Twelve Type II-P Supernovae Seen with the Eyes of Spitzer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1705.04776V1 [Astro-Ph.HE] 13 May 2017 Aaua M
White Paper on East Asian Vision for mm/submm VLBI: Toward Black Hole Astrophysics down to Angular Resolution of 1 RS Editors Asada, K.1, Kino, M.2,3, Honma, M.3, Hirota, T.3, Lu, R.-S.4,5, Inoue, M.1, Sohn, B.-W.2,6, Shen, Z.-Q.4, and Ho, P. T. P.1,7 Authors Akiyama, K.3,8, Algaba, J-C.2, An, T.4, Bower, G.1, Byun, D-Y.2, Dodson, R.9, Doi, A.10, Edwards, P.G.11, Fujisawa, K.12, Gu, M-F.4, Hada, K.3, Hagiwara, Y.13, Jaroenjittichai, P.15, Jung, T.2,6, Kawashima, T.3, Koyama, S.1,5, Lee, S-S.2, Matsushita, S.1, Nagai, H.3, Nakamura, M.1, Niinuma, K.12, Phillips, C.11, Park, J-H.15, Pu, H-Y.1, Ro, H-W.2,6, Stevens, J.11, Trippe, S.15, Wajima, K.2, Zhao, G-Y.2 1 Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan 2 Korea Astronomy and Space Science Institute, Daedukudae-ro 776, Yuseong-gu, Daejeon 34055, Republic of Korea 3 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan 4 Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China 5 Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, D-53121 Bonn, Germany 6 University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea 7 East Asian Observatory, 660 N. -
The Bright Galaxies NGC 1068 (M 77), NGC 2146, NGC 3079, NGC 4826 (M 64), and NGC 7469 F
A&A 493, 525–538 (2009) Astronomy DOI: 10.1051/0004-6361:200810655 & c ESO 2009 Astrophysics CI and CO in nearby galaxy centers The bright galaxies NGC 1068 (M 77), NGC 2146, NGC 3079, NGC 4826 (M 64), and NGC 7469 F. P. Israel Sterrewacht Leiden, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands e-mail: [email protected] Received 22 July 2008 / Accepted 5 November 2008 ABSTRACT Aims. We study the physical properties and amount of molecular gas in the central regions of galaxies with active nuclei. Methods. Maps and measurements of the J = 1−0, J = 2−1, J = 3−2, J = 4−3 12CO, the J = 1−0, J = 2−1, and J = 3−2 13CO lines in the central arcminute squared of NGC 1068, NGC 2146, NGC 3079, NGC 4826, and NGC 7469, as well as 492 GHz CI maps in three of these are used to model the molecular gas clouds in these galaxies. Results. Bright CO concentrations were detected and mapped in all five objects. In all cases, the observed lines could be fitted with two distinct gas components. The physical condition of the molecular gas is found to differ from galaxy to galaxy. Rather high kinetic temperatures of 125−150 K occur in NGC 2146 and NGC 3079. Very high densities of 0.3−1.0 × 105 cm−3 occur in NGC 2146, NGC 3079, and NGC 7469. The CO to H2 conversion factor X is typically an order of magnitude less than the “standard” value in the solar neighborhood. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Atmob Newsletterjulyfinal
expensive. I found that out when I went to Criterion Optical Co. in Hartford with a very small budget for a telescope, and the nice person I talked with finally reached into a drawer and pulled out a slightly scratched small mirror and offered it to me cheap, along STAR with a slightly defective focuser (no knob or rack, but it did have a small diagonal attached), and some miscellaneous small lenses and cardboard spacers for making an eyepiece. He also gave me FIELDS some brief verbal instructions on how to put all this together into a Newtonian telescope. Next stop the hardware store to buy a piece of stove pipe, and I was in business after a little construction work. There were no astronomy books in our local Newsletter of the library, but just sweeping the dark sky (back then it was dark) and Amateur Telescope Makers of Boston picking out some interesting sights – even with no idea what they Including the Bond Astronomical Club were or what they were called - was a thrill for a teenager. Established in 1934 In the Interest of Telescope Making & Using It would be nice if I could tell you that I stayed with the hobby continuously from then up to now. But the truth is that other Vol. 22, No. 7 July 2010 things- college, grad school and then the “real world”- soon intervened and demanded attention and my astronomy activities faded into the past. This Month’s Meeting… th Then for my birthday about ten years ago- out of the blue and Thursday, July 8 , 2010 at 8:00 PM with no warning- my wife and two boys decided to give me a Phillips Auditorium telescope. -
ESO Annual Report 2004 ESO Annual Report 2004 Presented to the Council by the Director General Dr
ESO Annual Report 2004 ESO Annual Report 2004 presented to the Council by the Director General Dr. Catherine Cesarsky View of La Silla from the 3.6-m telescope. ESO is the foremost intergovernmental European Science and Technology organi- sation in the field of ground-based as- trophysics. It is supported by eleven coun- tries: Belgium, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Sweden, Switzerland and the United Kingdom. Created in 1962, ESO provides state-of- the-art research facilities to European astronomers and astrophysicists. In pur- suit of this task, ESO’s activities cover a wide spectrum including the design and construction of world-class ground-based observational facilities for the member- state scientists, large telescope projects, design of innovative scientific instruments, developing new and advanced techno- logies, furthering European co-operation and carrying out European educational programmes. ESO operates at three sites in the Ataca- ma desert region of Chile. The first site The VLT is a most unusual telescope, is at La Silla, a mountain 600 km north of based on the latest technology. It is not Santiago de Chile, at 2 400 m altitude. just one, but an array of 4 telescopes, It is equipped with several optical tele- each with a main mirror of 8.2-m diame- scopes with mirror diameters of up to ter. With one such telescope, images 3.6-metres. The 3.5-m New Technology of celestial objects as faint as magnitude Telescope (NTT) was the first in the 30 have been obtained in a one-hour ex- world to have a computer-controlled main posure. -
Mandm Direct Spreads
Touring the moonlit Spring Skies... Observations from Saturday 11th May 2019 8.30pm - 2.15am Equipment used: TEC 140, tracking Nova Hitch Alt-Az with slow-mo controls and encoders on a Berlebach Planet, iPad Air2 running SkySafari Pro 5, Nexus WiFi, 10 and 21mm Ethos, Baader BBHS diagonal, Lumicon 2” UHC and OIII filters in a True-Tech manual filter wheel. Mixed forecasts, Clear Outside suggesting 27% cloud around midnight, Xasteria saying clear, Clear Outside loaded from within Xasteria offering something in-between (how do you get that, hey!?) and Meteoblue forecasting clear skies from 11 but with poor ‘Index 2’ and Jet Stream readings.... Having neglected visual astronomy for many months (having spent my time finally getting the imaging gear to play ball), I spent forty odd minutes re-learning how to set everything back up - in fact, it be on offer with the moon in attendance... took longer than it does to wheel out the imaging gear. Times have changed, my usual (100% visual) observing buddy was having a go at imaging (spectroscopy), so I was on my own for this evening. It meant I’d have to keep my own notes for a change, but also allow me to go at my own pace as I reacquainted myself with the night sky. By 8.30 I was ready to go, clear skies, still a shade of blue with a half moon hanging over in the south western sky. Temperature rapidly dropping. 21mm eyepiece in place easily held the entire moon. Fantastic details, sharp, contrasty, zero colour.. -
Modelling Ionised and Photodissociated Regions
Modelling ionised and photodissociated regions Magda Vasta Thesis submitted for the Degree of Doctor of Philosophy of University College London Department of Physics & Astronomy UNIVERSITY COLLEGE LONDON March 2010 I, Magda Vasta, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. To my parents, my brother and my husband, who always supported and encouraged me no matter what. I tell people I am too stupid to know what is impossible. I have ridiculously large dreams, and half the time they come true. — Thomas D. ACKNOWLEDGEMENTS Some people come into our lives and quickly go. Some stay for a while and leave footprints on our hearts. And we are never, ever the same. I made it, I still cannot believe it, but I finally made it. However, it would have been almost impossible to reach this target without the constant scientific support from some people. My first big THANKS go to my supervisor Serena Viti. Thanks for being the supportive person you are, for giving me the possibility to be independent in my research, but being always present when I needed you. Thanks for all the times that you did not talk to me in Italian, for encouraging me to not give up and for being the lovely person you are. Thanks to Mike Barlow for the amazing scientific suggestions and for tolerating ALL my silly questions (most of them grammatically incorrect!). Thanks to Barbara Ercolano for her patience when answering my emails “HELP, PLEASE!!” about MOCASSIN. -
00E the Construction of the Universe Symphony
The basic construction of the Universe Symphony. There are 30 asterisms (Suites) in the Universe Symphony. I divided the asterisms into 15 groups. The asterisms in the same group, lay close to each other. Asterisms!! in Constellation!Stars!Objects nearby 01 The W!!!Cassiopeia!!Segin !!!!!!!Ruchbah !!!!!!!Marj !!!!!!!Schedar !!!!!!!Caph !!!!!!!!!Sailboat Cluster !!!!!!!!!Gamma Cassiopeia Nebula !!!!!!!!!NGC 129 !!!!!!!!!M 103 !!!!!!!!!NGC 637 !!!!!!!!!NGC 654 !!!!!!!!!NGC 659 !!!!!!!!!PacMan Nebula !!!!!!!!!Owl Cluster !!!!!!!!!NGC 663 Asterisms!! in Constellation!Stars!!Objects nearby 02 Northern Fly!!Aries!!!41 Arietis !!!!!!!39 Arietis!!! !!!!!!!35 Arietis !!!!!!!!!!NGC 1056 02 Whale’s Head!!Cetus!! ! Menkar !!!!!!!Lambda Ceti! !!!!!!!Mu Ceti !!!!!!!Xi2 Ceti !!!!!!!Kaffalijidhma !!!!!!!!!!IC 302 !!!!!!!!!!NGC 990 !!!!!!!!!!NGC 1024 !!!!!!!!!!NGC 1026 !!!!!!!!!!NGC 1070 !!!!!!!!!!NGC 1085 !!!!!!!!!!NGC 1107 !!!!!!!!!!NGC 1137 !!!!!!!!!!NGC 1143 !!!!!!!!!!NGC 1144 !!!!!!!!!!NGC 1153 Asterisms!! in Constellation Stars!!Objects nearby 03 Hyades!!!Taurus! Aldebaran !!!!!! Theta 2 Tauri !!!!!! Gamma Tauri !!!!!! Delta 1 Tauri !!!!!! Epsilon Tauri !!!!!!!!!Struve’s Lost Nebula !!!!!!!!!Hind’s Variable Nebula !!!!!!!!!IC 374 03 Kids!!!Auriga! Almaaz !!!!!! Hoedus II !!!!!! Hoedus I !!!!!!!!!The Kite Cluster !!!!!!!!!IC 397 03 Pleiades!! ! Taurus! Pleione (Seven Sisters)!! ! ! Atlas !!!!!! Alcyone !!!!!! Merope !!!!!! Electra !!!!!! Celaeno !!!!!! Taygeta !!!!!! Asterope !!!!!! Maia !!!!!!!!!Maia Nebula !!!!!!!!!Merope Nebula !!!!!!!!!Merope -
CI and CO in Nearby Galaxy Centers
Astronomy & Astrophysics manuscript no. brightgal c ESO 2018 October 22, 2018 CI and CO in nearby galaxy centers The bright galaxies NGC 1068 (M 77), NGC 2146, NGC 3079, NGC 4826 (M 64), and NGC 7469 F.P. Israel1 Sterrewacht Leiden, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands Received ????; accepted ???? ABSTRACT Aims. We study the physical properties and amount of molecular gas in the central regions of galaxies with active nuclei. Methods. Maps and measurements of the J=1–0, J=2–1, J=3–2, J=4–3 12CO, the J=1–0, J=2–1, and J=3–2 13CO lines in the central arcminute squared of NGC 1068, NGC 2146, NGC 3079, NGC 4826, and NGC 7469, as well as 492 GHz CI maps in three of these are used to model the molecular gas clouds in these galaxies. Results. Bright CO concentrations were detected and mapped in all five objects. In all cases, the observed lines could be fitted with two distinct gas components. The physical condition of the molecular gas is found to differ from galaxy to galaxy. Rather high kinetic temperatures of 125-150 K occur in NGC 2146 and NGC 3079. Very high densities of 5 −3 0.3−1.0 × 10 cm occur in NGC 2146, NGC 3079, and NGC 7469. The CO to H2 conversion factor X is typically an order of magnitude less than the ‘standard’ value in the Solar Neighborhood. The molecular gas is constrained within 8 radii between 0.9 and 1.5 kpc from the nuclei. -
Hercules a Monthly Sky Guide for the Beginning to Intermediate Amateur Astronomer Tom Trusock - 7/09
Small Wonders: Hercules A monthly sky guide for the beginning to intermediate amateur astronomer Tom Trusock - 7/09 Dragging forth the summer Milky Way, legendary strongman Hercules is yet another boundary constellation for the summer season. His toes are dipped in the stream of our galaxy, his head is firm in the depths of space. Hercules is populated by a dizzying array of targets, many extra-galactic in nature. Galaxy clusters abound and there are three Hickson objects for the aficionado. There are a smattering of nice galaxies, some planetary nebulae and of course a few very nice globular clusters. 2/19 Small Wonders: Hercules Widefield Finder Chart - Looking high and south, early July. Tom Trusock June-2009 3/19 Small Wonders: Hercules For those inclined to the straightforward list approach, here's ours for the evening: Globular Clusters M13 M92 NGC 6229 Planetary Nebulae IC 4593 NGC 6210 Vy 1-2 Galaxies NGC 6207 NGC 6482 NGC 6181 Galaxy Groups / Clusters AGC 2151 (Hercules Cluster) Tom Trusock June-2009 4/19 Small Wonders: Hercules Northern Hercules Finder Chart Tom Trusock June-2009 5/19 Small Wonders: Hercules M13 and NGC 6207 contributed by Emanuele Colognato Let's start off with the masterpiece and work our way out from there. Ask any longtime amateur the first thing they think of when one mentions the constellation Hercules, and I'd lay dollars to donuts, you'll be answered with the globular cluster Messier 13. M13 is one of the easiest objects in the constellation to locate. M13 lying about 1/3 of the way from eta to zeta, the two stars that define the westernmost side of the keystone. -
Caldwell Catalogue - Wikipedia, the Free Encyclopedia
Caldwell catalogue - Wikipedia, the free encyclopedia Log in / create account Article Discussion Read Edit View history Caldwell catalogue From Wikipedia, the free encyclopedia Main page Contents The Caldwell Catalogue is an astronomical catalog of 109 bright star clusters, nebulae, and galaxies for observation by amateur astronomers. The list was compiled Featured content by Sir Patrick Caldwell-Moore, better known as Patrick Moore, as a complement to the Messier Catalogue. Current events The Messier Catalogue is used frequently by amateur astronomers as a list of interesting deep-sky objects for observations, but Moore noted that the list did not include Random article many of the sky's brightest deep-sky objects, including the Hyades, the Double Cluster (NGC 869 and NGC 884), and NGC 253. Moreover, Moore observed that the Donate to Wikipedia Messier Catalogue, which was compiled based on observations in the Northern Hemisphere, excluded bright deep-sky objects visible in the Southern Hemisphere such [1][2] Interaction as Omega Centauri, Centaurus A, the Jewel Box, and 47 Tucanae. He quickly compiled a list of 109 objects (to match the number of objects in the Messier [3] Help Catalogue) and published it in Sky & Telescope in December 1995. About Wikipedia Since its publication, the catalogue has grown in popularity and usage within the amateur astronomical community. Small compilation errors in the original 1995 version Community portal of the list have since been corrected. Unusually, Moore used one of his surnames to name the list, and the catalogue adopts "C" numbers to rename objects with more Recent changes common designations.[4] Contact Wikipedia As stated above, the list was compiled from objects already identified by professional astronomers and commonly observed by amateur astronomers. -
Quasi-Periodic Oscillation Detected in the Galaxy NGC 4945 6 October 2020, by Tomasz Nowakowski
Quasi-periodic oscillation detected in the galaxy NGC 4945 6 October 2020, by Tomasz Nowakowski galaxy (type 2 Seyfert) that may contain a supermassive black hole. Recently, a team of astronomers led by Evan Smith has conducted a search for low-frequency (LF) QPOs, combing through archival data from RXTE, obtained between 1996 and 2011. The satellite completed more than 500 observations of NGC 4945's active galactic nucleus (AGN) and found that it exhibits an LFQPO. "Between MJD 54003-54193 (RXTE proposal 60139) (Madejski 2001), the Lomb-Scargle periodogram shows a candidate QPO at 0.274 µHz or a period of 42.2 ± 3 days," the astronomers The NGC 4945 light curve of RXTE observations wrote in the paper. between 1997 and 2007. Credit: Smith et al., 2020. As noted by in the study, the light curve from RXTE observations in the 2–10 keV band shows a prominent LFQPO with a period of approximately Using data from the Rossi X-ray Timing Explorer six weeks. The newly detected oscillations are also (RXTE) satellite, astronomers from the Florida seen near this period in other three sub-bands. Institute of Technology have discovered a quasi- periodic oscillation (QPO) in the galaxy NGC 4945. The astronomers noted that possible explanations The finding, reported in a paper published for the observed QPO in NGC 4945, as well as in September 28 on the arXiv preprint server, could other active galaxies, include Keplerian orbital shed more light on the nature of this galaxy. motion of matter in the disk, spin of the central compact object, general relativistic effects, or beat When X-ray light from an astronomical object frequencies between two of the previous flickers about certain frequencies, the mechanisms.