Planetary Science Division Update
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Michael Garcia Hubble Space Telescope Users Committee (STUC)
Hubble Space Telescope Users Committee (STUC) April 16, 2015 Michael Garcia HST Program Scientist [email protected] 1 Hubble Sees Supernova Split into Four Images by Cosmic Lens 2 NASA’s Hubble Observations suggest Underground Ocean on Jupiter’s Largest Moon Ganymede file:///Users/ file:///Users/ mrgarci2/Desktop/mrgarci2/Desktop/ hs-2015-09-a-hs-2015-09-a- web.jpg web.jpg 3 NASA’s Hubble detects Distortion of Circumstellar Disk by a Planet 4 The Exoplanet Travel Bureau 5 TESS Transiting Exoplanet Survey Satellite CURRENT STATUS: • Downselected April 2013. • Major partners: - PI and science lead: MIT - Project management: NASA GSFC - Instrument: Lincoln Laboratory - Spacecraft: Orbital Science Corp • Agency launch readiness date NLT June 2018 (working launch date August 2017). • High-Earth elliptical orbit (17 x 58.7 Earth radii). Standard Explorer (EX) Mission PI: G. Ricker (MIT) • Development progressing on plan. Mission: All-Sky photometric exoplanet - Systems Requirement Review (SRR) mapping mission. successfully completed on February Science goal: Search for transiting 12-13, 2014. exoplanets around the nearby, bright stars. Instruments: Four wide field of view (24x24 - Preliminary Design Review (PDR) degrees) CCD cameras with overlapping successfully completed Sept 9-12, 2014. field of view operating in the Visible-IR - Confirmation Review, for approval to enter spectrum (0.6-1 micron). implementation phase, successfully Operations: 3-year science mission after completed October 31, 2014. launch. - Mission CDR on track for August 2015 6 JWST Hardware Progress JWST remains on track for an October 2018 launch within its replan budget guidelines 7 WFIRST / AFTA Widefield Infrared Survey Telescope with Astrophysics Focused Telescope Assets Coronagraph Technology Milestones Widefield Detector Technology Milestones 1 Shaped Pupil mask fabricated with reflectivity of 7/21/14 1 Produce, test, and analyze 2 candidate 7/31/14 -4 10 and 20 µm pixel size. -
The Messenger
10th anniversary of VLT First Light The Messenger The ground layer seeing on Paranal HAWK-I Science Verification The emission nebula around Antares No. 132 – June 2008 –June 132 No. The Organisation The Perfect Machine Tim de Zeeuw a groundbased spectroscopic comple thousand each semester, 800 of which (ESO Director General) ment to the Hubble Space Telescope. are for Paranal. The User Portal has Italy and Switzerland had joined ESO in about 4 000 registered users and 1981, enabling the construction of the the archive contains 74 TB of data and This issue of the Messenger marks the 3.5m New Technology Telescope with advanced data products. tenth anniversary of first light of the Very pioneering advances in active optics, Large Telescope. It is an excellent occa crucial for the next step: the construction sion to look at the broader implications of the Very Large Telescope, which Winning strategy of the VLT’s success and to consider the received the green light from Council in next steps. 1987 and was built on Cerro Paranal in The VLT opened for business some five the Atacama desert between Antofagasta years after the Keck telescopes, but the and Taltal in Northern Chile. The 8.1m decision to take the time to build a fully Mission Gemini telescopes and the 8.3m Subaru integrated system, consisting of four telescope were constructed on a similar 8.2m telescopes and providing a dozen ESO’s mission is to enable scientific dis time scale, while the Large Binocular Tele foci for a carefully thoughtout comple coveries by constructing and operating scope and the Gran Telescopio Canarias ment of instruments together with four powerful observational facilities that are now starting operations. -
Planetary Science Division Status Report
Planetary Science Division Status Report Jim Green NASA, Planetary Science Division January 26, 2017 Astronomy and Astrophysics Advisory CommiBee Outline • Planetary Science ObjecFves • Missions and Events Overview • Flight Programs: – Discovery – New FronFers – Mars Programs – Outer Planets • Planetary Defense AcFviFes • R&A Overview • Educaon and Outreach AcFviFes • PSD Budget Overview New Horizons exploresPlanetary Science Pluto and the Kuiper Belt Ascertain the content, origin, and evoluFon of the Solar System and the potenFal for life elsewhere! 01/08/2016 As the highest resolution images continue to beam back from New Horizons, the mission is onto exploring Kuiper Belt Objects with the Long Range Reconnaissance Imager (LORRI) camera from unique viewing angles not visible from Earth. New Horizons is also beginning maneuvers to be able to swing close by a Kuiper Belt Object in the next year. Giant IcebergsObjecve 1.5.1 (water blocks) floatingObjecve 1.5.2 in glaciers of Objecve 1.5.3 Objecve 1.5.4 Objecve 1.5.5 hydrogen, mDemonstrate ethane, and other frozenDemonstrate progress gasses on the Demonstrate Sublimation pitsDemonstrate from the surface ofDemonstrate progress Pluto, potentially surface of Pluto.progress in in exploring and progress in showing a geologicallyprogress in improving active surface.in idenFfying and advancing the observing the objects exploring and understanding of the characterizing objects The Newunderstanding of Horizons missionin the Solar System to and the finding locaons origin and evoluFon in the Solar System explorationhow the chemical of Pluto wereunderstand how they voted the where life could of life on Earth to that pose threats to and physical formed and evolve have existed or guide the search for Earth or offer People’sprocesses in the Choice for Breakthrough of thecould exist today life elsewhere resources for human Year forSolar System 2015 by Science Magazine as exploraon operate, interact well as theand evolve top story of 2015 by Discover Magazine. -
Exomars Schiaparelli Direct-To-Earth Observation Using GMRT
TECHNICAL ExoMars Schiaparelli Direct-to-Earth Observation REPORTS: METHODS 10.1029/2018RS006707 using GMRT S. Esterhuizen1, S. W. Asmar1 ,K.De2, Y. Gupta3, S. N. Katore3, and B. Ajithkumar3 Key Point: • During ExoMars Landing, GMRT 1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, 2Cahill Center for Astrophysics, observed UHF transmissions and California Institute of Technology, Pasadena, CA, USA, 3National Centre for Radio Astrophysics, Pune, India Doppler shift used to identify key events as only real-time aliveness indicator Abstract During the ExoMars Schiaparelli separation event on 16 October 2016 and Entry, Descent, and Landing (EDL) events 3 days later, the Giant Metrewave Radio Telescope (GMRT) near Pune, India, Correspondence to: S. W. Asmar, was used to directly observe UHF transmissions from the Schiaparelli lander as they arrive at Earth. The [email protected] Doppler shift of the carrier frequency was measured and used as a diagnostic to identify key events during EDL. This signal detection at GMRT was the only real-time aliveness indicator to European Space Agency Citation: mission operations during the critical EDL stage of the mission. Esterhuizen, S., Asmar, S. W., De, K., Gupta, Y., Katore, S. N., & Plain Language Summary When planetary missions, such as landers on the surface of Mars, Ajithkumar, B. (2019). ExoMars undergo critical and risky events, communications to ground controllers is very important as close to real Schiaparelli Direct-to-Earth observation using GMRT. time as possible. The Schiaparelli spacecraft attempted landing in 2016 was supported in an innovative way. Radio Science, 54, 314–325. A large radio telescope on Earth was able to eavesdrop on information being sent from the lander to other https://doi.org/10.1029/2018RS006707 spacecraft in orbit around Mars. -
Cosmic Vision 2015-2025
Space Science Cosmic Vision 2015-2025 Eight new mission proposals selected for ESA’s future scientific programme that proposed the mission. The space research com- The Science Mission Team defines a model payload munity’s long-term goals and ESA engineering teams for their research pro- undertake the technical grammes are to maintain assessment. The aim of the Assessment Phase is the present level of re- to define the mission to a search satellites in orbit sufficient level to show the around 2018 – 20 as scientific value and technical feasibility. well as working with and The main objectives evaluating possible new of the Definition Phase are missions. to establish the cost and implementation schedule In October, after a Space Science for the project. At the end Advisory Committee meeting (SSAC), of the definition phase, the candidate missions were selected for the Prime Contractor for further assessment and consideration for the Implementation Phase launch in 2017/2018. is selected. Competition That is the result of the Cosmic between potential Prime Contractors is necessary. It Vision 2015-2025’s Call for Proposals LISA (Laser Interferometer Space is also essential that the design and costing announced earlier this year. The response Antenna) moved from Cosmic Vision 2005- is based on the actual mission, i.e. with the was enormous and many interesting fields 2015. were represented in the proposals that selected PI (Principal Investigator) funded were presented. Fifty new proposals were instruments and selected new technologies, presented, twice the amount of proposals so that the competing contractors have compared to the previous ESA calls in a firm basis on which to make their Read more about the selected 1999. -
Presentation of Cosmic Vision 2015-2025 to Community
Cosmic Vision 2015 – 2025 ESA’s new long term plan for space science Missions in preparation Bepi-Colombo 2012 Lisa 2014 Corot Herschel-Planck (CNES-ESA) 2007 . 2006 JWST (NASA-ESA) Astro-F 2011 (Japan-ESA) 2006 Lisa- Venus Express Pathfinder 2009 Gaia Solar . 2005 Microscope 2011-12 Orbiter (CNES-ESA) 2015 2008 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Cosmic Vision process • Cosmic Vision 2015 –2025 process launched on 2 April 04 with call for Science themes • 1June 04: deadline for proposal submission • July 04: Analysis of responses by the ESA Science advisory bodies (AWG, SSWG, FPAG, SSAC) • 15-16 September 04: Workshop in Paris (~400 participants) • Nov 04: progress report to SPC • Spring 05: presentation of Cosmic Vision 2015-2025 to community • May 05: Endorsement of Cosmic Vision by SPC Grand themes 1. What are the conditions for life and planetary formation? 2. How does the Solar System work. 3. What are the fundamental laws of the Universe? 4. How did the Universe originate and what is it made of? 1. What are the conditions for life and planetary formation? 1.1 From gas and dust to stars and planets. 1.2 From exo-planets to bio-markers. 1.3 Life and habitability in the Solar System 2. How does the Solar System work ? 2.1 From the Sun to the edge of the Solar System 2.2 The building blocks of the Solar System, gaseous giants and their moons Solar System Roadmap (1) 2015-2025 Look at Small Scales! Understand Space plasmas EARTH MAGNETOSPHERIC SWARM, SOLAR POLAR ORBITER, HELIOPAUSE PROBE 2020 Go Outward! Explore the outer Solar System JUPITER & EUROPA PROBE Solar System Roadmap (2) 2015-2020 Look for Life! Everywhere in Solar System Mars rovers and sample return, Europa Probe 2020-2025 Seek Ground Truth! Land on NEOs, Moons, Planets,look below surface, return samples Jupiter and Europa Probe, NEO Sample Return 3. -
Mars Express Going Gyroless - Impact on Science Operations Systems
EPSC Abstracts Vol. 12, EPSC2018-1048, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Mars Express going Gyroless - Impact on science operations systems C.Muñiz Solaz (1), A.Cardesin (1), J.Marin-Yaseli de la Parra (1), M.Costa i Sitjà (1), D.Merritt (1), M.Castillo (1), M.G.Breitfellner (1), E.Grotheer (1), P.Martin(1), F. Nespoli (1), M.Kueppers(1), G.Buenadicha(1), B. Geiger (1), D.Titov(2) (1) ESA European Space Astronomy Centre (ESAC), Camino bajo del Castillo s/n, Urb. Villafranca del Castillo, P.O. Box 78, 28691 Villanueva de la Cañada, Madrid, Spain ([email protected] / T: +34-91-8131349) (2) European Space Research and Technology Centre (ESTEC), Keplerlaan 1, 2201 AZ Noordwijk ZH, Netherlands Abstract tions of its gyroscopes, thereby extending the mission lifetime. MEX was never designed to fly without its Mars Express was originally designed to explore Mars gyros continuously available, therefore an AOCS up- for a period of 1 Martian year. The mission has been grade was necessary to avoid an end of mission fore- very successful and has been extended in several oc- cast in early 2019. This software update not only af- casions and today it has been flying for more than fects the spacecraft operations but also the science op- 15 years. Due to its long lifetime in space the gy- erations, including procedures and planning processes. ros had started to degrade, and a decision was made The Science Ground Segment (SGS) team, located to extend the spacecraft lifetime by developing a new at the European Space Astronomy Centre (ESAC) near AOCS software to allow for switching off the gyros Madrid (Spain), is responsible for the generation, co- during an extended part of the operations, thereby re- ordination and maintenance of the overall scientific ducing the duty cycle of the IMUs. -
Cosmic Vision Space Science for Europe 2015-2035
Cosmic Vision Space Science for Europe 2015-2035 Athéna Coustenis LESIA, Observatoire de Paris-Meudon Chair du Solar System and Exploration Working Group de l’ESA Membre du Space Sciences Advisory Committee Cosmic Vision 2015 - 2025 Long-Term Plan of ESA’s Space Science Programme • Horizon 2000 (1984) o Cassini-Huygens, Herschel, Planck • Horizon 2000 Plus (1994/5) o Gaia, BepiColombo, JWST, LISA, Solar Orbiter • Cosmic Vision (2005) o What are the conditions for planet formation and the emergence of life? o How does the Solar System work? o What are the fundamental physical laws of the Universe? o How did the Universe originate and what is it made of? Folie Cosmic Vision 2015 - 2025 COSMIC VISION In 2005, a new programme was introduced to replace H2000+, for one more decade (until 2025) with the name Cosmic Vision (2015-2025). 4 Basics of the Science Programme Ø The Programme is Science-driven: both long-term science planning and mission calls are bottom-up processes, relying on broad community input and peer review. Ø The Programme is Mandatory: all member states contribute pro-rata to GDP providing budget stability, allowing long-term planning of its scientific goals and being the backbone of the Agency. 5 COSMIC VISION A bottom-up approach ESA Executive Science Programme Ø First “Call for DG, D/SRE Committee Missions” issued in 1st Q 2007. Advice Recommendations Ø Both L and M mission proposals solicited. Space Science Advisory Committee Ø More than 50 proposals received. Solar System and Exploration Astronomy Fundamental Physics -
Exomars Trace Gas Orbiter Operations ESOC
Training Opportunity for Swiss Trainees Reference Title Duty Station CH-2019-OPS-OPE Exomars Trace Gas Orbiter operations ESOC Overview of the unit’s mission: OPS-OP is responsible for mission preparation and flight operations for the ESA fleet of solar and interplanetary spacecraft. The division currently operates four missions (Cluster, Mars Express, ExoMars TGO, Bepi Colombo) and prepares for the launch of three others (Solar Orbiter, ExoMars Rover and Surface Platform, JUICE). Within OPS-OP, the ExoMars TGO unit (OPS-OPE) is responsible for the operations of the Trace Gas Orbiter (TGO) in-orbit around Mars. This includes monitoring, control and mission planning of the satellite as well as the mission responsibility for the required data systems and related interfaces. Overview of the field of activity proposed: The ExoMars TGO is the first in a series of Mars missions undertaken jointly by ESA and Roscosmos. From its 400-km- altitude science orbit TGO shall gain a better understanding of methane and other atmospheric gases present in small concentrations (less than 1% of the atmosphere) which could be evidence for possible biological or geological activity. The Orbiter is also an invaluable Mars telecommunications asset, currently providing communication services to NASA rovers (or landers) on the Mars Surface: it acts as a data relay hub for sending commands to the rovers and downloading rover data to Earth using ESA, NASA and Russian space communication networks. This relay function will serve the ExoMars 2020 mission, combining a European Rover and a Russian science Surface Platform, planned to land on Mars in March 2021. -
Exomars 2016 TGO and Schiaparelli
ESA UNCLASSIFIED – For Official Use estec European Space Research and Technology Centre Keplerlaan 1 2201 AZ Noordwijk The Netherlands T +31 (0)71 565 6565 F +31 (0)71 565 6040 www.esa.int ExoMars 2016 Mission Brief description of TGO and Schiaparelli Prepared by H. Svedhem (SCI-S), K. O’Flaherty (SCI-S) Reference EXM-MS-REP-RSSD-001_TGO-EDM-Description_Iss.1 Issue 1 Revision 0 Date of Issue 28/01/2016 Status 1 Document Type RP Distribution ESA UNCLASSIFIED – For Official Use Reason for change Issue Revision Date Original issue 1 0 4/02/2016 Issue 1 Revision 0 Reason for change Date Pages Paragraph(s) Page 2/20 ExoMars 2016 Mission - Brief description of TGO and Schiaparelli Date: 4/02/2016 Issue 1 Revision 0 ESA UNCLASSIFIED – For Official Use Table of contents: 1 INTRODUCTION ....................................................................................... 4 2 EXOMARS TRACE GAS ORBITER AND SCHIAPARELLI MISSION (2016) . 5 3 EXOMARS TRACE GAS ORBITER (TGO) .................................................. 9 4 EXOMARS TRACE GAS ORBITER INSTRUMENTS .................................. 10 5 SCHIAPARELLI: THE EXOMARS ENTRY, DESCENT AND LANDING DEMONSTRATOR MODULE ........................................................................ 12 6 SCHIAPARELLI SCIENCE PACKAGE AND SCIENCE INVESTIGATIONS17 Page 3/20 ExoMars 2016 Mission - Brief description of TGO and Schiaparelli Date: 4/02/2016 Issue 1 Revision 0 ESA UNCLASSIFIED – For Official Use 1 INTRODUCTION This document presents a brief summary of the ExoMars 2016 mission and its two major elements, the Trace Gas Orbiter, TGO, and the Entry descent and landing Demonstrator Model, EDM, - Schiaparelli. It also gives an overview of the TGO and Schiaparelli scientific investigations and the corresponding instruments. The text is derived from information available on the ESA Exploration web-site, http://exploration.esa.int/mars/. -
Genesis Radiation Environment
https://ntrs.nasa.gov/search.jsp?R=20070014073 2019-08-30T00:44:36+00:00Z 1 Source of Acquisition NASA Marshall Space Flight Center Genesis Radiation Environment Joseph I. Minow* NASA Marshull Space Flight Center, Huntsville, AL 35812 USA Richard L. Altstatt' and William C. Skipworth* Jacobs Engineering, Marshall Space Flight Center Group, Huntsville, AL 35812 USA The Genesis spacecraft launched on 8 August 2001 sampled solar wind environments at L1 from 2001 to 2004. After the Science Capsule door was opened, numerous foils and samples were exposed to the various solar wind environments during periods including slow solar wind from the streamer belts, fast solar wind flows from coronal holes, and coronal mass ejections. The Survey and Examination of Eroded Returned Surfaces (SEERS) program led by NASA's Space Environments and Effects program had initiated access for the space materials community to the remaining Science Capsule hardware after the science samples had been removed for evaluation of materials exposure to the space environment. This presentation will describe the process used to generate a reference radiation Genesis Radiation Environment developed for the SEERS program for use by the materials science community in their analyses of the Genesis hardware. I. Introduction ASA's Space Environments and Effects (SEE) Program initiated the Surveying and Examination of Eroded N Returned Surfaces (SEERS) Initiative in 2003. The goal of the Initiative was to provide leadership in the engineering analysis of returned flight hardware by supporting a comprehensive effort to understand environmental effects due to solar W, ionizing radiation, plasmas, neutral contamination, meteoroids, and other conditions experienced during the mission (not primary science mission objectives). -
The Mars 2001 Odyssey and the "Autogen" Process
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@USU AUTOGEN: The Mars 2001 Odyssey and the "Autogen" Process By Roy Gladden June 6, 2002 Jet Propulsion Laboratory / California Institute of Technology Pasadena, California Abstract In many deep space and interplanetary missions, it is widely recognized that the scheduling of many commands to operate a spacecraft can follow very regular patterns. In these instances, it is greatly desired to convert the knowledge of how commands are scheduled into algorithms in order to automate the development of command sequences. In doing so, it is possible to dramatically reduce the number of people and work-hours that are required to develop a sequence. The development of the "autogen" process for the Mars 2001 Odyssey spacecraft is one implementation of this concept. It combines robust scheduling algorithms with software that is compatible with pre- existing "uplink" software, and literally reduced the duration of some sequence generation processes from weeks to minutes. This paper outlines the "autogen" tools and processes and describes how they have been implemented for the various phases of the Mars 2001 Odyssey mission. What is autogen? manually building the commands for lengthy and well- understood command sequences, efforts were made to The term "autogen" is applied in two different ways. develop software that would automatically schedule the First, "autogen," in its broadest sense, identifies a commands given certain input data. By taking the process that may be used to automatically generate knowledge for how commands were to be scheduled sequences for a spacecraft and, second, it is a Solaris and writing algorithms to replicate that knowledge, it script that has been used to facilitate this process.