Karyotype and Idiogram of the Axis Deer (Axia Axis, Cervidae) by Conventional Staining, GTG-, High-Resolution GTG-, and Ag-NOR-Banding Techniques

Total Page:16

File Type:pdf, Size:1020Kb

Karyotype and Idiogram of the Axis Deer (Axia Axis, Cervidae) by Conventional Staining, GTG-, High-Resolution GTG-, and Ag-NOR-Banding Techniques © 2017 The Japan Mendel Society Cytologia 82(1) Special Issue: 91–98 Karyotype and Idiogram of the Axis Deer (Axia axis, Cervidae) by Conventional Staining, GTG-, High-Resolution GTG-, and Ag-NOR-Banding Techniques Hathaipat Khongcharoensuk1, Alongklod Tanomtong1*, Isara Patawang2, Praween Supanuam3, Somnuek Sornnok4 and Krit Pinthong5 1 Toxic Substances in Livestock and Aquatic Animals Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Muang, Khon Kaen 40002, Thailand 2 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 3 Program in Biology, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand 4 Agricultural Technology Division, Department Technology and Industries, Faculty of Science and Technology, Prince of Songkla University (Pattani Campus), Muang, Pattani 94000, Thailand 5 Program in Biology, Department of Fundamental Science, Faculty of Science and Technology, Surindra Rajabhat University, Surin 32000, Thailand Received December 22, 2014; accepted April 8, 2015 Summary The standardized karyotype and idiogram of the axis deer (Axis axis, Cervidae) at Khon Kaen Zoo, Thailand were established. Blood samples were taken from two male and two female axis deer. After standard whole blood T-lymphocytes were cultured at 37°C for 72 h in the presence of colchicine, metaphase spreads were performed on microscopic slides and air-dried. Conventional staining, GTG-, Ag-NOR-banding and high-resolu- tion techniques were applied to stain the chromosome. The results showed that the diploid chromosome number of A. axis was 2n=66 and the fundamental number (NF) was 70 in both male and female. The types of autosomes observed were 2 large metacentric, 2 large submetacentric, 2 large telocentric, 6 medium telocentric and 52 small telocentric chromosomes. The X chromosome was a large telocentric chromosome, and the Y chromosome was a small telocentric chromosome. The GTG-banding and high-resolution techniques provided that the respective numbers of bands and locations of A. axis were 246 and 294, and each chromosome pair could be clearly dif- ferentiated. In addition, the subtelomeric q-arm of chromosome pair 2 and the telomeric q-arm of chromosome pair 4 showed clearly observable nucleolar organizer regions (NORs) and secondary constrictions. Our results are the first reports of GTG-, high-resolution GTG- and Ag-NOR-banding techniques on this species. The karyotype formula of A. axis is as follows: m sm t t t 2n (66) = L2 + L 2 + L 2 + M 6 + S 52 + Sex-chromosomes Key words Axis deer, Axis axis, Karyotype, GTG-banding, Ag-NOR-banding. The family Cervidae (infraorder Pecora, suborder Ru- which make them an ideal group for chromosomal evo- minantia, order Artiodactyla) has at least 90 species, 20 lution studies. It is proposed that the ancestral cervid genera, four tribes (Muntiacini, Cervini, Capreolini and karyotype is 2n=70 based on comparative karyotype Rangiferini) and two subfamilies (Cervinae and Capreo- analysis of many deer species (Neitzel 1987, Tanomtong linae) (Janis and Scott 1987, Nowak 1999, Groves 2006, et al. 2005, 2010, Huang et al. 2005). Wilson and Reeder 2006). The classification of deer in The axis deer (Axis axis), also known as chital deer or the family Cervidae use external morphology, biogeog- spotted deer, is a deer which commonly inhabits wooded raphy, physiology, cytogenetics and especially decidu- regions of South Asia including India, Sri Lanka, Ne- ous cranial appendages. According to the presence or pal, Bangladesh, Bhutan and Pakistan. The axis deer absence of antlers, all deer species were classified into skin is pinkish fawn, marked with white spots, and its antlered and antlerless deer. The extant deer species underparts are also white (Fig. 1). Its antlers, which it have diverse karyotypes; their diploid chromosome sheds annually, are usually three-pronged and curve in numbers range from 2n=6 in the female Indian muntjac a lyre shape and may extend to 75 cm. Compared to the (Muntiacus muntjak vaginalis) (Wurster and Benirschke hog deer (Hyelaphus porcinus), its close relative, the 1970) to 2n=80 in the Capreolus capreolus pygargus, axis deer has a more cursorial build. It also has a more advanced morphology with antler pedicles being pro- * Corresponding author, e-mail: [email protected] portionally short and its auditory bullae being smaller. DOI: 10.1508/cytologia.82.91 It also has large nares. Their lifespans are around eight 92 H. Khongcharoensuk et al. Cytologia 82(1) Special Issue Fig. 1. General characteristics of male (A) and female (B) axis deer (Axis axis). Fig. 2. Metaphase chromosome plate and karyotype of male (A) and female (B) axis deer (Axis axis) 2n=66 by conventional staining technique; scales indicate 10 µm. to 14 years. Within the axis deer were recognized comparison finding with previous reports. Moreover, the two subspecies: common axis deer (A. a. axis) and Sri finding obtained here is the first report on standardized Lankan axis deer (A. a. ceylonensis). These animals are karyotype and idiogram measurements by GTG-, high- widespread in many countries. This species is listed on resolution GTG- and Ag-NOR-banding techniques. This CITES appendix III and is an IUCN least concern spe- cytogenetic information will represent basic knowledge cies (Grzimek 2004, Groves 2006). and can be applicable to genetic diversity, taxonomy, To date, there are few cytogenetic reports of the Axis conservation and evolution. axis, such as those of Hsu and Benirschke (1974), Asher et al. (1999), Bonnet-Garnier et al. (2003) and Shanthi Materials and methods et al. (2008), which report karyotypes of the convention- al, RBG-, QFH-banding and chromosome painting of Blood samples of the Axis axis (two males and two this animal. Our present study shows a confirmation and females) were collected from Khon Kaen Zoo, Thailand 2017 Karyotype and Idiogram of the Axis Deer (Axia axis, Cervidae) by Conventional Staining 93 Table 1. Mean length of short arm chromosome (Ls), long arm chromosome (Ll), total arm chromosome (LT), relative length (RL), centromeric index (CI) and standard deviation (SD) of RL, CI from 10 metaphases of male axis deer (Axis axis) in Thailand, 2n=66. Chromosome pair Ls Ll LT RL±SD CI±SD Size Types 1 2.519 5.749 8.269 0.064±0.0059 0.438±0.017 Large Submetacentric 2* 0.000 7.556 8.156 0.058±0.0089 0.000±0.000 Large Telocentric 3 3.303 4.707 8.010 0.062±0.0076 0.702±0.007 Large Metacentric 4* 0.000 4.779 4.779 0.037±0.0047 0.000±0.000 Medium Telocentric 5 0.000 4.773 4.773 0.037±0.0033 0.000±0.000 Medium Telocentric 6 0.000 4.655 4.655 0.036±0.0027 0.000±0.000 Medium Telocentric 7 0.000 4.110 4.110 0.032±0.0028 0.000±0.000 Small Telocentric 8 0.000 3.904 3.904 0.030±0.0026 0.000±0.000 Small Telocentric 9 0.000 3.884 3.884 0.030±0.0019 0.000±0.000 Small Telocentric 10 0.000 3.804 3.804 0.029±0.0021 0.000±0.000 Small Telocentric 11 0.000 3.748 3.748 0.029±0.0019 0.000±0.000 Small Telocentric 12 0.000 3.664 3.664 0.028±0.0021 0.000±0.000 Small Telocentric 13 0.000 3.562 3.562 0.028±0.0018 0.000±0.000 Small Telocentric 14 0.000 3.524 3.524 0.027±0.0012 0.000±0.000 Small Telocentric 15 0.000 3.440 3.440 0.027±0.0012 0.000±0.000 Small Telocentric 16 0.000 3.355 3.355 0.026±0.0013 0.000±0.000 Small Telocentric 17 0.000 3.278 3.278 0.025±0.0013 0.000±0.000 Small Telocentric 18 0.000 3.204 3.204 0.025±0.0013 0.000±0.000 Small Telocentric 19 0.000 3.157 3.157 0.024±0.0012 0.000±0.000 Small Telocentric 20 0.000 3.087 3.087 0.024±0.0012 0.000±0.000 Small Telocentric 21 0.000 3.024 3.024 0.023±0.0012 0.000±0.000 Small Telocentric 22 0.000 2.988 2.988 0.023±0.0013 0.000±0.000 Small Telocentric 23 0.000 2.941 2.941 0.023±0.0012 0.000±0.000 Small Telocentric 24 0.000 2.891 2.891 0.022±0.0013 0.000±0.000 Small Telocentric 25 0.000 2.866 2.866 0.022±0.0012 0.000±0.000 Small Telocentric 26 0.000 2.810 2.810 0.022±0.0012 0.000±0.000 Small Telocentric 27 0.000 2.804 2.804 0.022±0.0014 0.000±0.000 Small Telocentric 28 0.000 2.751 2.751 0.021±0.0014 0.000±0.000 Small Telocentric 29 0.000 2.624 2.624 0.020±0.0011 0.000±0.000 Small Telocentric 30 0.000 2.545 2.545 0.020±0.0011 0.000±0.000 Small Telocentric 31 0.000 2.441 2.441 0.019±0.0013 0.000±0.000 Small Telocentric 32 0.000 2.285 2.285 0.018±0.0014 0.000±0.000 Small Telocentric X 0.000 6.393 6.393 0.049±0.0043 0.000±0.000 Small Telocentric Y 0.000 2.345 2.345 0.018±0.0017 0.000±0.000 Small Telocentric Remark: *=Nucleolar organizer region/NOR. Table 2. Mean length of short arm chromosome (Ls), long arm chromosome (Ll), total arm chromosome (LT), relative length (RL), centromeric index (CI) and standard deviation (SD) of RL, CI from 10 metaphases of female axis deer (Axis axis) in Thailand, 2n=66.
Recommended publications
  • Food Selection by Northern Yellow-Cheeked Crested Gibbons (Nomascus Annamensis)In Northern Cambodia
    Food Selection by Northern Yellow-cheeked Crested Gibbons (Nomascus annamensis)in Northern Cambodia Naven Hon A thesis submitted to Victoria University of Wellington in partial fulfilment of the requirements for the degree of Master of Science in Ecology and Biodiversity School of Biological Sciences Victoria University of Wellington New Zealand 2016 i Abstract Tropical regions have extremely high plant diversity, which in turn supports a high diversity of animals. However, not all plant species are selected by animals as food sources, with some herbivores selecting only specific plants as food as not all plants have the same nutrient make up. Animals must select which food items to include in their diets, as the amount and type of nutrients in their diet can affect lifespan, health, fitness, and reproduction. Gibbon populations have declined significantly in recent years due to habitat destruction and hunting. Northern yellow-cheeked crested gibbon (Nomascus annamensis) is a newly described species, and has a limited distribution restricted to Cambodia, Laos and Vietnam. The northern yellow-cheeked crested gibbons play an important role in seed dispersal, yet little is currently known about this species, including its food selection and nutritional needs. However, data on food selection and nutritional composition of selected food items would greatly inform the conservation of both wild and captive populations of this species. This study aims to quantify food selection by the northern yellow-cheeked crested gibbons by investigating the main plant species consumed and the influence of the availability of food items on their selection. The study also explores the nutritional composition of food items consumed by this gibbon species and identifying key plant species that provide these significant nutrients.
    [Show full text]
  • O18934 Plard, F., Bonenfant, C. and Gaillard, JM 2011
    Oikos O18934 Plard, F., Bonenfant, C. and Gaillard, J. M. 2011. Re- visiting the allometry of antlers among deer species: male-male sexual competition as a driver. – Oikos 120: 601–606. Table A1. Data basis. Sexual size dimorphism (SSD) was measured by the residuals of the regression of male body mass against female body mass. Breeding group sizes (BGS) were divided into three categories: group of one or two animals (A), group of three, four and five animals (B), and groups larger than five animals (C). The different mating tactics (MT) were harem (H), territorial (T) and tending (F). Non-available mating tactics (NA) and monogamous species (M) are indicated. Sub-family Genus Species Common name Male Female SSD BGS MT Ref Antler Body Body length mass mass Cervinae Axis axis chital 845 89.5 39 0.58 C F 1,2,3 Cervinae Axis porcinus hog deer 399 41 31 0.07 C F 2,3,4,5 Cervinae Cervus albirostris white-lipped deer 1150 204 125 0.06 C H 1,6 Cervinae Cervus canadensis wapiti 1337 350 250 –0.21 C H 3,8,9 Cervinae Cervus duvaucelii barasingha 813 236 145 0.03 C H 1,3,10,11 Cervinae Cervus elaphus red deer 936 250 125 0.34 C H 1,2,3 Cervinae Cervus eldi Eld’s deer 971.5 105 67 0.12 C H 1,2,3 Cervinae Cervus nippon sika deer 480 52 37 0.1 B T 1,2,3,9,12,13 Cervinae Cervus timorensis Timor deer 675 95.5 53 0.29 C H 1,9 Cervinae Cervus unicolor sambar 1049 192 146 –0.18 B T 1,2,3,7 Cervinae Dama dama fallow deer 615 67 44 0.15 C T 1,2,3,14 Cervinae Elaphurus davidianus Père David’s deer 737 214 159 –0.17 C H 1,2,3 Muntiacinae Elaphodus cephalophus
    [Show full text]
  • An Analysis of the Phylogenetic Relationship of Thai Cervids Inferred from Nucleotide Sequences of Protein Kinase C Iota (PRKCI) Intron
    Kasetsart J. (Nat. Sci.) 43 : 709 - 719 (2009) An Analysis of the Phylogenetic Relationship of Thai Cervids Inferred from Nucleotide Sequences of Protein Kinase C Iota (PRKCI) Intron Kanita Ouithavon1, Naris Bhumpakphan2, Jessada Denduangboripant3, Boripat Siriaroonrat4 and Savitr Trakulnaleamsai5* ABSTRACT The phylogenetic relationship of five Thai cervid species (n=21) and four spotted deer (Axis axis, n=4), was determined based on nucleotide sequences of the intron region of the protein kinase C iota (PRKCI) gene. Blood samples were collected from seven captive breeding centers in Thailand from which whole genomic DNA was extracted. Intron1 sequences of the PRKCI nuclear gene were amplified by a polymerase chain reaction, using L748 and U26 primers. Approximately 552 base pairs of all amplified fragments were analyzed using the neighbor-joining distance matrix method, and 19 parsimony- informative sites were analyzed using the maximum parsimony approach. Phylogenetic analyses using the subfamily Muntiacinae as outgroups for tree rooting indicated similar topologies for both phylogenetic trees, clearly showing a separation of three distinct genera of Thai cervids: Muntiacus, Cervus, and Axis. The study also found that a phylogenetic relationship within the genus Axis would be monophyletic if both spotted deer and hog deer were included. Hog deer have been conventionally classified in the genus Cervus (Cervus porcinus), but this finding supports a recommendation to reclassify hog deer in the genus Axis. Key words: Thailand, the family Cervidae, protein kinase C iota (PRKCI) intron, phylogenetic tree, taxonomy INTRODUCTION 1987; Gentry, 1994). Cervids, or what is commonly called “deer,” are mostly characterized The family Cervidae is one of the most by antlers with a bony inner core and velvet skin specious families of artiodactyls, with an extensive cover.
    [Show full text]
  • Sexual Selection and Extinction in Deer Saloume Bazyan
    Sexual selection and extinction in deer Saloume Bazyan Degree project in biology, Master of science (2 years), 2013 Examensarbete i biologi 30 hp till masterexamen, 2013 Biology Education Centre and Ecology and Genetics, Uppsala University Supervisor: Jacob Höglund External opponent: Masahito Tsuboi Content Abstract..............................................................................................................................................II Introduction..........................................................................................................................................1 Sexual selection........................................................................................................................1 − Male-male competition...................................................................................................2 − Female choice.................................................................................................................2 − Sexual conflict.................................................................................................................3 Secondary sexual trait and mating system. .............................................................................3 Intensity of sexual selection......................................................................................................5 Goal and scope.....................................................................................................................................6 Methods................................................................................................................................................8
    [Show full text]
  • Phylogeny, Evolution, and Diversity of Old World Telemetacarpal Deer
    Phylogeny, evolution, and diversity of Old World telemetacarpal deer (Capreolinae, Cervidae, Mammalia) Roman CROITOR (Chișinău/Aix‐en‐Provence) introduction • Modern telemetacarpal deer (subfamily Capreolinae) are represented by few very specialized Old World forms (1, Alces alces; 2, Rangifer tarandus; 3, Capreolus capreolus; 4, Hydropotes inermis) and a diversified radiationof New World telemetacarpal deer. The known paleontological record of Capreolinae in Eurasia is rather scarce and for some genera (Procapreolus) is traced from the Late Miocene, while other lineages appear only in the Early Pleistocene and already represented by very specialized forms (Alces). Some poor Pliocene remains of Capreolus and of a form similar to Alces are reported by Vislobokova et al. (1995) from the Late Pliocene of Baikal Area. Another interesting recent finding is Rangifer sp. from the Early Pleistocene of Western Siberia that maintains the primitive orientation of pedicles (Bondarev et al., 2017). Those sparse findings suggest that Capreolines continuously were present in the middle latitudes of Eurasia, but their fossil remains apparently are misunderstood. • The Miocene record of Capreolinae is insufficiently known and many of cervid forms and species are poorly understood. This is the case of Metadicrocerus variabilis, Cervavitus tarakliensis, and Pliocervus matheroni (traditionally are placed in the tribe Pliocervini of the subfamily Cervinae) that are believed to have the intermediate phylogenetic position between modern Cervinae (plesiometacarpal
    [Show full text]
  • Import and Export) (\ Vild Life) Regulations, 1998 I I •
    StatmorJ Tnstru.:nenl 76 of 1998. [CAP. 20:14 Parks and W ild Life (Import and Export) (\ Vild Life) Regulations, 1998 I I • ARRANGENIENT OF SECTIONS Sectioll ( l. Title. 2. Interpretation. 3. Control of import and export of wild life and trophies. 4. Open general pennits. 5. Permits and certificaces. 6. Fonn of permits, certificates. et cetera. 7. Period of validity of export permits. 8. Permits nor to be transferred. 9. A1nendn1ents and revocc:1 tion of perm.i ~s and certificates . .,n _!,.., Delegation of povvers by Dirtctor ind Directer of Custom~. 11. IPspect8rs. 12. Furnishing of information. 13. P0·,vers of insptctors anJ iepn::-ientative:; of rv1i.11iSt~r . 14. ,l -'.' Offences and pcn,1ltie~. lf 17. Repeals arid ~- Jvings. .«. Contrvlied ·~oo(:s.- I • Sc:co.\n ScHEuULE: \Vilct life. T HIRD ScHEDl·LE: Repeais. Parks and Wild Life (ln1porL and Expon) (Wild Life) Regulations, 1998 .. IT is hereby notified that the Minister of Mines, Environment and Tourism has, in terms of section 129 of the Parks and Wild Life Act [ Chapter 20: 14], made the following regulations:- Tit/e 1. These regulations may be cited as the Parks and Wild Life (Import and Expott) (Wi]d Life) Regulations, 1998. ( Interpretation 2. (l) In these regulations, and in any open general permii:­ "artificially propagated" , means plants grown from seeds, cuttings, tissues, spores or other new propagates under control led conditions; "bred in captivity" means the offspring, including eggs pro­ duced in a controlled environm.ent, either from parents · that n1ated or from
    [Show full text]
  • Karyotype Relationships Among Selected Deer Species and Cattle Revealed by Bovine FISH Probes
    RESEARCH ARTICLE Karyotype relationships among selected deer species and cattle revealed by bovine FISH probes Jan Frohlich1*, Svatava Kubickova1, Petra Musilova1, Halina Cernohorska1, Helena Muskova1, Roman Vodicka2, Jiri Rubes1 1 Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic, 2 Zoo Prague, Prague, Czech Republic a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract The Cervidae family comprises more than fifty species divided into three subfamilies: Capreolinae, Cervinae and Hydropotinae. A characteristic attribute for the species included in this family is the great karyotype diversity, with the chromosomal numbers ranging from OPEN ACCESS 2n = 6 observed in female Muntiacus muntjak vaginalis to 2n = 70 found in Mazama goua- Citation: Frohlich J, Kubickova S, Musilova P, Cernohorska H, Muskova H, Vodicka R, et al. zoubira as a result of numerous Robertsonian and tandem fusions. This work reports chro- (2017) Karyotype relationships among selected mosomal homologies between cattle (Bos taurus, 2n = 60) and nine cervid species using a deer species and cattle revealed by bovine FISH combination of whole chromosome and region-specific paints and BAC clones derived from probes. PLoS ONE 12(11): e0187559. https://doi. cattle. We show that despite the great diversity of karyotypes in the studied species, the org/10.1371/journal.pone.0187559 number of conserved chromosomal segments detected by 29 cattle whole chromosome Editor: Roscoe Stanyon, University of Florence, painting probes was 35 for all Cervidae samples. The detailed analysis of the X chromo- ITALY somes revealed two different morphological types within Cervidae. The first one, present in Received: August 23, 2017 the Capreolinae is a sub/metacentric X with the structure more similar to the bovine X.
    [Show full text]
  • Anchoring the Cerela1.0 Genome Assembly to Red Deer
    animals Article Anchoring the CerEla1.0 Genome Assembly to Red Deer (Cervus elaphus) and Cattle (Bos taurus) Chromosomes and Specification of Evolutionary Chromosome Rearrangements in Cervidae Miluse Vozdova * , Svatava Kubickova , Halina Cernohorska, Jan Fröhlich and Jiri Rubes Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology—Veterinary Research Institute, 62100 Brno, Czech Republic; [email protected] (S.K.); [email protected] (H.C.); [email protected] (J.F.); [email protected] (J.R.) * Correspondence: [email protected]; Tel.: +42-05-3333-1422 Simple Summary: The red deer (Cervus elaphus) de novo genome assembly (CerEla1.0) has provided a great resource for genetic studies in various deer species. In this study, we used gene order comparisons between C. elaphus CerEla1.0 and B. taurus ARS-UCD1.2 genome assemblies and fluorescence in situ hybridization (FISH) with bovine BAC probes to verify the red deer-bovine chromosome relationships and anchor the CerEla1.0 C-scaffolds to karyotypes of both species. We showed the homology between bovine and deer chromosomes and determined the centromere- Citation: Vozdova, M.; Kubickova, telomere orientation of the CerEla1.0 C-scaffolds. Using a set of BAC probes, we were able to S.; Cernohorska, H.; Fröhlich, J.; narrow the positions of evolutionary chromosome breakpoints defining the family Cervidae. In Rubes, J. Anchoring the CerEla1.0 Genome Assembly to Red Deer addition, we revealed several errors in the current CerEla1.0 genome assembly. Finally, we expanded (Cervus elaphus) and Cattle (Bos taurus) our analysis to other Cervidae and confirmed the locations of the cervid evolutionary fissions and Chromosomes and Specification of orientation of the fused chromosomes in eight cervid species.
    [Show full text]
  • Pan-American Trypanosoma (Megatrypanum) Trinaperronei N. Sp
    Garcia et al. Parasites Vectors (2020) 13:308 https://doi.org/10.1186/s13071-020-04169-0 Parasites & Vectors RESEARCH Open Access Pan-American Trypanosoma (Megatrypanum) trinaperronei n. sp. in the white-tailed deer Odocoileus virginianus Zimmermann and its deer ked Lipoptena mazamae Rondani, 1878: morphological, developmental and phylogeographical characterisation Herakles A. Garcia1,2* , Pilar A. Blanco2,3,4, Adriana C. Rodrigues1, Carla M. F. Rodrigues1,5, Carmen S. A. Takata1, Marta Campaner1, Erney P. Camargo1,5 and Marta M. G. Teixeira1,5* Abstract Background: The subgenus Megatrypanum Hoare, 1964 of Trypanosoma Gruby, 1843 comprises trypanosomes of cervids and bovids from around the world. Here, the white-tailed deer Odocoileus virginianus (Zimmermann) and its ectoparasite, the deer ked Lipoptena mazamae Rondani, 1878 (hippoboscid fy), were surveyed for trypanosomes in Venezuela. Results: Haemoculturing unveiled 20% infected WTD, while 47% (7/15) of blood samples and 38% (11/29) of ked guts tested positive for the Megatrypanum-specifc TthCATL-PCR. CATL and SSU rRNA sequences uncovered a single species of trypanosome. Phylogeny based on SSU rRNA and gGAPDH sequences tightly cluster WTD trypanosomes from Venezuela and the USA, which were strongly supported as geographical variants of the herein described Trypa- nosoma (Megatrypanum) trinaperronei n. sp. In our analyses, the new species was closest to Trypanosoma sp. D30 from fallow deer (Germany), both nested into TthII alongside other trypanosomes from cervids (North American elk and European fallow, red and sika deer), and bovids (cattle, antelopes and sheep). Insights into the life-cycle of T. trinaper- ronei n. sp. were obtained from early haemocultures of deer blood and co-culture with mammalian and insect cells showing fagellates resembling Megatrypanum trypanosomes previously reported in deer blood, and deer ked guts.
    [Show full text]
  • Karyotype and Idiogram of Indian Hog Deer (Hyelaphus Porcinus) by Conventional Staining, GTG-, High-Resolution and Ag-NOR Banding Techniques
    © 2017 The Japan Mendel Society Cytologia 82(3): 227–233 Karyotype and Idiogram of Indian Hog Deer (Hyelaphus porcinus) by Conventional Staining, GTG-, High-Resolution and Ag-NOR Banding Techniques Krit Pinthong1, Alongklod Tanomtong2*, Hathaipat Khongcharoensuk2, Somkid Chaiphech3, Sukjai Rattanayuvakorn4 and Praween Supanuam5 1 Department of Fundamental Science, Faculty of Science and Technology, Surindra Rajabhat University, Surin, Muang 32000, Thailand 2 Toxic Substances in Livestock and Aquatic Animals Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Muang 40002, Thailand 3 Department of Animal Science, Rajamangala University of Technology Srivijaya Nakhonsrithammarat Campus, Nakhonsrithammarat, Thungyai 80240, Thailand 4 Department of Science and Mathematics, Faculty of Agriculture and Technology, Rajamangala University of Technology Isan, Surin Campus, Surin, Muang 32000, Thailand 5 Biology Program, Faculty of Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani, Muang 34000, Thailand Received April 19, 2016; accepted January 20, 2017 Summary Standardized karyotype and idiogram of Indian hog deer (Hyelaphus porcinus) at Khon Kaen Zoo, Thailand was explored. Blood samples were taken from two male and two female deer. After standard whole blood T-lymphocytes were cultured at 37°C for 72 h in presence of colchicine, metaphase spreads were per- formed on microscopic slides and air-dried. Conventional staining, GTG-, high-resolution and Ag-NOR banding techniques were applied to stain the chromosome. The results show that the diploid chromosome number of H. porcinus was 2n=68, the fundamental number (NF) was 70 in both males and females. The types of autosomes observed were 6 large telocentric, 18 medium telocentric and 42 small telocentric chromosomes.
    [Show full text]
  • Deer from Late Miocene to Pleistocene of Western Palearctic: Matching Fossil Record and Molecular Phylogeny Data
    Zitteliana B 32 (2014) 115 Deer from Late Miocene to Pleistocene of Western Palearctic: matching fossil record and molecular phylogeny data Roman Croitor Zitteliana B 32, 115 – 153 München, 31.12.2014 Institute of Cultural Heritage, Academy of Sciences of Moldova, Bd. Stefan Cel Mare 1, Md-2028, Chisinau, Moldova; Manuscript received 02.06.2014; revision E-mail: [email protected] accepted 11.11.2014 ISSN 1612 - 4138 Abstract This article proposes a brief overview of opinions on cervid systematics and phylogeny, as well as some unresolved taxonomical issues, morphology and systematics of the most important or little known mainland cervid genera and species from Late Miocene and Plio-Pleistocene of Western Eurasia and from Late Pleistocene and Holocene of North Africa. The Late Miocene genera Cervavitus and Pliocervus from Western Eurasia are included in the subfamily Capreolinae. A cervid close to Cervavitus could be a direct forerunner of the modern genus Alces. The matching of results of molecular phylogeny and data from cervid paleontological record revealed the paleozoogeographical context of origin of modern cervid subfamilies. Subfamilies Capreolinae and Cervinae are regarded as two Late Miocene adaptive radiations within the Palearctic zoogeographic province and Eastern part of Oriental province respectively. The modern clade of Eurasian Capreolinae is significantly depleted due to climate shifts that repeatedly changed climate-geographic conditions of Northern Eurasia. The clade of Cervinae that evolved in stable subtropical conditions gave several later radiations (including the latest one with Cervus, Rusa, Panolia, and Hyelaphus) and remains generally intact until present days. During Plio-Pleistocene, cervines repeatedly dispersed in Palearctic part of Eurasia, however many of those lineages have become extinct.
    [Show full text]
  • And Sika Deer /.../ in Lithuania I
    BALTIC FORESTRY GENETIC ANALYSIS OF RED DEER /.../ AND SIKA DEER /.../ IN LITHUANIA I. RAÞANSKË ET AL. Genetic Analysis of Red Deer (Cervus elaphus) and Sika Deer (Cervus nippon) to Evaluate Pos- sible Hybridisation in Lithuania IRMA RAÞANSKË, JUSTINA MONIKA GIBIEÞAITË AND ALGIMANTAS PAULAUSKAS* Faculty of Natural Sciences, Vytautas Magnus University, Vileikos str. 8, LT-44404 Kaunas, Lithuania Corresponding author: e-mail: [email protected] Raþanskë, I., Gibieþaitë, J.M. and Paulauskas, A. 2017. Genetic Analysis of Red Deer (Cervus elaphus) and Sika Deer (Cervus nippon) to Evaluate Possible Hybridisation in Lithuania. Baltic Forestry 23(3): 683690. Abstract Genetic diversity of the red deer Cervus elaphus (6 individuals from enclosures and 33 individuals living in the wild) and the sika deer Cervus nippon (30 individuals from enclosures) species was studied by using tissue samples from the legally hunted animals in Lithuania. Genotyping was based on seven microsatellites loci (STR) of nuclear DNA. The STR loci were variable, with 1-17 alleles and higher than intermediate values of heterozygosity (sika deer: H =0.695, H =0.694; wild red deer: o e H =0.626, H =0.624; red deer from enclosures: H =0.639, H =0.667). Among 69 individuals phenotypically designated as red o e o e deer and sika deer by hunters, based on Bayesian method 31 individuals had Q-values of 0.95-1.0 (pure red deer), 3 individuals had Q-values of 0.750.95 (hybrid of the red type), 2 individuals had values of 0.25 < Q £ 0.75 (intermediate hybrid), 6 individuals had Q-values of 0.050.25 (hybrid of the sika type), and 27 individuals had Q values of 00.05 (pure sika).
    [Show full text]