. 36 CHAIRMAN'S MESSAGE Elaine HL\l ber t 1261 PUBLICATI~NS AVAILABLE Al an McMwn tr ie 12c)1 SEED EXCHANGE REPORT David & Merry Haveman 1262 HONORARY LIFE MEMBERSHIPS El a ine? HLtlbert 1263 INDEX REPORTS Eric Tankesley-Clarke !263 SPECIES REGISTRATIONS--1985 Jean Witt 124-4' - SLIDE COLLECTION REPORT Col in Rigby 1264 TREASURER'S REPORT Gene (>pton 1264, NOMINATING COMMITTEE REPORT Sharon McAllister 1295 IRIS SOURCES UPDATE Alan McMurtrie 1266 QUESTIONS PLEASE '-Toan Cooper 1266 NEW TAXA OF l,P,IS L . FROM CHINA Zhao Yu·-· tang 1.26? ERRATA & ADDENDA ,Jim Rhodes 1269 IRIS BRAI\ICHil\iG IN TWO MOl~E SPECIES Jean Witt 1270 TRIS SPECIES FOR SHALLOW WATER Eberhard Schuster 1271 JAPANESE WILD IRISES Dr. -
American Forests National Big Tree Program Species Without Champions
American Forests National Big Tree Program Champion trees are the superstars of their species — and there are more than 700 of them in our national register. Each champion is the result of a lucky combination: growing in a spot protected by the landscape or by people who have cared about and for it, good soil, the right amount of water, and resilience to the elements, surviving storms, disease and pests. American Forests National Big Tree Program was founded to honor these trees. Since 1940, we have kept the only national register of champion trees (http://www.americanforests.org/explore- forests/americas-biggest-trees/champion-trees-national-register/) Champion trees are found by people just like you — school teachers, kids fascinated by science, tree lovers of all ages and even arborists for whom a fun day off is measuring the biggest tree they can find. You, too, can become a big tree hunter and compete to find new champions. Species without Champions (March, 2018) Gold rows indict species that have Idaho State Champions but the nominations are too old to be submitted for National Champion status. Scientific Name Species Common Name Abies lasiocarpa FIR Subalpine Acacia macracantha ACACIA Long-spine Acacia roemeriana CATCLAW Roemer Acer grandidentatum MAPLE Canyon or bigtooth maple Acer nigrum MAPLE Black Acer platanoides MAPLE Norway Acer saccharinum MAPLE Silver Aesculus pavia BUCKEYE Red Aesculus sylvatica BUCKEYE Painted Ailanthus altissima AILANTHUS Tree-of-heaven Albizia julibrissin SILKTREE Mimosa Albizia lebbek LEBBEK Lebbek -
Magnolia 'Galaxy'
Magnolia ‘Galaxy’ The National Arboretum presents Magnolia ‘Galaxy’, unique in form and flower among cultivated magnolias. ‘Galaxy’ is a single-stemmed, tree-form magnolia with ascending branches, the perfect shape for narrow planting sites. In spring, dark red-purple flowers appear after danger of frost, providing a pleasing and long-lasting display. Choose ‘Galaxy’ to shape up your landscape! Winner of a Pennsylvania Horticultural Society Gold Medal Plant Award, 1992. U.S. National Arboretum Plant Introduction Floral and Nursery Plants Research Unit U.S. National Arboretum, U.S. Department of Agriculture, Agricultural Research Service, 3501 New York Ave. NE., Washington, DC 20002 ‘Galaxy’ hybrid magnolia Botanical name: Magnolia ‘Galaxy’ (M. liliiflora ‘Nigra’ × M. sprengeri ‘Diva’) (NA 28352.14, PI 433306) Family: Magnoliaceae Hardiness: USDA Zones 5–9 Development: ‘Galaxy’ is an F1 hybrid selection resulting from a 1963 cross between Magnolia liliiflora ‘Nigra’ and M. sprengeri ‘Diva’. ‘Galaxy’ first flowered at 9 years of age from seed. The cultivar name ‘Galaxy’ is registered with the American Magnolia Society. Released 1980. Significance: Magnolia ‘Galaxy’ is unique in form and flower among cultivated magnolias. It is a single stemmed, pyramidal, tree-form magnolia with excellent, ascending branching habit. ‘Galaxy’ flowers 2 weeks after its early parent M. ‘Diva’, late enough to avoid most late spring frost damage. Adaptable to a wide range of soil conditions. Description: Height and Width: 30-40 feet tall and 22-25 feet wide. It reaches 24 feet in height with a 7-inch trunk diameter at 14 years. Moderate growth rate. Habit: Single-trunked, upright tree with narrow crown and ascending branches. -
Hybrid Fitness, Adaptation and Evolutionary Diversification: Lessons
Heredity (2012) 108, 159–166 & 2012 Macmillan Publishers Limited All rights reserved 0018-067X/12 www.nature.com/hdy REVIEW Hybrid fitness, adaptation and evolutionary diversification: lessons learned from Louisiana Irises ML Arnold, ES Ballerini and AN Brothers Estimates of hybrid fitness have been used as either a platform for testing the potential role of natural hybridization in the evolution of species and species complexes or, alternatively, as a rationale for dismissing hybridization events as being of any evolutionary significance. From the time of Darwin’s publication of The Origin, through the neo-Darwinian synthesis, to the present day, the observation of variability in hybrid fitness has remained a challenge for some models of speciation. Yet, Darwin and others have reported the elevated fitness of hybrid genotypes under certain environmental conditions. In modern scientific terminology, this observation reflects the fact that hybrid genotypes can demonstrate genotypeÂenvironment interactions. In the current review, we illustrate the development of one plant species complex, namely the Louisiana Irises, into a ‘model system’ for investigating hybrid fitness and the role of genetic exchange in adaptive evolution and diversification. In particular, we will argue that a multitude of approaches, involving both experimental and natural environments, and incorporating both manipulative analyses and surveys of natural populations, are necessary to adequately test for the evolutionary significance of introgressive hybridization. An appreciation of the variability of hybrid fitness leads to the conclusion that certain genetic signatures reflect adaptive evolution. Furthermore, tests of the frequency of allopatric versus sympatric/parapatric divergence (that is, divergence with ongoing gene flow) support hybrid genotypes as a mechanism of evolutionary diversification in numerous species complexes. -
Magnolia X Soulangiana Saucer Magnolia1 Edward F
Fact Sheet ST-386 October 1994 Magnolia x soulangiana Saucer Magnolia1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION Saucer Magnolia is a multi-stemmed, spreading tree, 25 feet tall with a 20 to 30-foot spread and bright, attractive gray bark (Fig. 1). Growth rate is moderately fast but slows down considerably as the tree reaches about 20-years of age. Young trees are distinctly upright, becoming more oval, then round by 10 years of age. Large, fuzzy, green flower buds are carried through the winter at the tips of brittle branches. The blooms open in late winter to early spring before the leaves, producing large, white flowers shaded in pink, creating a spectacular flower display. However, a late frost can often ruin the flowers in all areas where it is grown. This can be incredibly disappointing since you wait 51 weeks for the flowers to appear. In warmer climates, the late- flowering selections avoid frost damage but some are less showy than the early-flowered forms which blossom when little else is in flower. GENERAL INFORMATION Scientific name: Magnolia x soulangiana Figure 1. Middle-aged Saucer Magnolia. Pronunciation: mag-NO-lee-uh x soo-lan-jee-AY-nuh Common name(s): Saucer Magnolia DESCRIPTION Family: Magnoliaceae USDA hardiness zones: 5 through 9A (Fig. 2) Height: 20 to 25 feet Origin: not native to North America Spread: 20 to 30 feet Uses: container or above-ground planter; espalier; Crown uniformity: irregular outline or silhouette near a deck or patio; shade tree; specimen; no proven Crown shape: round; upright urban tolerance Crown density: open Availability: generally available in many areas within Growth rate: medium its hardiness range 1. -
Lntrogression and Its Consequences in Plants Loren H
Botany Publication and Papers Botany 1993 lntrogression and Its Consequences in Plants Loren H. Rieseberg Rancho Santa Ana Botanic Garden Jonathan F. Wendel Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/bot_pubs Part of the Botany Commons, Evolution Commons, and the Plant Breeding and Genetics Commons Recommended Citation Rieseberg, Loren H. and Wendel, Jonathan F., "lntrogression and Its Consequences in Plants" (1993). Botany Publication and Papers. 8. http://lib.dr.iastate.edu/bot_pubs/8 This Book Chapter is brought to you for free and open access by the Botany at Iowa State University Digital Repository. It has been accepted for inclusion in Botany Publication and Papers by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. lntrogression and Its Consequences in Plants Abstract The or le of introgression in plant evolution has been the subject of considerable discussion since the publication of Anderson's influential monograph, Introgressive Hybridization (Anderson, 1949). Anderson promoted the view, since widely held by botanists, that interspecific transfer of genes is a potent evolutionary force. He suggested that "the raw material for evolution brought about by introgression must greatly exceed the new genes produced directly by mutation" ( 1949, p. 102) and reasoned, as have many subsequent authors, that the resulting increases in genetic diversity and number of genetic combinations promote the development or acquisition of novel adaptations (Anderson, 1949, 1953; Stebbins, 1959; Rattenbury, 1962; Lewontin and Birch, 1966; Raven, 1976; Grant, 1981 ). In contrast to this "adaptationist" perspective, others have accorded little ve olutionary significance to introgression, suggesting instead that it should be considered a primarily local phenomenon with only transient effects, a kind of"evolutionary noise" (Barber and Jackson, 1957; Randolph et al., 1967; Wagner, 1969, 1970; Hardin, 1975). -
Determining Population Structure and Hybridization for Two Iris Species Jennafer A
Determining population structure and hybridization for two iris species Jennafer A. P. Hamlin & Michael L. Arnold Department of Genetics, University of Georgia, 120 East Green St., Davison Life Sciences Building, Athens, Georgia Keywords Abstract Genotyping-by-sequencing, introgression, population genetics, southeastern US, species Identifying processes that promote or limit gene flow can help define the eco- tree. logical and evolutionary history of a species. Furthermore, defining those fac- tors that make up “species boundaries” can provide a definition of the Correspondence independent evolutionary trajectories of related taxa. For many species, the his- Jennafer A. P. Hamlin, Department of toric processes that account for their distribution of genetic variation remain Genetics, University of Georgia, 120 East unresolved. In this study, we examine the geographic distribution of genetic Green St. Davison Life Sciences Building, diversity for two species of Louisiana Irises, Iris brevicaulis and Iris fulva. Specif- Athens, GA. Tel: 706 410 7529; Fax: 706 542 3910; ically, we asked how populations are structured and if population structure E-mail: [email protected] coincides with potential barriers to gene flow. We also asked whether there is evidence of hybridization between these two species outside Louisiana hybrid Funding Information zones. We used a genotyping-by-sequencing approach and sampled a large Funds from the American Iris Society number of single nucleotide polymorphisms across these species’ genomes. Two supported the collections and genotyping for different population assignment methods were used to resolve population struc- this project. JAPH and the research reported ture in I. brevicaulis; however, there was considerably less population structure in this publication were supported by the National Institute of General Medical in I.