The Qtspp Theorem
The qTSPP Theorem Manuel Kauers RISC on a collaboration with Christoph Koutschan Doron Zeilberger and Tulane Rutgers The qTSPP Theorem Manuel Kauers RISC on a collaboration with Christoph Koutschan Doron Zeilberger and RISC Rutgers Richard Stanley Partitions n n A partition π of size n is a tuple (πi)i=1 ∈ N with n ≥ π1 ≥ π2 ≥···≥ πn. Partitions n n A partition π of size n is a tuple (πi)i=1 ∈ N with n ≥ π1 ≥ π2 ≥···≥ πn. Example: 5 3 3 2 1 0 is a partition of size 6 Partitions n n A partition π of size n is a tuple (πi)i=1 ∈ N with n ≥ π1 ≥ π2 ≥···≥ πn. Example: 5 3 3 2 1 0 is a partition of size 6 ttttt Picture: ttt ttt tt t Plane Partitions n n×n A plane partition π of size n is a matrix ((πi,j))i,j=1 ∈ N with n ≥ πi,1 ≥ πi,2 ≥···≥ πi,n and n ≥ π1,j ≥ π2,j ≥···≥ πn,j for all i and j. Plane Partitions n n×n A plane partition π of size n is a matrix ((πi,j))i,j=1 ∈ N with n ≥ πi,1 ≥ πi,2 ≥···≥ πi,n and n ≥ π1,j ≥ π2,j ≥···≥ πn,j for all i and j. 5 3 3 2 1 0 4 3 3 1 1 0 3 2 1 1 0 0 is a plane partition of size 6 2 2 1 1 0 0 2 1 0 0 0 0 1 1 0 0 0 0 Plane Partitions n n×n A plane partition π of size n is a matrix ((πi,j))i,j=1 ∈ N with n ≥ πi,1 ≥ πi,2 ≥···≥ πi,n and n ≥ π1,j ≥ π2,j ≥···≥ πn,j for all i and j.
[Show full text]