Determination of Chromosome Number of Kuwaiti Flora I. The

Total Page:16

File Type:pdf, Size:1020Kb

Determination of Chromosome Number of Kuwaiti Flora I. The C 1999 The Japan Mendel Society Cytologia 64: 181-196, 1999 Determination of Chromosome Number of Kuwaiti Flora I. G. A. Malallah and G. Brown Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait. Accepted February 12, 1999 Summary This paper deals with the chromosome numbers (somatic or sporophytic and gametic) of some wild species of the Kuwaiti flora. All species were collected from the wild except Plantago lanceolata, which was cultivated. Some values are reported for the first time. The species and their respective chromosome numbers are as follows: Anthemis deserti 2n=18, Atractylis carduus 2n=20, Calendula arvensis 2n=36, 44, Koelpinia linearis 2n=54, 36, Launaea capitata 2n=18, L. mu- cronata 2n=16, Picris babylonica 2n=10, Reichardia tingitana 2n=16, Senecio glaucus 2n=20, Sonchus oleraceus 2n=32, Astragalus hauarensis 2n=48, A. schimperi 2n=16, Lotus halophilus 2n=14, 28, Medicago laciniata 2n=16, Plantago amplexicaulis 2n=10, P. boissieri 2n=10, P. cilia- ta 2n = 10, P. coronopus 2n= 10, P. lanceolata 2n= 12, P. ovata 2n =8. Karyotype analysis of P. baby- lonica, R. tingitana, P. boissieri, and P. ciliata is shown. The chromosome set is not only one of the most characteristic attributes of a species, but also carries the bulk of essential information for controlling its organization and metabolism. Therefore, variations in number, size and form of the chromosomes between genera and related species, and sometimes between populations of the same species, are of importance for classification and certain evolutionary aspects (Sato 1962). Such variations represent different karyotypes (Jackson 1971). Numerical analysis of chromosomes is one of the processes in assessing the genomic status of a species. Chromosome numbers of species can provide useful information for various fields of re- search including karyotaxonomy, genetics, cytogenetics, plant breeding, ecology, biogeography and molecular biology. A number of workers have been involved in reporting the chromosome numbers of wild and cultivated plant species (Darlington and Wylie 1955, Bolkhovskikh et al. 1969, Love and Love 1974, 1975, Moore 1973a, b, 1977, Meikle 1977, Beuzenberg and Nair 1983, Goldblatt 1981a, b, 1985, Webb and Beuzenberg 1987, Majovsky and Murin 1987, Rao and Chandel 1991). On the basis of such information it has often been possible to interpret the genetic interrelationships existing within species (Berdahle and Barker 1991, Brochmann 1992, Stepankova 1993). Halwagy and Macksad (1972) give a historical account of the exploration of the Kuwaiti flora, but no infor- mation on chromosomal aspects has been reported. Indeed, there is a complete lack of knowledge regarding the karyology of wild plant species in Kuwait (Malallah et al. 1996). The main aim of this paper is to provide information on the chromosome number of various species of the Kuwaiti flora. In this initial study, 20 species from three different families were se- lected, and their mitotic and meiotic chromosome numbers determined as well as the mitotic index, karyotype analysis of 4 species is also considered. Materials and methods 20 species from three families, Asteraceae, Fabaceae, and Plantaginaceae were selected for this study. Identification of the species was checked by Mrs. M. Al-Doseri, Biological Sciences- University of Kuwait. Nomenclature and synonyms are in accordance with Boulos and Al-Dosari (1994), Daoud (1985) and Al-Rawi (1987). Seeds of each species were collected from at least three different plants growing at various lo- 182 G. A. Malallah and G. Brown Cytologia 64 calities in Kuwait during November to April 1993 and 1998. They were germinated in a controlled growth chamber for 12 h dark at 16•Ž and 12 h light at 22•Ž on moist filter paper enclosed in Petri dishes. Actively growing root tips were excised and fixed in Carnoy's fixative (1 : 3 acetic acid alco- hol) until ready for use. For slide preparation, excised roots were washed with distilled water for 4- 5 min, hydrolyzed in 1N HCl for 10-12 min at 60•Ž and finally rinsed with distilled water for 4- 5 min. The roots were stained in 1% aceto-carmine for microscopic analysis. Some three-day old seedlings were treated with 0.05% colchicine for 4 h or 20 h cold water treatment at 50•Ž in order to have c-metaphases. Young flower buds were collected and kept in Carnoy's fixative until further use. After discard- ing unwanted tissues, anthers were squashed in a drop of aceto-carmine stain and covered with a clean cover glass. Microscopic analysis was carried out with an Olympus BH-2 photomicroscope. Micrographs were taken when necessary from temporary preparations. Slides were made permanent by removing the cover slip with dry ice techniques followed by dehydration of the slides in increas- ing alcohol concentrations. Several well-spread metaphases were counted to confirm the validity of the chromosome number and for karyotype analysis. The mitotic index was calculated by recording the stage of every nucleus present in a field of view at 400 •~ magnification. When expressed as a percentage, the relative amount of time nuclei spent at each mitotic stage can be determined. Data on general distribution and various ecological aspects of individual species were taken from the lit- erature, although we have added our own observations when more appropriate. Karyotype analysis For diploid karyotype analysis, a minimum of 5 root tip cells from each case was analyzed. Cells in which the chromosomes were well separated were photographed at high magnification. Photo-ideograms were prepared from the photographs by cutting out individual chromosomes and arranging them in a descending order of their length. On the basis of gross morphology and centromere position, the chromosomes were grouped to form homologous pairs. Averages of the paired chromosomes were taken for total length, arm ratio and total volume. The total length was ascertained by adding the length of all chromosomes in the karyotype. The ratio of the long arm (L) to the short arm (S) was used to identify centromere posi- tion for each chromosome. The nomenclature system of Levan et al. (1964) was used to determine the chromosome types as median (m), sub-median (sm) or sub-terminal (st). The chromosome vol- ume was determined from the metaphase plate, assuming the chromosome as cylindrical structure by the formula ƒÎr2h, where r and h represent the radius and the length of the chromosome respec- tively. The total volume is determined by adding the volumes of all chromosomes. Results and discussion The mitotic and meiotic chromosome numbers and the mitotic index of each species are listed in Table 1 while the corresponding data from the literature are included in the text. Further details on morphological and ecological aspects of each species in Kuwait, are available from Al-Rawi (1987) and Boulos (1987). The rate of mitotic division in the indicated species has not been investi- gated before. In some systems, the mitotic index or the proportion of cells in visible stages of divi- sion directly reflects the relative duration of mitotic stages (Dyer 1979). The procedure performed in the present work demonstrates an asynchronous fashion, and cannot therefore provide an ab- solute value for the duration of the individual stages, or the duration of the whole cycle. Further work is required to clarify. However, the mitotic index mean gives an indication of that mitosis oc- cupied a typical value for the total time (Brown and Bertke 1974). The life cycle of annual wild species in Kuwait is very short and the germination starts just several days after two or three show- ers of rain in the beginning of the season and develops into full plants in very short time period in- 1999 Determination of Chromosome Number of Kuwaiti Flora I. 183 Table 1. Chromosome number and mitotic index of some wild plant species in Kuwait dicating that the main factor affecting the germination is the rain. The question is whether the life span of the wild species could be controlled or not and the duration of the cell cycle are the subjects of future work. ASTERACEAE Anthemis deserti Boiss. Syn.: A. melamopodina subsp. deserti var. transiens Eig loc.cit.; A. diffusa Salzm. ex DC. Geographical distribution: Saharo-Arabian. Kuwaiti data: Found in many localities particularly common at Al-Sabiyah. Flowering time: Febru- ary-April. Literature data: No information. Comment: According to the literature, this species has not been investigated cytogenetically. This study therefore provides the first count of the chromosome number and the relative duration of mi- tosis. An interesting observation was that most cells were 2n=18, while a few others were 2n=24. A possible explanation is that some capitula had seeds of another species attached to them. We therefore consider 2n=18 to be the correct value. Atractylis carduus (Forssk.) Syn.: A. flava Coss. and Dur.; Centaurea carduus Forssk. Geographical distribution: Saharo-Arabian. Kuwaiti data: Found in many sandy localities. Flowering time: March-April. Literature data: 2n=20 (Waisel 1962); A.flava 2n=20 (Brullo et al. 1990). Comment: The somatic number of 2n=20 is the third published karyological study for this species and the first undertaken on Kuwait material. This mitotic chromosome number was the same from the three different localities in Kuwait and which is consistent with the findings from the other countries indicating the high stability of the diploid number. Accordingly, the gametic number 184 G. A. Malallah and G. Brown Cytologia 64 n=10. Calendula arvensis L. Syn.: C. sancta L.; C. persica C. A. Mey.; C. aegyptiaca Desf. Geographical distribution: Mediterranean, Irano-Turanian, and Saharo-Arabian. Kuwaiti data: It is an annual herb, which can be found in many localities in sandy places. Flowering time: February-April. Literature data: 2n=22 (Aparicio et al.
Recommended publications
  • Status and Protection of Globally Threatened Species in the Caucasus
    STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N.
    [Show full text]
  • Karyology of the Scorzonera L. (Asteraceae) Taxa from Turkey
    E. MARTİN, Ö. ÇETİN, S. MAKBUL, A. DURAN, M. ÖZTÜRK, D. BODUROĞLU, B. EŞMEKAYA Turk J Biol 36 (2012) 187-199 © TÜBİTAK doi:10.3906/biy-1008-46 Karyology of the Scorzonera L. (Asteraceae) taxa from Turkey Esra MARTİN1, Özlem ÇETİN1, Serdar MAKBUL2, Ahmet DURAN1, Meryem ÖZTÜRK1, Derya BODUROĞLU1, Bahriye EŞMEKAYA3 1Department of Biology Education, Selçuk University, Ahmet Keleşoğlu Education Faculty, Konya - TURKEY 2Department of Biology, Rize University, Science and Arts Faculty, Rize - TURKEY 3Department of Biology, Niğde University, Science and Arts Faculty, Niğde - TURKEY Received: 09.08.2010 Abstract: In this study, the karyotypes of 13 taxa of the tribe Lactuceae growing naturally in Turkey were examined. Of the species of the genus Scorzonera L. (Asteraceae), S. laciniata L. subsp. laciniata, S. cana (C.A.Mey.) Hoff m. var. jacquiniana (W.Koch) Chamb., S. suberosa C.Koch subsp. suberosa, S. mollis M.Bieb. subsp. mollis, S. papposa DC., S. lacera Boiss. & Bal., S. elata Boiss., and S. parvifl ora Jacq. have a diploid chromosome number of 2n = 14. For S. phaeopappa (Boiss.) Boiss., this number is 2n = 28, and for S. eriophora DC., S. pseudolanata Grossh., S. tomentosa L., and S. kotschyi Boiss., it is 2n = 12. Th e average chromosome length of the taxa examined was between 1.20 and 7.63 μm. All of the taxa have median and submedian chromosome pairs in their chromosome morphologies. With the exception of S. parvifl ora, the chromosome morphologies of the taxa examined are presented here for the first time. Key words: Scorzonera, Compositae, karyotype, Turkey Türkiye’den Scorzonera L.
    [Show full text]
  • Plant-Derived Triterpenoid Biomarkers and Their Applications In
    Plant-derived triterpeonid biomarkers: chemotaxonomy, geological alteration, and vegetation reconstruction Res. Org. Geochem. 35, 11 − 35 (2019) Reviews-2015 Taguchi Award Plant-derived triterpenoid biomarkers and their applications in paleoenvironmental reconstructions: chemotaxonomy, geological alteration, and vegetation reconstruction Hideto Nakamura* (Received November 22, 2019; Accepted December 27, 2019) Abstract Triterpenoids and their derivatives are ubiquitous in sediment samples. Land plants are major sources of non- hopanoid triterpenoids; these terpenoids comprise a vast number of chemotaxonomically distinct biomolecules. Hence, geologically occurring plant-derived triterpenoids (geoterpenoids) potentially record unique characteristics of paleovegetation and sedimentary environments, and serve as source-specific markers for studying paleoenviron- ments. This review is aimed at explaining the origin of triterpenoids and their use as biomarkers in elucidating paleo- environments. Herein, application of plant-derived triterpenoids is discussed in terms of: (i) their biosynthetic pathways. These compounds are primarily synthesized via oxidosqualene cyclase (OSCs) and serve as precursors for a variety of membrane sterols and steroid hormones. Studies on OSCs and resulting compounds have helped elucidate the diversity and origin of the parent terpenoids. (ii) their chemotaxonomic significance. Geochemically important classes of triterpenoid skeletons are useful in gathering and substantiating information on botanical ori- gin of
    [Show full text]
  • New Ten Varieties and Five Subspecies of Crocus Baalbekensis K. Addam & M
    MOJ Ecology & Environmental Sciences Research Article Open Access New ten varieties and five subspecies of Crocus baalbekensis K. Addam & M. Bou-Hamdan (Iridaceae) endemic to Lebanon added to the Lebanese flora Abstract Volume 4 Issue 6 - 2019 Fifteen new world record Crocus baalbekensis var. decorus, fluctus, flavo-album, 1 2 makniensis, youninensis, rasbaalbekensis, rihaensis, shaathensis, shlifensis, tnaiyetensis, Khodr Addam, Mounir Bou-Hamdan, Jihad subsp. ahlansis, anthopotamus, fakihansis, harbatansis, and rassomensis, joined the Takkoush,3 Kamal Hout4 Lebanese flora and particularly the Iridaceae family. They were found in Baalbek-Hermel 1Head, Integrative and Environmental Research Center, AUL from North Baalbek to Hermel. All of them display C. Baalbekensis but vary in many Beirut, Lebanon 2 taxonomic details. The validation for the existence of these new Varieties and Subspecies Integrative Research and Environmental Center, AUL Beirut, were verified by illustrated morphologic descriptions and observations were based on fresh Lebanon 3 materials. More than twenty years of fieldwork and three years of observation, phenology, Business Research Center, AUL Beirut, Lebanon 4Department of PG Studies & Scientific Research, Global and exploration of a host of locations, numerous quantities were found varying mostly from University Beirut, Lebanon ten to more of the new species. Voucher specimens of the plants (Holotypes) were deposited in K. Addam’s Herbarium at Arts, Sciences and Technology University in Lebanon. Correspondence: Dr. Khodr H Addam, Head, Integrative and The goal of this study was to display a comparative account on the anatomical and ecological Environmental Research Center, AUL, Beirut, Lebanon, Tel 03- characters of the 10 varieties and 5 subspecies of Crocus baalbekensis taxa as well as 204930, Email highlight the taxonomical importance of their corm, corm tunic, leaves, measurements, and Received: November 19, 2019 | Published: December 05, comparisons of other structural anatomical differences and similarities.
    [Show full text]
  • Senecio Glaucus Subsp. Coronopifolius ) (MAIRE) C
    Az. J. Pharm Sci. Vol. 52, September, 2015. 283 PHYTOCHEMICAL AND BIOLOGICAL STUDY OF (Senecio glaucus subsp. coronopifolius ) (MAIRE) C. ALEXANDER GROWING IN EGYPT BY Shaza A. Mohamed FROM Pharmacognosy Department, Faculty of Pharmacy (Girls), AL-Azhar University, Cairo, Egypt. ABSTRACT Senecio glaucus subsp. coronopifolius (Maire) C. Alexander is wild annual herb distributed in the Egyptian deserts. Total phenolic and flavonoid content of plant root were determined using both HPLC and colorimetric analysis. Syringic acid and hesperidin (1378.802 and 6638.247 mg / 100 gm. dried plant root powder, respectively) were of the highest concentration compounds resulted from HPLC analysis of total phenolic and flavonoid content. The colorimetric estimation of total phenolic and flavonoid content resulted in concentration of (98.23 ± 0.28 mg/gm. expressed as Gallic acid equivalent (GAE) and 35.9± 0.17 mg/gm. expressed as quercetin equivalent (QE), respectively). GC-MS analysis of un-saponifiable matters and fatty acid methyl esters of the plant leaves indicated that octacosane (11.85%) and linolenic acid methyl ester (31.07%) (poly- unsaturated fatty acid) were the major identified compounds, respectively. The DNA of the plant was analyzed using twelve random decamer primers. A total of 52 random amplified polymorphic DNA (RAPD) markers were identified. Root extracts (ethyl acetate, acetone and methyl alcohol) were subjected to determine the antimicrobial behavior and also their cytotoxic activity, by using (3- (4, 5- dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (MTT) assay against colon carcinoma cell lines (HCT-116). Among the fore mentioned extracts, root ethyl acetate extract gave appreciable antibacterial and antifungal behavior and also had promising cytotoxic activity with IC50 = 7.39 ±1.2 µg/ml.
    [Show full text]
  • Chemical Composition and Antimicrobial Activity of the Essential Oils from the Flower, Leaf, and Stem of Senecio Pandurifolius
    ORIGINAL ARTICLE Rec. Nat. Prod . 5:2 (2011) 82-91 Chemical Composition and Antimicrobial Activity of the Essential Oils from the Flower, Leaf, and Stem of Senecio pandurifolius Nuran Kahriman 1, Gonca Tosun 1, Salih Terzio ğlu 2, Şengül Alpay Karao ğlu 3 and Nurettin Yaylı 1,* 1Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Türkiye 2Department of Forest Botany, Faculty of Forestry, Karadeniz Technical University, 61080, Trabzon, Türkiye 3Department of Biology, Faculty of Arts and Sciences, Rize University, 53100, Rize, Türkiye (Received July 15, 2010; Revised September 13, 2010; Accepted September 13, 2010) Abstract: The essential oils from the fresh flower, leaf, and stem of Senecio pandurifolius (Asteraceae) were isolated by hydrodistillation in a Clevenger-type apparatus, and characterized by GC-FID and GC-MS. A total of forty-five, sixty, and forty-two compounds were identified, constituting over 90.1%, 88.0%, and 89.0% of oil composition of the flower, leaf, and stem of S. pandurifolius , respectively. The chemical profile reveals the dominance of sesquiterpene hydrocarbons (flower: 42.4%, leaf: 43.4%, stem: 52.3%). The main components of essential oils own to S. pandurifolius were α-cuprenene (30.7%) in flower, α-zingiberene (16.1%) in leaf and γ- curcumene (14.9%) in stem. Terpene related compounds were in minor amounts in all parts (flower: 1.4%, leaf: 1.5%, stem: 1.9%) of the S. pandurifolius . Also there was no monoterpene hydrocarbons and oxygenated monoterpenes in the essential oil of the stem. In addition, antimicrobial activities of the essential oils of S.
    [Show full text]
  • 5. Tribe CICHORIEAE 菊苣族 Ju Ju Zu Shi Zhu (石铸 Shih Chu), Ge Xuejun (葛学军); Norbert Kilian, Jan Kirschner, Jan Štěpánek, Alexander P
    Published online on 25 October 2011. Shi, Z., Ge, X. J., Kilian, N., Kirschner, J., Štěpánek, J., Sukhorukov, A. P., Mavrodiev, E. V. & Gottschlich, G. 2011. Cichorieae. Pp. 195–353 in: Wu, Z. Y., Raven, P. H. & Hong, D. Y., eds., Flora of China Volume 20–21 (Asteraceae). Science Press (Beijing) & Missouri Botanical Garden Press (St. Louis). 5. Tribe CICHORIEAE 菊苣族 ju ju zu Shi Zhu (石铸 Shih Chu), Ge Xuejun (葛学军); Norbert Kilian, Jan Kirschner, Jan Štěpánek, Alexander P. Sukhorukov, Evgeny V. Mavrodiev, Günter Gottschlich Annual to perennial, acaulescent, scapose, or caulescent herbs, more rarely subshrubs, exceptionally scandent vines, latex present. Leaves alternate, frequently rosulate. Capitulum solitary or capitula loosely to more densely aggregated, sometimes forming a secondary capitulum, ligulate, homogamous, with 3–5 to ca. 300 but mostly with a few dozen bisexual florets. Receptacle naked, or more rarely with scales or bristles. Involucre cylindric to campanulate, ± differentiated into a few imbricate outer series of phyllaries and a longer inner series, rarely uniseriate. Florets with 5-toothed ligule, pale yellow to deep orange-yellow, or of some shade of blue, including whitish or purple, rarely white; anthers basally calcarate and caudate, apical appendage elongate, smooth, filaments smooth; style slender, with long, slender branches, sweeping hairs on shaft and branches; pollen echinolophate or echinate. Achene cylindric, or fusiform to slenderly obconoidal, usually ribbed, sometimes compressed or flattened, apically truncate, attenuate, cuspi- date, or beaked, often sculptured, mostly glabrous, sometimes papillose or hairy, rarely villous, sometimes heteromorphic; pappus of scabrid [to barbellate] or plumose bristles, rarely of scales or absent.
    [Show full text]
  • Effect of Small Ruminant Grazing on the Plant Community Characteristics of Semiarid Mediterranean Ecosystems
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 09–104/MSA/2009/11–6–681–689 http://www.fspublishers.org Full Length Article Effect of Small Ruminant Grazing on the Plant Community Characteristics of Semiarid Mediterranean Ecosystems MOUNIR LOUHAICHI1, AMIN K. SALKINI AND STEVEN L. PETERSEN† International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria †Plant and Animal Sciences Department, Brigham Young University, Provo, UT 84602, USA 1Corresponding author’s e-mail: [email protected] ABSTRACT Rangeland degradation has been widespread and severe throughout the Syrian steppe as a result of both unfavorable environmental conditions and human induced impacts. To explore the effectiveness of management-based strategies on establishing sustainable rangeland development, we compared the response of temporarily removing grazing from rangelands ecosystems to those under a continuous heavy grazing regime. Results indicated that ungrazed sites had both higher biomass production and plant species composition than grazed sites. Ungrazed plots produced more than fourfold herbaceous biomass production than continuously grazed plots (p < 0.001). Extent of plant cover was 20% greater in ungrazed plots than grazed plots (33.5 & 13.5%, respectively). Furthermore areas protected from heavy grazing had over 200% greater species composition. Thus, protection from grazing can increase forage production and species composition, but may not necessarily improve plant species available for livestock utilization. A more balanced grazing management approach is recommended to achieve an optimal condition of biomass production (quantity), vegetation cover, quality and available forage species that contribute to proving livestock grazing conditions. Key Words: Vegetation sampling; Overgrazing; Species diversity; Semiarid; Steppe INTRODUCTION population.
    [Show full text]
  • Redalyc.Asteráceas De Importancia Económica Y Ambiental Segunda
    Multequina ISSN: 0327-9375 [email protected] Instituto Argentino de Investigaciones de las Zonas Áridas Argentina Del Vitto, Luis A.; Petenatti, Elisa M. Asteráceas de importancia económica y ambiental Segunda parte: Otras plantas útiles y nocivas Multequina, núm. 24, 2015, pp. 47-74 Instituto Argentino de Investigaciones de las Zonas Áridas Mendoza, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=42844132004 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ISSN 0327-9375 ISSN 1852-7329 on-line Asteráceas de importancia económica y ambiental Segunda parte: Otras plantas útiles y nocivas Asteraceae of economic and environmental importance Second part: Other useful and noxious plants Luis A. Del Vitto y Elisa M. Petenatti Herbario y Jardín Botánico UNSL/Proy. 22/Q-416 y Cátedras de Farmacobotánica y Famacognosia, Fac. de Quím., Bioquím. y Farmacia, Univ. Nac. San Luis, Ej. de los Andes 950, D5700HHW San Luis, Argentina. [email protected]; [email protected]. Resumen El presente trabajo completa la síntesis de las especies de asteráceas útiles y nocivas, que ini- ciáramos en la primera contribución en al año 2009, en la que fueron discutidos los caracteres generales de la familia, hábitat, dispersión y composición química, los géneros y especies de importancia
    [Show full text]
  • The Tachinid Times
    The Tachinid Times ISSUE 24 February 2011 Jim O’Hara, editor Invertebrate Biodiversity Agriculture & Agri-Food Canada ISSN 1925-3435 (Print) C.E.F., Ottawa, Ontario, Canada, K1A 0C6 ISSN 1925-3443 (Online) Correspondence: [email protected] or [email protected] My thanks to all who have contributed to this year’s announcement before the end of January 2012. This news- issue of The Tachinid Times. This is the largest issue of the letter accepts submissions on all aspects of tachinid biology newsletter since it began in 1988, so there still seems to be and systematics, but please keep in mind that this is not a a place between peer-reviewed journals and Internet blogs peer-reviewed journal and is mainly intended for shorter for a medium of this sort. This year’s issue has a diverse news items that are of special interest to persons involved assortment of articles, a few announcements, a listing of in tachinid research. Student submissions are particularly recent literature, and a mailing list of subscribers. The welcome, especially abstracts of theses and accounts of Announcements section is more sizable this year than usual studies in progress or about to begin. I encourage authors and I would like to encourage readers to contribute to this to illustrate their articles with colour images, since these section in the future. This year it reproduces the abstracts add to the visual appeal of the newsletter and are easily of two recent theses (one a Ph.D. and the other a M.Sc.), incorporated into the final PDF document.
    [Show full text]
  • In Vitro Effect of Plant Parts Extract of Senecio Glaucus L. on Pathogenic Bacteria
    Article Volume 12, Issue 3, 2022, 3800 - 3810 https://doi.org/10.33263/BRIAC123.38003810 In Vitro Effect of Plant Parts Extract of Senecio glaucus L. on Pathogenic Bacteria Mohammed Sabry Sultan 1 , Ashraf Elsayed 1 , Yasser Ahmed El-Amir 1,* 1 Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt * Correspondence: [email protected] (Y.E.); Scopus Author ID 55791223000 Received: 1.04.2021; Revised: 15.05.2021; Accepted: 19.05.2021; Published: 13.08.2021 Abstract: Senecio glaucus L. is an annual herb that grows in several Egyptian desert habitats. The diversity of habitats inhabited by this species, as well as its distribution, chemical composition, and biological activity, are all unknown. This research aimed to examine the chemical composition of S. glaucus from various environments in Egypt, as well as the antioxidant and antimicrobial activities. The general assessment of the analytical results for different parts of S. glaucus showed that the capitula and leaves in both inland and coastal samples were rich in bioactive constituents than the other parts as following (capitula > leaf > root > stem). Based on the results of IC50, the antioxidant properties of the eight parts of two samples follows the sequence capitula ˃ root ˃ leaf ˃ stem for the coastal sample, and capitula ˃ leaf ˃ stem ˃ root for the inland sample. The IC50 values ranged from 25.94 to 41.20 mg/ml in coastal sample, where the IC50 values ranged from 28.02 to 42.83 mg/ml in desert sample, compared to ascorbic acid (IC50 = 13.30 mg/ml). The antimicrobial potential of MeOH extracts of S.
    [Show full text]
  • Biodiversity of the Hypersaline Urmia Lake National Park (NW Iran)
    Diversity 2014, 6, 102-132; doi:10.3390/d6020102 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Review Biodiversity of the Hypersaline Urmia Lake National Park (NW Iran) Alireza Asem 1,†,*, Amin Eimanifar 2,†,*, Morteza Djamali 3, Patricio De los Rios 4 and Michael Wink 2 1 Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China 2 Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, Heidelberg D-69120, Germany; E-Mail: [email protected] 3 Institut Méditerranéen de Biodiversité et d'Ecologie (IMBE: UMR CNRS 7263/IRD 237/Aix- Marseille Université), Europôle Méditerranéen de l'Arbois, Pavillon Villemin BP 80, 13545, Aix-en Provence Cedex 04, France; E-Mail: [email protected] 4 Environmental Sciences School, Natural Resources Faculty, Catholic University of Temuco, Casilla 15-D, Temuco 4780000, Chile; E-Mail: [email protected] † These authors contributed equally to this work. * Authors to whom correspondence should be addressed; E-Mails: [email protected] (A.A.); [email protected] (A.E.); Tel.: +86-150-6624-4312 (A.A.); Fax: +86-532-8203-2216 (A.A.); Tel.: +49-6221-544-880 (A.E.); Fax: +49-6221-544-884 (A.E.). Received: 3 December 2013; in revised form: 13 January 2014 / Accepted: 27 January 2014 / Published: 10 February 2014 Abstract: Urmia Lake, with a surface area between 4000 to 6000 km2, is a hypersaline lake located in northwest Iran. It is the saltiest large lake in the world that supports life. Urmia Lake National Park is the home of an almost endemic crustacean species known as the brine shrimp, Artemia urmiana.
    [Show full text]