A COMPENDIUM of FAR-INFRARED LINE and CONTINUUM EMISSION for 227 GALAXIES OBSERVED by the INFRARED SPACE OBSERVATORY James R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FY08 Technical Papers by GSMTPO Staff
AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................ -
Arxiv:1904.07129V1 [Astro-Ph.GA] 15 Apr 2019
Draft version April 16, 2019 Preprint typeset using LATEX style emulateapj v. 12/16/11 SPIRE SPECTROSCOPY OF EARLY TYPE GALAXIES Ryen Carl Lapham and Lisa M. Young Physics Department, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801; [email protected], [email protected] Draft version April 16, 2019 ABSTRACT We present SPIRE spectroscopy for 9 early-type galaxies (ETGs) representing the most CO-rich and far-infrared (FIR) bright galaxies of the volume-limited Atlas3D sample. Our data include detections of mid to high J CO transitions (J=4-3 to J=13-12) and the [C I] (1-0) and (2-1) emission lines. CO spectral line energy distributions (SLEDs) for our ETGs indicate low gas excitation, barring NGC 1266. We use the [C I] emission lines to determine the excitation temperature of the neutral gas, as well as estimate the mass of molecular hydrogen. The masses agree well with masses derived from CO, making this technique very promising for high redshift galaxies. We do not find a trend between the [N II] 205 flux and the infrared luminosity, but we do find that the [N II] 205/CO(6-5) line ratio is correlated with the 60/100 µm Infrared Astronomical Satellite (IRAS) colors. Thus the [N II] 205/CO(6-5) ratio can be used to infer a dust temperature, and hence the intensity of the interstellar radiation field (ISRF). Photodissociation region (PDR) models show that use of [C I] and CO lines in addition to the typical [C II], [O I], and FIR fluxes drive the model solutions to higher densities and lower values of G0. -
1501.01010V1.Pdf
Draft version January 7, 2015 Preprint typeset using LATEX style emulateapj v. 5/2/11 JET-ISM INTERACTION IN THE RADIO GALAXY 3C293: JET-DRIVEN SHOCKS HEAT ISM TO POWER X-RAY AND MOLECULAR H2 EMISSION L. Lanz1, P. M. Ogle1, D. Evans2, P. N. Appleton3, P. Guillard4, B. Emonts5 Draft version January 7, 2015 ABSTRACT We present a 70ks Chandra observation of the radio galaxy 3C 293. This galaxy belongs to the class of molecular hydrogen emission galaxies (MOHEGs) that have very luminous emission from warm molecular hydrogen. In radio galaxies, the molecular gas appears to be heated by jet-driven shocks, but exactly how this mechanism works is still poorly understood. With Chandra, we observe X-ray emission from the jets within the host galaxy and along the 100 kpc radio jets. We model the X-ray spectra of the nucleus, the inner jets, and the X-ray features along the extended radio jets. Both the nucleus and the inner jets show evidence of 107 K shock-heated gas. The kinetic power of the jets is more than sufficient to heat the X-ray emitting gas within the host galaxy. The thermal X-ray and warm H2 luminosities of 3C 293 are similar, indicating similar masses of X-ray hot gas and warm molecular gas. This is consistent with a picture where both derive from a multiphase, shocked interstellar medium (ISM). We find that radio-loud MOHEGs that are not brightest cluster galaxies (BCGs), like 3C 293, typically have LH2 /LX ∼ 1 and MH2 /MX ∼ 1, whereas MOHEGs that are BCGs have LH2 /LX ∼ 0.01 and MH2 /MX ∼ 0.01. -
Arxiv:1705.04776V1 [Astro-Ph.HE] 13 May 2017 Aaua M
White Paper on East Asian Vision for mm/submm VLBI: Toward Black Hole Astrophysics down to Angular Resolution of 1 RS Editors Asada, K.1, Kino, M.2,3, Honma, M.3, Hirota, T.3, Lu, R.-S.4,5, Inoue, M.1, Sohn, B.-W.2,6, Shen, Z.-Q.4, and Ho, P. T. P.1,7 Authors Akiyama, K.3,8, Algaba, J-C.2, An, T.4, Bower, G.1, Byun, D-Y.2, Dodson, R.9, Doi, A.10, Edwards, P.G.11, Fujisawa, K.12, Gu, M-F.4, Hada, K.3, Hagiwara, Y.13, Jaroenjittichai, P.15, Jung, T.2,6, Kawashima, T.3, Koyama, S.1,5, Lee, S-S.2, Matsushita, S.1, Nagai, H.3, Nakamura, M.1, Niinuma, K.12, Phillips, C.11, Park, J-H.15, Pu, H-Y.1, Ro, H-W.2,6, Stevens, J.11, Trippe, S.15, Wajima, K.2, Zhao, G-Y.2 1 Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan 2 Korea Astronomy and Space Science Institute, Daedukudae-ro 776, Yuseong-gu, Daejeon 34055, Republic of Korea 3 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan 4 Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China 5 Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, D-53121 Bonn, Germany 6 University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea 7 East Asian Observatory, 660 N. -
The Bright Galaxies NGC 1068 (M 77), NGC 2146, NGC 3079, NGC 4826 (M 64), and NGC 7469 F
A&A 493, 525–538 (2009) Astronomy DOI: 10.1051/0004-6361:200810655 & c ESO 2009 Astrophysics CI and CO in nearby galaxy centers The bright galaxies NGC 1068 (M 77), NGC 2146, NGC 3079, NGC 4826 (M 64), and NGC 7469 F. P. Israel Sterrewacht Leiden, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands e-mail: [email protected] Received 22 July 2008 / Accepted 5 November 2008 ABSTRACT Aims. We study the physical properties and amount of molecular gas in the central regions of galaxies with active nuclei. Methods. Maps and measurements of the J = 1−0, J = 2−1, J = 3−2, J = 4−3 12CO, the J = 1−0, J = 2−1, and J = 3−2 13CO lines in the central arcminute squared of NGC 1068, NGC 2146, NGC 3079, NGC 4826, and NGC 7469, as well as 492 GHz CI maps in three of these are used to model the molecular gas clouds in these galaxies. Results. Bright CO concentrations were detected and mapped in all five objects. In all cases, the observed lines could be fitted with two distinct gas components. The physical condition of the molecular gas is found to differ from galaxy to galaxy. Rather high kinetic temperatures of 125−150 K occur in NGC 2146 and NGC 3079. Very high densities of 0.3−1.0 × 105 cm−3 occur in NGC 2146, NGC 3079, and NGC 7469. The CO to H2 conversion factor X is typically an order of magnitude less than the “standard” value in the solar neighborhood. -
Dwarfs Walking in a Row the filamentary Nature of the NGC 3109 Association
A&A 559, L11 (2013) Astronomy DOI: 10.1051/0004-6361/201322744 & c ESO 2013 Astrophysics Letter to the Editor Dwarfs walking in a row The filamentary nature of the NGC 3109 association M. Bellazzini1, T. Oosterloo2;3, F. Fraternali4;3, and G. Beccari5 1 INAF – Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy e-mail: [email protected] 2 Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo, The Netherlands 3 Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen, The Netherlands 4 Dipartimento di Fisica e Astronomia - Università degli Studi di Bologna, viale Berti Pichat 6/2, 40127 Bologna, Italy 5 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei Munchen, Germany Received 24 September 2013 / Accepted 22 October 2013 ABSTRACT We re-consider the association of dwarf galaxies around NGC 3109, whose known members were NGC 3109, Antlia, Sextans A, and Sextans B, based on a new updated list of nearby galaxies and the most recent data. We find that the original members of the NGC 3109 association, together with the recently discovered and adjacent dwarf irregular Leo P, form a very tight and elongated configuration in space. All these galaxies lie within ∼100 kpc of a line that is '1070 kpc long, from one extreme (NGC 3109) to the other (Leo P), and they show a gradient in the Local Group standard of rest velocity with a total amplitude of 43 km s−1 Mpc−1, and a rms scatter of just 16.8 km s−1. It is shown that the reported configuration is exceptional given the known dwarf galaxies in the Local Group and its surroundings. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
VLBA Detection of Nuclear Compact Emission in the AGN-Driven Molecular Outflow Candidate NGC 1266
VLBA Detection of Nuclear Compact Emission in the AGN-Driven Molecular Outflow Candidate NGC 1266 Kristina Nyland New Mexico Tech 2012 New Mexico Symposium Outflows in Galaxies • Can help regulate star formation and SMBH growth • May be responsible for various empirical scaling relations in galaxies (e.g., Faber-Jackson relation) • Driving mechanisms: • Stellar feedback • Radiation pressure • Stellar winds (young O stars, AGB stars) • Supernovae • AGNs • Quasar mode (radiative) • Radio mode (mechanical/kinetic) Starburst-Driven Molecular Outflows M82 (Walter+02) Arp 220 (Sakamoto+09) • Prototypical SB galaxy • ULIRG • Interacting with M81 • merger remnant • Molecular gas entrained in • (But AGN may play a starburst wind see role, Rangwala+11) 8 7 • Moutflow = 3 x 10 Msun • Moutflow = 5 x 10 Msun • dM/dt = 30 Msun/year • dM/dt = 100 Msun/year • voutflow = 100 km/s • voutflow = 100 km/s HST HST AGN-Driven Molecular Outflows • Outflows of neutral/ionized gas relatively common in AGNs • Molecular outflows potentially powered by AGNs are rare • Much of the evidence is circumstantial • e.g., SDSS statistical analyses of timing of starbursts and AGN activity • Many candidates for direct evidence are high-redshift quasars • local candidates needed! AGN-Driven Molecular Outflows Mrk 231 (Feruglio+10) • Nearest quasar host • Interacting system 8 • Moutflow = 5.8 x 10 Msun • dM/dt = 100-700 Msun/yr • v = 700 km/s outflow Gemini NGC 1266: Local Candidate AGN- driven Molecular Outflow Host? • Morphology: S0 • Environment: Field – no evidence of recent major merger • Distance: 29.9 Mpc • MK = -22.93 DSS • σ* = 79 km/s 6 • MBH: ~3.2 x 10 Msun IRAM 30m CO Emission Figures from Alatalo et al. -
IRAC Near-Infrared Features in the Outer Parts of S4G Galaxies
Mon. Not. R. Astron. Soc. 000, 1{26 (2014) Printed 15 June 2018 (MN LATEX style file v2.2) Spitzer/IRAC Near-Infrared Features in the Outer Parts of S4G Galaxies Seppo Laine,1? Johan H. Knapen,2;3 Juan{Carlos Mu~noz{Mateos,4:5 Taehyun Kim,4;5;6;7 S´ebastienComer´on,8;9 Marie Martig,10 Benne W. Holwerda,11 E. Athanassoula,12 Albert Bosma,12 Peter H. Johansson,13 Santiago Erroz{Ferrer,2;3 Dimitri A. Gadotti,5 Armando Gil de Paz,14 Joannah Hinz,15 Jarkko Laine,8;9 Eija Laurikainen,8;9 Kar´ınMen´endez{Delmestre,16 Trisha Mizusawa,4;17 Michael W. Regan,18 Heikki Salo,8 Kartik Sheth,4;1;19 Mark Seibert,7 Ronald J. Buta,20 Mauricio Cisternas,2;3 Bruce G. Elmegreen,21 Debra M. Elmegreen,22 Luis C. Ho,23;7 Barry F. Madore7 and Dennis Zaritsky24 1Spitzer Science Center - Caltech, MS 314-6, Pasadena, CA 91125, USA 2Instituto de Astrof´ısica de Canarias, E-38205 La Laguna, Tenerife, Spain 3Departamento de Astrof´ısica, Universidad de La Laguna, 38206 La Laguna, Spain 4National Radio Astronomy Observatory/NAASC, Charlottesville, 520 Edgemont Road, VA 22903, USA 5European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago, Chile 6Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea 7The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA 8Division of Astronomy, Department of Physics, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland 9Finnish Centre of Astronomy with ESO (FINCA), University of Turku, V¨ais¨al¨antie20, FIN-21500 Piikki¨o 10Max-Planck Institut f¨urAstronomie, K¨onigstuhl17 D-69117 Heidelberg, Germany 11Leiden Observatory, Leiden University, P.O. -
Dense Gas in Local Galaxies Revealed by Multiple Tracers
MNRAS 000,1–18 (2020) Preprint 9 March 2021 Compiled using MNRAS LATEX style file v3.0 Dense gas in local galaxies revealed by multiple tracers Fei Li1, Junzhi Wang1,2¢, Feng Gao3, Shu Liu4, Zhi-Yu Zhang5, Shanghuo Li1,6 Yan Gong7, Juan Li1,2 and Yong Shi5 1Shanghai Astronomical Observatory, Chinese Academy of Sciences,80 Nandan Road, Shanghai, 200030, China 2Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, 10 Yuanhua Road, Nanjing, JiangSu 210033, China 3Max-Planck-Institut für Extraterrestrische Physik, Gießenbachstrasse 1, D-85741 Garching bei München, Germany 4CAS Key Laboratory of FAST, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China 5School of Astronomy and Space Science, Nanjing University, Nanjing, 210093, China 6Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Republic of Korea 7Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121, Bonn, Germany Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We present 3 mm and 2 mm band simultaneously spectroscopic observations of HCN 1- 0, HCO¸ 1-0, HNC 1-0, and CS 3-2 with the IRAM 30 meter telescope, toward a sample 5 of 70 sources as nearby galaxies with infrared luminosities ranging from several 10 ! to 12 ¸ more than 10 ! . After combining HCN 1-0, HCO 1-0 and HNC 1-0 data from literature with our detections, relations between luminosities of dense gas tracers (HCN 1-0, HCO¸ 1-0 and HNC 1-0) and infrared luminosities are derived, with tight linear correlations for all tracers. Luminosities of CS 3-2 with only our observations also show tight linear correlation with infrared luminosities. -
The Applicability of Far-Infrared Fine-Structure Lines As Star Formation
A&A 568, A62 (2014) Astronomy DOI: 10.1051/0004-6361/201322489 & c ESO 2014 Astrophysics The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types? Ilse De Looze1, Diane Cormier2, Vianney Lebouteiller3, Suzanne Madden3, Maarten Baes1, George J. Bendo4, Médéric Boquien5, Alessandro Boselli6, David L. Clements7, Luca Cortese8;9, Asantha Cooray10;11, Maud Galametz8, Frédéric Galliano3, Javier Graciá-Carpio12, Kate Isaak13, Oskar Ł. Karczewski14, Tara J. Parkin15, Eric W. Pellegrini16, Aurélie Rémy-Ruyer3, Luigi Spinoglio17, Matthew W. L. Smith18, and Eckhard Sturm12 1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium e-mail: [email protected] 2 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle Str. 2, 69120 Heidelberg, Germany 3 Laboratoire AIM, CEA, Université Paris VII, IRFU/Service d0Astrophysique, Bat. 709, 91191 Gif-sur-Yvette, France 4 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 5 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 6 Laboratoire d0Astrophysique de Marseille − LAM, Université Aix-Marseille & CNRS, UMR7326, 38 rue F. Joliot-Curie, 13388 Marseille CEDEX 13, France 7 Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK 8 European Southern Observatory, Karl -
WALLABY Pre-Pilot Survey: Two Dark Clouds in the Vicinity of NGC 1395
University of Texas Rio Grande Valley ScholarWorks @ UTRGV Physics and Astronomy Faculty Publications and Presentations College of Sciences 2021 WALLABY pre-pilot survey: Two dark clouds in the vicinity of NGC 1395 O. I. Wong University of Western Australia A. R. H. Stevens B. Q. For University of Western Australia Tobias Westmeier M. Dixon See next page for additional authors Follow this and additional works at: https://scholarworks.utrgv.edu/pa_fac Part of the Astrophysics and Astronomy Commons, and the Physics Commons Recommended Citation O I Wong, A R H Stevens, B-Q For, T Westmeier, M Dixon, S-H Oh, G I G Józsa, T N Reynolds, K Lee-Waddell, J Román, L Verdes-Montenegro, H M Courtois, D Pomarède, C Murugeshan, M T Whiting, K Bekki, F Bigiel, A Bosma, B Catinella, H Dénes, A Elagali, B W Holwerda, P Kamphuis, V A Kilborn, D Kleiner, B S Koribalski, F Lelli, J P Madrid, K B W McQuinn, A Popping, J Rhee, S Roychowdhury, T C Scott, C Sengupta, K Spekkens, L Staveley-Smith, B P Wakker, WALLABY pre-pilot survey: Two dark clouds in the vicinity of NGC 1395, Monthly Notices of the Royal Astronomical Society, 2021;, stab2262, https://doi.org/10.1093/ mnras/stab2262 This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has been accepted for inclusion in Physics and Astronomy Faculty Publications and Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact [email protected], [email protected].