Decrease of Nibrin Expression in Chronic Hypoxia Is Associated With
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proteomic Identification of the Transcription Factors Ikaros And
European School of Molecular Medicine (SEMM) University of Milan and University of Naples “Federico II” PhD degree in Systems Medicine (curriculum in Molecular Oncology) Settore disciplinare: BIO/11 Proteomic identification of the transcription factors Ikaros and Aiolos as new Myc interactors on chromatin Chiara Veronica Locarno Matricola: R10755 Center for Genomic Science IIT@SEMM, Milan Supervisor: Bruno Amati, PhD IEO, Milan Added Supervisor: Arianna Sabò, PhD IEO, Milan Academic year 2017-2018 Table of contents List of abbreviations ........................................................................................................... 4 List of figures ....................................................................................................................... 8 List of tables ....................................................................................................................... 11 Abstract .............................................................................................................................. 12 1. INTRODUCTION ......................................................................................................... 13 1.1 Myc ........................................................................................................................................ 13 1.1.1 Myc discovery and structure ........................................................................................... 13 1.1.2. Role of Myc in physiological and pathological conditions ........................................... -
NBN Gene Analysis and It's Impact on Breast Cancer
Journal of Medical Systems (2019) 43: 270 https://doi.org/10.1007/s10916-019-1328-z IMAGE & SIGNAL PROCESSING NBN Gene Analysis and it’s Impact on Breast Cancer P. Nithya1 & A. ChandraSekar1 Received: 8 March 2019 /Accepted: 7 May 2019 /Published online: 5 July 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Single Nucleotide Polymorphism (SNP) researches have become essential in finding out the congenital relationship of structural deviations with quantitative traits, heritable diseases and physical responsiveness to different medicines. NBN is a protein coding gene (Breast Cancer); Nibrin is used to fix and rebuild the body from damages caused because of strand breaks (both singular and double) associated with protein nibrin. NBN gene was retrieved from dbSNP/NCBI database and investigated using computational SNP analysis tools. The encrypted region in SNPs (exonal SNPs) were analyzed using software tools, SIFT, Provean, Polyphen, INPS, SNAP and Phd-SNP. The 3’ends of SNPs in un-translated region were also investigated to determine the impact of binding. The association of NBN gene polymorphism leads to several diseases was studied. Four SNPs were predicted to be highly damaged in coding regions which are responsible for the diseases such as, Aplastic Anemia, Nijmegan breakage syndrome, Microsephaly normal intelligence, immune deficiency and hereditary cancer predisposing syndrome (clivar). The present study will be helpful in finding the suitable drugs in future for various diseases especially for breast cancer. Keywords NBN . Single nucleotide polymorphism . Double strand breaks . nsSNP . Associated diseases Introduction NBN has a more complex structure due to its interaction with large proteins formed from the ATM gene which is NBN (Nibrin) is a protein coding gene, it is also known as highly essential in identifying damaged strands of DNA NBS1, Cell cycle regulatory Protein P95, is situated on and facilitating their repair [1]. -
Mutations in the Nijmegen Breakage Syndrome Gene (NBS1) in Childhood Acute Lymphoblastic Leukemia (ALL)1
[CANCER RESEARCH 61, 3570–3572, May 1, 2001] Advances in Brief Mutations in the Nijmegen Breakage Syndrome Gene (NBS1) in Childhood Acute Lymphoblastic Leukemia (ALL)1 Raymonda Varon, Andre´Reis,2 Gu¨nter Henze, Hagen Graf v. Einsiedel, Karl Sperling, and Karlheinz Seeger Institute of Human Genetics [R. V., A. R., K. Sp.] and Department of Pediatric Oncology/Hematology [G. H., H. G. v. E., K. Se.], Charite´, Humboldt-University, 13353 Berlin, Germany, and Molecular Genetics and Gene Mapping Centre, Max-Delbrueck-Centre, 13092 Berlin, Germany [A. R.] Abstract protein—a FHA and a BRCT, both spanning the first 200 amino acids of nibrin (9)—that are also present in a number of other proteins The Nijmegen Breakage Syndrome (NBS) is a rare autosomal recessive involved in the cell cycle control (10, 11). On the basis of epidemi- disorder associated with immune deficiency, chromosome fragility, and ological data, it has been suggested that NBS heterozygotes also have increased susceptibility to lymphoid malignancies. The aim of the present an elevated cancer risk (12) similar to AT or other syndromes asso- study was to elucidate the potential role of the gene mutated in NBS (NBS1) in the pathogenesis and disease progression of childhood acute ciated with immune deficiencies (4). The findings that the ATM gene lymphoblastic leukemia (ALL). Samples from 47 children with first re- is involved in the pathogenesis of B-CLL (13, 14) and T-cell prolym- lapse of ALL were analyzed for mutations in all 16 exons of the NBS1 phocytic leukemia (15) as well as in breast cancer (16) implicate its gene, and in 7 of them (14.9%), four novel amino acid substitutions were role as a tumor suppressor gene. -
Identification of the Interactors of Human Nibrin (NBN) and of Its 26 Kda and 70 Kda Fragments Arising from the NBN 657Del5 Founder Mutation
RESEARCH ARTICLE Identification of the Interactors of Human Nibrin (NBN) and of Its 26 kDa and 70 kDa Fragments Arising from the NBN 657del5 Founder Mutation Domenica Cilli1., Cristiana Mirasole2., Rosa Pennisi1, Valeria Pallotta2, Angelo D’Alessandro2, Antonio Antoccia1,3, Lello Zolla2, Paolo Ascenzi3,4, Alessandra di Masi1,3* 1. Department of Science, Roma Tre University, Rome, Italy, 2. Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy, 3. Istituto Nazionale Biostrutture e Biosistemi – Consorzio Interuniversitario, Rome, Italy, 4. Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Rome, Italy *[email protected] . These authors contributed equally to this work. OPEN ACCESS Citation: Cilli D, Mirasole C, Pennisi R, Pallotta V, Abstract D’Alessandro A, et al. (2014) Identification of the Interactors of Human Nibrin (NBN) and of Its 26 Nibrin (also named NBN or NBS1) is a component of the MRE11/RAD50/NBN kDa and 70 kDa Fragments Arising from the NBN complex, which is involved in early steps of DNA double strand breaks sensing and 657del5 Founder Mutation. PLoS ONE 9(12): e114651. doi:10.1371/journal.pone.0114651 repair. Mutations within the NBN gene are responsible for the Nijmegen breakage Editor: Sue Cotterill, St. Georges University of syndrome (NBS). The 90% of NBS patients are homozygous for the 657del5 London, United Kingdom mutation, which determines the synthesis of two truncated proteins of 26 kDa (p26) Received: October 28, 2013 and 70 kDa (p70). Here, HEK293 cells have been exploited to transiently express Accepted: November 12, 2014 either the full-length NBN protein or the p26 or p70 fragments, followed by affinity Published: December 8, 2014 chromatography enrichment of the eluates. -
Post-Translational Modification of MRE11: Its Implication in DDR And
G C A T T A C G G C A T genes Review Post-Translational Modification of MRE11: Its Implication in DDR and Diseases Ruiqing Lu 1,† , Han Zhang 2,† , Yi-Nan Jiang 1, Zhao-Qi Wang 3,4, Litao Sun 5,* and Zhong-Wei Zhou 1,* 1 School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China; [email protected] (R.L.); [email protected] (Y.-N.J.) 2 Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College; Kunming 650118, China; [email protected] 3 Leibniz Institute on Aging–Fritz Lipmann Institute (FLI), 07745 Jena, Germany; zhao-qi.wang@leibniz-fli.de 4 Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, 07745 Jena, Germany 5 School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China * Correspondence: [email protected] (L.S.); [email protected] (Z.-W.Z.) † These authors contributed equally to this work. Abstract: Maintaining genomic stability is vital for cells as well as individual organisms. The meiotic recombination-related gene MRE11 (meiotic recombination 11) is essential for preserving genomic stability through its important roles in the resection of broken DNA ends, DNA damage response (DDR), DNA double-strand breaks (DSBs) repair, and telomere maintenance. The post-translational modifications (PTMs), such as phosphorylation, ubiquitination, and methylation, regulate directly the function of MRE11 and endow MRE11 with capabilities to respond to cellular processes in promptly, precisely, and with more diversified manners. Here in this paper, we focus primarily on the PTMs of MRE11 and their roles in DNA response and repair, maintenance of genomic stability, as well as their Citation: Lu, R.; Zhang, H.; Jiang, association with diseases such as cancer. -
Transcriptome-Guided Characterization of Genomic Rearrangements in a Breast Cancer Cell Line
Transcriptome-guided characterization of genomic rearrangements in a breast cancer cell line Qi Zhaoa,1, Otavia L. Caballerob,1, Samuel Levya, Brian J. Stevensonc, Christian Iselic, Sandro J. de Souzad, Pedro A. Galanted, Dana Busama, Margaret A. Levershae, Kalyani Chadalavadae, Yu-Hui Rogersa, J. Craig Ventera,2, Andrew J. G. Simpsonb,2, and Robert L. Strausberga,2 aJ. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850; bLudwig Institute for Cancer Research, New York, NY 10021; cLudwig Institute for Cancer Research, 1015 Lausanne, Switzerland; dLudwig Institute for Cancer Research, CEP 01509-010 Sao Paulo, Brazil; and eMemorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 Contributed by J. Craig Venter, December 22, 2008 (sent for review December 1, 2008) We have identified new genomic alterations in the breast cancer per cell (see Fig. 2A). The SKY analysis also reveals a large cell line HCC1954, using high-throughput transcriptome sequenc- number of translocations involving most or all chromosomes. ing. With 120 Mb of cDNA sequences, we were able to identify Using 454-FLX pyrosequencing we generated 510,703 cDNA genomic rearrangement events leading to fusions or truncations of sequences of average length 245 bp from the HCC1954 cell line. genes including MRE11 and NSD1, genes already implicated in (See Methods and Fig. S1). We then initially aligned all cDNA oncogenesis, and 7 rearrangements involving other additional sequences to RefSeq mRNAs (GenBank dataset available on genes. This approach demonstrates that high-throughput tran- March 28, 2008), revealing that Ͼ384,900 reads were uniquely scriptome sequencing is an effective strategy for the characteriza- associated well with 9,221 RefSeq genes. -
(NCCN V1.2020) RAD50 Mutations Cancer Risks and General
Updated December 2019 (NCCN v1.2020) RAD50 Mutations Cancer Risks and General Management Recommendations There are currently no national consensus guidelines outlining specific clinical management recommendations for individuals who carry a RAD50 gene mutation. Additionally, exact lifetime cancer risks associated with RAD50 mutations are unknown at this time. Some studies have proposed an increased risk for breast cancer in females with a RAD50 mutation (lifetime risk of ~24-36%).1-4 However, others have found no increased risk for breast cancer.5-7 Additionally, some studies have proposed an increased ovarian cancer risk in individuals with a RAD50 mutation.8,9 However, the studies are small, and data remains limited. At this time, it is unknown if individuals with RAD50 gene mutations are at increased risk for other cancers. Current NCCN guidelines assert that there is insufficient evidence to make any recommendations for breast MRI, risk-reducing mastectomy (RRM), or risk-reducing salpingo-oophorectomy (RRSO) based on RAD50 mutation status alone.10 An individual’s personal and family history should be considered in developing an appropriate surveillance plan. Implications for Family Members/Reproductive Considerations First-degree relatives (i.e., parents, siblings, and children) have a 50% chance to have the familial RAD50 mutation. Second-degree relatives (i.e., nieces/nephews, aunts/uncles, and grandparents) have a 25% chance to have the familial mutation. It has been proposed that individuals who inherit two pathogenic RAD50 mutations, one from each parent, are at risk for a rare genetic condition known as Nijmegen breakage syndrome-like disorder (NBSLD). o NBSLD is characterized by chromosomal instability, radiosensitivity, neurodevelopmental disease, and immunodeficiency11. -
Structural and Functional Analysis of the Eukaryotic DNA Repair Proteins Mre11 and Nbs1
Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Structural and functional analysis of the eukaryotic DNA repair proteins Mre11 and Nbs1 Christian Bernd Schiller aus Kassel 2011 Erklärung Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 (in der Fassung der sechsten Änderungssatzung vom 16. August 2010) von Herrn Prof. Dr. Karl-Peter Hopfner betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. München, am 07.06.2011 .................................................... (Christian Bernd Schiller) Dissertation eingereicht am 07.06.2011 1. Gutachter: Herr Prof. Dr. Karl-Peter Hopfner 2. Gutachter: Herr Prof. Dr. Dietmar Martin Mündliche Prüfung am 21.07.2011 During the work of this thesis, the following publication was published: Lammens K., Bemeleit D. J., Möckel C., Clausing E., Schele A., Hartung S., Schiller C. B., Lucas M., Angermüller C., Soding J., Strässer K. and K. P. Hopfner (2011). "The Mre11:Rad50 Structure Shows an ATP-Dependent Molecular Clamp in DNA Double-Strand Break Repair." Cell 145(1): 54-66. Parts of the present thesis will be submitted for publication: Schiller C.B., Lammens K., Guerini I., Coordes B., Schlauderer F., Möckel C., Schele A., Sträßer K., Jackson S. P., Hopfner K.-P.: “Insights into DNA double-strand break repair and ataxia-telangiectasia like disease from the structure of an Mre11-Nbs1 complex“, manuscript in preparation. Parts of this thesis have been presented at international conferences and workshops: Talk and poster at the Biannual International Meeting of the German Society of DNA Repair Research (DGDR) - Repair meets Replication, September 7-10, 2010 in Jena, Germany Poster presentation at the Gordon Research Conference on Mutagenesis - Consequences of Mutation and Repair for Human Disease, August 1-6, 2010 in Waterville, Maine, USA. -
ATM Dysfunction in Pancreatic Adenocarcinoma and Associated Therapeutic Implications Samantha A
Review Molecular Cancer Therapeutics ATM Dysfunction in Pancreatic Adenocarcinoma and Associated Therapeutic Implications Samantha A. Armstrong1, Christopher W. Schultz2, Ariana Azimi-Sadjadi1, Jonathan R. Brody2, and Michael J. Pishvaian3 Abstract Pancreatic ductal adenocarcinoma (PDAC) remains one of plays a complex role as a cell-cycle checkpoint kinase, regulator the most lethal solid malignancies with very few therapeutic of a wide array of downstream proteins, and responder to DNA options to treat advanced or metastatic disease. The utilization damage for genome stability. The disruption of ATM signaling of genomic sequencing has identified therapeutically relevant leads to downstream reliance on ATR and CHK1, among other alterations in approximately 25% of PDAC patients, most DNA-repair mechanisms, which may enable exploiting the notably in the DNA damage response and repair (DDR) genes, inhibition of downstream proteins as therapeutic targets in rendering cancer cells more sensitive to DNA-damaging agents ATM-mutated PDACs. In this review, we detail the function of and to DNA damage response inhibitors, such as PARP inhi- ATM, review the current data on ATM deficiency in PDAC, bitors. ATM is one of the most commonly mutated DDR genes, examine the therapeutic implications of ATM alterations, with somatic mutations identified in 2% to 18% of PDACs and and explore the current clinical trials surrounding the ATM germline mutations identified in 1% to 34% of PDACs. ATM pathway. Introduction During the cell cycle, there is a replication of over 6 billion base pairs of DNA. Such genomic replication is subject to numerous Pancreatic ductal adenocarcinoma (PDAC) remains one of the insults and replication stressors, which rely on essential response most lethal solid malignancies with fewer than 10% of patients and repair mechanisms to ensure DNA's integrity. -
Oxidative Damage to Dna in Alzheimer's Disease
University of Kentucky UKnowledge Theses and Dissertations--Chemistry Chemistry 2013 OXIDATIVE DAMAGE TO DNA IN ALZHEIMER'S DISEASE Sony Soman University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Soman, Sony, "OXIDATIVE DAMAGE TO DNA IN ALZHEIMER'S DISEASE" (2013). Theses and Dissertations--Chemistry. 28. https://uknowledge.uky.edu/chemistry_etds/28 This Doctoral Dissertation is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Chemistry by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine). I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless a preapproved embargo applies. I retain all other ownership rights to the copyright of my work. -
Candidate Synthetic Lethality Partners to PARP Inhibitors in the Treatment of Ovarian Clear Cell Cancer (Review)
BIOMEDICAL REPORTS 7: 391-399, 2017 Candidate synthetic lethality partners to PARP inhibitors in the treatment of ovarian clear cell cancer (Review) NAOKI KAWAHARA, KENJI OGAWA, MIKA NAGAYASU, MAI KIMURA, YOSHIKAZU SASAKI and HIROSHI KOBAYASHI Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan Received August 18, 2017; Accepted September 14, 2017 DOI: 10.3892/br.2017.990 Abstract. Inhibitors of poly(ADP-ribose) polymerase Contents (PARP) are new types of personalized treatment of relapsed platinum-sensitive ovarian cancer harboring BRCA1/2 1. Introduction mutations. Ovarian clear cell cancer (CCC), a subset of 2. Systematic review of the literature using electronic ovarian cancer, often appears as low-stage disease with search in the PubMed/Medline databases a higher incidence among Japanese. Advanced CCC is 3. Future opportunities in the use of PARP inhibition in CCC highly aggressive with poor patient outcome. The aim of 4. Candidate mutated genes for enhancing the therapeutic the present study was to determine the potential synthetic ratio achieved by PARP inhibitors in CCC (Table IA). lethality gene pairs for PARP inhibitions in patients with 5. Upregulated genes enhancing synthetic lethality of CCC through virtual and biological screenings as well as PARP inhibitors in CCC (Table IB) clinical studies. We conducted a literature review for puta- 6. Synthetic lethal gene partners based on tive PARP sensitivity genes that are associated with the chemo resi stance-related genes in CCC (Table IC) CCC pathophysiology. Previous studies identified a variety 7. Discussion of putative target genes from several pathways associated with DNA damage repair, chromatin remodeling complex, PI3K-AKT-mTOR signaling, Notch signaling, cell cycle 1. -
The Role of Nibrin in Doxorubicin-Induced Apoptosis and Cell Senescence in Nijmegen Breakage Syndrome Patients Lymphocytes
The Role of Nibrin in Doxorubicin-Induced Apoptosis and Cell Senescence in Nijmegen Breakage Syndrome Patients Lymphocytes Olga Alster1, Anna Bielak-Zmijewska1, Grazyna Mosieniak1, Maria Moreno-Villanueva2, Wioleta Dudka- Ruszkowska3, Aleksandra Wojtala1, Monika Kusio-Kobiałka3, Zbigniew Korwek1, Alexander Burkle2, Katarzyna Piwocka3, Jan K. Siwicki4, Ewa Sikora1* 1 Laboratory of the Molecular Bases of Aging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland, 2 Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany, 3 Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland, 4 Department of Immunology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland Abstract Nibrin plays an important role in the DNA damage response (DDR) and DNA repair. DDR is a crucial signaling pathway in apoptosis and senescence. To verify whether truncated nibrin (p70), causing Nijmegen Breakage Syndrome (NBS), is involved in DDR and cell fate upon DNA damage, we used two (S4 and S3R) spontaneously immortalized T cell lines from NBS patients, with the founding mutation and a control cell line (L5). S4 and S3R cells have the same level of p70 nibrin, however p70 from S4 cells was able to form more complexes with ATM and BRCA1. Doxorubicin-induced DDR followed by cell senescence could only be observed in L5 and S4 cells, but not in the S3R ones. Furthermore the S3R cells only underwent cell death, but not senescence after doxorubicin treatment. In contrary to doxorubicin treatment, cells from all three cell lines were able to activate the DDR pathway after being exposed to c-radiation.