Design of a Wall-Less Proportional Counter For
Total Page:16
File Type:pdf, Size:1020Kb
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Texas A&M University DESIGN OF A WALL-LESS PROPORTIONAL COUNTER FOR MICRODOSIMETRY IN NANOMETER DIMENSIONS A Thesis by SRIPRIYA RAYADURGAM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2005 Major Subject: Health Physics DESIGN OF A WALL-LESS PROPORTIONAL COUNTER FOR MICRODOSIMETRY IN NANOMETER DIMENSIONS A Thesis by SRIPRIYA RAYADURGAM Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: _____________________________ ___________________________ Leslie A. Braby John R. Ford (Chair of Committee) (Member) _____________________________ ___________________________ Warren D. Reece Nancy D. Turner (Member) (Member) _____________________________ William E. Burchill (Head of Department) May 2005 Major Subject: Health Physics iii ABSTRACT Design of a Wall-less Proportional Counter for Microdosimetry in Nanometer Dimensions. (May 2005) Sripriya Rayadurgam, B.Sc., University of Madras; M.Sc., University of Madras Chair of Advisory Committee: Dr. Leslie A. Braby Knowledge of energy deposition in biological cells at nanometer dimensions is essential to understand the biological effects of radiation. This work has resulted in the development of a practical tool to study such energy deposition experimentally, at nanometer dimensions. The main contribution of this research is the design of a cylindrical wall-less proportional counter of 1mm height by 1mm diameter. A wall-less detector (also called grid-walled detector) overcomes the so-called “wall effect”, an experimental artifact that introduces distortions in the radiation energy measurements. An important feature of this detector that distinguishes it from other detectors is its modular design. This allows the detector to be repaired or modified, when necessary, without having to completely disassemble it. Novel design techniques were adopted resulting in a functional detector that can simulate cellular sites as small as 10 nanometers, approximately the size of many molecules in the cell. The detector was tested with a 1 microcurie sealed Am-241 source, which primarily emits monoenergetic alpha particles of energy 5.57 MeV. Microdosimetric spectra iv analysis for alpha particles and its delta rays from Am-241 were performed for simulated site sizes ranging from 500nm to 10nm. Initial studies to validate the detector design have confirmed good detector performance. We believe this work will serve as a vital platform for bridging the experimentally measured energy spectra to the biological effects of alpha and delta radiations. v ACKNOWLEDGMENTS I would like to thank Dr. Leslie A. Braby, my advisor, for his guidance and support. His time and effort are greatly appreciated. Many thanks to my parents, my brothers and my sisters for being a source of strength all through this work. I would like to thank Tony Restivo who taught me the nuances of machine shop and Dr.Wen Hsing Hsu for helping me out with the photography. vi TABLE OF CONTENTS Page ABSTRACT.......................................................................................................................iii ACKNOWLEDGMENTS .................................................................................................. v TABLE OF CONTENTS................................................................................................... vi LIST OF FIGURES .........................................................................................................viii LIST OF TABLES.............................................................................................................. x CHAPTER I INTRODUCTION .............................................................................................. 1 II MICRODOSIMETRIC QUANTITIES.............................................................. 6 Specific Energy............................................................................................8 Lineal Energy...............................................................................................9 Microdosimetric Spectral Analysis............................................................10 Representation of Microdosimetric Spectra ..............................................12 III THEORY ......................................................................................................... 14 Proportional Counter Theory.....................................................................14 Tissue Equivalence ....................................................................................15 Size Equivalence........................................................................................15 Gas Multiplication Factor..........................................................................19 Wall Effect and Wall-less Counter............................................................22 vii CHAPTER Page IV PROCEDURE................................................................................................. 24 Objectives ..................................................................................................24 Detector Design .........................................................................................24 Helix Design ..............................................................................................25 Field Tubes ................................................................................................27 Anode Design ............................................................................................28 Detector Setup Description........................................................................31 V RESULTS ....................................................................................................... 35 Operating Voltage......................................................................................35 Noise Level................................................................................................35 Baseline Offset...........................................................................................36 Functionality Check for the Detector ........................................................37 Calibration Procedure ................................................................................38 Data Analysis.............................................................................................40 VI SUMMARY AND CONCLUSIONS ............................................................. 50 REFERENCES ................................................................................................................. 52 VITA................................................................................................................................. 54 viii LIST OF FIGURES FIGURE Page 1 Schematic Representation of Specific Energy............................................................. 7 2 Lineal Energy Spectra of α Particles.......................................................................... 13 3 Delta Ray Effect......................................................................................................... 23 4 Sketch of the Detector Components. ......................................................................... 25 5 Voltage Divider Circuit for the Field Tubes.............................................................. 29 6 Photograph of the Detector. ....................................................................................... 30 7 Snapshot of the Detector System with the Vacuum Setup and Gas Flow Connections. .............................................................................................................. 32 8 Block Diagram of the Detector Setup……………………………………………… 34 9 Arrangement of Detector and its Components Inside the Vacuum Chamber............ 34 10 Variation of Gas Gain as a Function of Gas Pressure................................................ 36 11 Baseline offset for the Detector System..................................................................... 37 12 Pulse Height Amplitude Spectrum from the MCA for a 100nm Site Size Diameter. ................................................................................................................... 39 13 Peak Channel Number as a Function of Gas Pressure and Site Size......................... 39 14 Frequency Distribution of Events Due to α Particles of Energy 5.57 MeV in a 500 nm Site Size Diameter. ....................................................................................... 42 15 Dose Distribution Due to α Particles of Energy 5.57 MeV in a 500 nm Site Size Diameter. ................................................................................................................... 42 16 Frequency Distribution of Events Due to α Particles of Energy 5.57 MeV in a 300 nm Site Size Diameter. ....................................................................................... 44 ix FIGURE Page 17 Dose Distribution Due to α Particles of Energy 5.57 MeV in a 300 nm Site Size Diameter. ................................................................................................................... 44 18 Frequency Distribution of Events Due to α Particles of Energy 5.57 MeV in a 200 nm Site Size Diameter. ....................................................................................... 45 19 Dose