Roystonea Regia and Roystonea Oleracea
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pine Island Ridge Management Plan
Pine Island Ridge Conservation Management Plan Broward County Parks and Recreation May 2020 Update of 1999 Management Plan Table of Contents A. General Information ..............................................................................................................3 B. Natural and Cultural Resources ...........................................................................................8 C. Use of the Property ..............................................................................................................13 D. Management Activities ........................................................................................................18 E. Works Cited ..........................................................................................................................29 List of Tables Table 1. Management Goals…………………………………………………………………21 Table 2. Estimated Costs……………………………………………………………….........27 List of Attachments Appendix A. Pine Island Ridge Lease 4005……………………………………………... A-1 Appendix B. Property Deeds………….............................................................................. B-1 Appendix C. Pine Island Ridge Improvements………………………………………….. C-1 Appendix D. Conservation Lands within 10 miles of Pine Island Ridge Park………….. D-1 Appendix E. 1948 Aerial Photograph……………………………………………………. E-1 Appendix F. Development Agreement………………………………………………….. F-1 Appendix G. Plant Species Observed at Pine Island Ridge……………………………… G-1 Appendix H. Wildlife Species Observed at Pine Island Ridge ……... …………………. H-1 Appendix -
Combustion Performance Andexhaust Emission Analysis of Thurayi and Cuban Royal Palm Seed Biodiesel Blends Onci Engines
International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org ||Volume 7 Issue 1|| January 2018 || PP.66-77 Combustion Performance andExhaust Emission Analysis of Thurayi and Cuban Royal Palm Seed Biodiesel Blends onCI Engines M Suresh1, R. Hari Prakash2,B. Durga Prasad3 1Asso. Prof.& HOD, Dept. of ME, Gokula Krishna College of Engineering, Sullurpet 2Pincipal, Brahmaiah College of Engineering, Nellore 3Professor & Head, Dept. of ME, JNTUA College of Engineering, Ananthapuramu Corresponding Author:M Suresh Abstract: Increasing demand for fossil fuels due to the luxurious lifestyle, significant growth of population, transportation and the basic industry sectors are causing serious environmental problems. Moreover, a rapid decline in the fossil fuels has led scientists and researchers to look for new alternatives. In this regard, alternative fuels such as biofuels are becoming important increasingly due to environmental and energy concerns. Biofuels are commonly referred to as first generations, which are produced primarily from food crops. However, the use of edible oil to produce biodiesel in many countries is not feasible in view of a big gap in the demand and supply of such oils for dietary consumption. This paper is concerned about the extraction and usage of two biofuel and its blends on a Kirloskar TV-1, single cylinder, four-stroke, water cooled DI diesel engine with a displacement of 661cc. The rated power of the engine is 5.2 kW at 1500 rpm with constant speed. The fuels are extracted from Thurayi (Delonix Regia) and Cuban Royal Palm (Roystonea Regia) seeds which are nonedible. -
Occurrence and Feeding Ecology of the Common Flicker on Grand Cayman Island
Condor, 81:370375 @I The Cooper Ornithological Society 1979 OCCURRENCE AND FEEDING ECOLOGY OF THE COMMON FLICKER ON GRAND CAYMAN ISLAND ALEXANDER CRUZ AND DAVID W. JOHNSTON The Common Flicker (CoZaptes auratus) is with mangrove and buttonwood swamps. In wetter and widely distributed in the western hemi- more saline places, especially around North Sound (Fig. l), red mangrove (Rhizophora mangle) predomi- sphere from Alaska to Nicaragua and to the nates, but farther inland at seasonally drier sites white West Indies (Cuba and Grand Cayman). Al- mangrove (Lagunculariu rucemosa), black mangrove though mainland populations have been (Auicenniu nitida), and buttonwood (Conocarpus er- well studied (e.g., Noble 1936, Bent 1939, ecta) combine to form a thick forest. Near North Sound Short 1965a, 1967, Bock 1971), details on these mangrove-buttonwood swamps are best devel- oped and the trees often reach heights of 18-20 m. the abundance, life history, ecology, and Open pastures. In places, the limestone forest has behavior of Colaptes aurutus on Cuba (C. been cleared for pasture. Important introduced grasses a. chrysocudosus) and Grand Cayman (C. of these pastures are Guinea grass (Punicum maximum) a. gundluchi) have not been reported. Short and Seymour grass (Andropogon metusus), with scat- tered shrubs such as Comocladia dentata and trees (196513) discussed the variation, taxonomy, such as Bursera simaruba, Roystonea sp., and Man- and evolution of West Indian flickers, John- gifera indica. ston (1970, 1975) summarized some aspects Scrub woodland. Abandoned pastures and other of the ecology of the Grand Cayman Flicker, cleared areas revert to woods consisting of species such and Cruz (1974) examined the probable as maiden plum (Comocladia pinnatifolia), red birch (Burseru simaruba), and logwood (Huematoxylum evolution and fossil record of West Indian cumpechianum). -
Red Ring Disease of Coconut Palms Is Caused by the Red Ring Nematode (Bursaphelenchus Cocophilus), Though This Nematode May Also Be Known As the Coconut Palm Nematode
1 Red ring disease of coconut palms is caused by the red ring nematode (Bursaphelenchus cocophilus), though this nematode may also be known as the coconut palm nematode. This disease was first described on coconut palms in 1905 in Trinidad and the association between the disease and the nematode was reported in 1919. The vector of the nematode is the South American palm weevil (Rhynchophorus palmarum), both adults and larvae. The nematode parasitizes the weevil which then transmits the nematode as it moves from tree to tree. Though the weevil may visit many different tree species, the nematode only infects members of the Palmae family. The nematode and South American palm weevil have not yet been observed in Florida. 2 Information Sources: Brammer, A.S. and Crow, W.T. 2001. Red Ring Nematode, Bursaphelenchus cocophilus (Cobb) Baujard (Nematoda: Secernentea: Tylenchida: Aphelenchina: Aphelenchoidea: Bursaphelechina) formerly Rhadinaphelenchus cocophilus. University of Florida, IFAS Extension. EENY236. Accessed 11-27-13 http://edis.ifas.ufl.edu/in392 Griffith, R. 1987. “Red Ring Disease of Coconut Palm”. The American Pathological Society Plant Disease, Volume 71, February, 193-196. accessed 12/5/2013- http://www.apsnet.org/publications/plantdisease/ba ckissues/Documents/1987Articles/PlantDisease71n02_193.PDF Griffith, R., R. M. Giblin-Davis, P. K. Koshy, and V. K. Sosamma. 2005. Nematode parasites of coconut and other palms. M. Luc, R. A. Sikora, and J. Bridges (eds.) In Plant Parasitic Nematodes in Subtropical and Tropical Agriculture. C.A.B. International, Oxon, UK. Pp. 493-527. 2 The host trees susceptible to the red ring nematode are usually found in the family Palmae. -
Transplanting Palms in the Landscape1 Timothy K
CIR1047 Transplanting Palms in the Landscape1 Timothy K. Broschat2 Palms, when compared to similar-sized broadleaf trees, are Understanding how palm roots grow and respond to being relatively easy to transplant into the landscape. Many of the cut can greatly improve the chances of success when trans- problems encountered when transplanting broadleaf trees, planting palms. In addition, other factors—such as rootball such as wrapping roots, are never a problem in palms due size, leaf removal and tying, physiological age of the palm, to their different root morphology and architecture. While transplanting season, and planting depth—can also have a broadleaf trees typically have only a few large primary roots significant impact on the success of palm transplants. The originating from the base of the trunk, palm root systems purpose of this document is to discuss how these and other are entirely adventitious. In palms, large numbers of roots factors contribute to palm transplant survival rate. of a relatively small diameter are continually being initiated from a region at the base of the trunk, a region called the Transplanting Container-Grown root-initiation zone (Figure 1). And while the roots of broadleaf trees continually increase in diameter, palm roots Palms into the Landscape remain the same diameter as when they first emerged from Container-grown plants often have roots that wrap around the root-initiation zone. the inside of the container. In broadleaf trees, these large, wrapping roots must be cut prior to transplanting, or root distribution patterns and tree stability will be permanently affected. With container-grown palms, however, there is no need to cut such wrapping roots since large numbers of new, adventitious roots arising from the root initiation zone will initially supplement and will ultimately replace those early roots that were confined to the container. -
Buy Roystonea Regia, Royal Palm - Plant Online at Nurserylive | Best Plants at Lowest Price
Buy roystonea regia, royal palm - plant online at nurserylive | Best plants at lowest price Royal Palm, Roystonea regia - Plant The royal palm tree is perfect for giving your yard that little slice of paradise It is one of the most prestigious looking and most recognizable of all the palms in the world. Rating: Not Rated Yet Price Variant price modifier: Base price with tax Price with discount ?449 Salesprice with discount Sales price ?449 Sales price without tax ?449 Discount Tax amount Ask a question about this product Description With this purchase you will get: 01 Roystonea Regia, Royal Palm Plant Description for Roystonea Regia, Royal Palm Plant height: 14 - 22 inches (35 - 56 cm) Plant spread: 3 - 5 inches (7 - 13 cm) Royal palm has large and attractive palm, it has been planted throughout the tropics and subtropics as an ornamental tree. The trunk is stout, very smooth and grey-white in color with a characteristic bulge below a distinctive green crownshaft. 1 / 3 Buy roystonea regia, royal palm - plant online at nurserylive | Best plants at lowest price They are green when immature, turning red and eventually purplish-black as they mature. They are often chosen by tropical resorts, hotels, and communities to line the streets and driveways because their roots won't break through roads or sidewalks. Common name(s): Roystonea Regia, Royal palm, Cuban Royal Palm Flower colours: Cream-colored Bloom time: Late summer Max reachable height: Up to 80 feet Difficulty to grow: Medium Planting and care Plant royals no closer to the house than 8 feet to allow room for the fronds to spread out and not be damaged by touching walls. -
Las Palmeras En El Marco De La Investigacion Para El
REVISTA PERUANA DE BIOLOGÍA Rev. peru: biol. ISSN 1561-0837 Volumen 15 Noviembre, 2008 Suplemento 1 Las palmeras en el marco de la investigación para el desarrollo en América del Sur Contenido Editorial 3 Las comunidades y sus revistas científicas 1he scienrific cornmuniries and their journals Leonardo Romero Presentación 5 Laspalmeras en el marco de la investigación para el desarrollo en América del Sur 1he palrns within the framework ofresearch for development in South America Francis Kahny CésarArana Trabajos originales 7 Laspalmeras de América del Sur: diversidad, distribución e historia evolutiva 1he palms ofSouth America: diversiry, disrriburíon and evolutionary history Jean-Christopbe Pintaud, Gloria Galeano, Henrik Balslev, Rodrigo Bemal, Fmn Borchseníus, Evandro Ferreira, Jean-Jacques de Gran~e, Kember Mejía, BettyMillán, Mónica Moraes, Larry Noblick, FredW; Staufl'er y Francis Kahn . 31 1he genus Astrocaryum (Arecaceae) El género Astrocaryum (Arecaceae) . Francis Kahn 49 1he genus Hexopetion Burret (Arecaceae) El género Hexopetion Burret (Arecaceae) Jean-Cbristopbe Pintand, Betty MiJJány Francls Kahn 55 An overview ofthe raxonomy ofAttalea (Arecaceae) Una visión general de la taxonomía de Attalea (Arecaceae) Jean-Christopbe Pintaud 65 Novelties in the genus Ceroxylon (Arecaceae) from Peru, with description ofa new species Novedades en el género Ceroxylon (Arecaceae) del Perú, con la descripción de una nueva especie Gloria Galeano, MariaJosé Sanín, Kember Mejía, Jean-Cbristopbe Pintaud and Betty MiJJán '73 Estatus taxonómico -
Endangered Species Status for the Florida Bonneted Bat; Final Rule
Vol. 78 Wednesday, No. 191 October 2, 2013 Part II Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Endangered Species Status for the Florida Bonneted Bat; Final Rule VerDate Mar<15>2010 18:45 Oct 01, 2013 Jkt 232001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\02OCR2.SGM 02OCR2 mstockstill on DSK4VPTVN1PROD with RULES2 61004 Federal Register / Vol. 78, No. 191 / Wednesday, October 2, 2013 / Rules and Regulations DEPARTMENT OF THE INTERIOR Listing a species as endangered or Previous Federal Actions threatened can only be completed by The Florida bonneted bat (Eumops Fish and Wildlife Service issuing a rule. On October 4, 2012, we floridanus) was previously known as the published a proposed rule to list the Florida mastiff bat (Eumops glaucinus 50 CFR Part 17 Florida bonneted bat as an endangered floridanus). [Docket No. FWS–R4–ES–2012–0078; species (77 FR 60750). After careful Federal actions for the Florida 4500030113] consideration of all public and peer bonneted bat prior to October 4, 2012, reviewer comments we received, we are are outlined in our proposed rule (77 FR RIN 1018–AY15 publishing this final rule to list the 60750), which was published on that Endangered and Threatened Wildlife Florida bonneted bat as an endangered date. Publication of the proposed rule and Plants; Endangered Species species. (77 FR 60750) opened a 60-day comment period, which closed on Status for the Florida Bonneted Bat The basis for our action. Under the December 3, 2012. AGENCY: Fish and Wildlife Service, Act, a species may be determined to be Our proposed rule also included a Interior. -
Seed Geometry in the Arecaceae
horticulturae Review Seed Geometry in the Arecaceae Diego Gutiérrez del Pozo 1, José Javier Martín-Gómez 2 , Ángel Tocino 3 and Emilio Cervantes 2,* 1 Departamento de Conservación y Manejo de Vida Silvestre (CYMVIS), Universidad Estatal Amazónica (UEA), Carretera Tena a Puyo Km. 44, Napo EC-150950, Ecuador; [email protected] 2 IRNASA-CSIC, Cordel de Merinas 40, E-37008 Salamanca, Spain; [email protected] 3 Departamento de Matemáticas, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced 1–4, 37008 Salamanca, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-923219606 Received: 31 August 2020; Accepted: 2 October 2020; Published: 7 October 2020 Abstract: Fruit and seed shape are important characteristics in taxonomy providing information on ecological, nutritional, and developmental aspects, but their application requires quantification. We propose a method for seed shape quantification based on the comparison of the bi-dimensional images of the seeds with geometric figures. J index is the percent of similarity of a seed image with a figure taken as a model. Models in shape quantification include geometrical figures (circle, ellipse, oval ::: ) and their derivatives, as well as other figures obtained as geometric representations of algebraic equations. The analysis is based on three sources: Published work, images available on the Internet, and seeds collected or stored in our collections. Some of the models here described are applied for the first time in seed morphology, like the superellipses, a group of bidimensional figures that represent well seed shape in species of the Calamoideae and Phoenix canariensis Hort. ex Chabaud. -
CARIBBEAN REGION - NWPL 2014 FINAL RATINGS User Notes: 1) Plant Species Not Listed Are Considered UPL for Wetland Delineation Purposes
CARIBBEAN REGION - NWPL 2014 FINAL RATINGS User Notes: 1) Plant species not listed are considered UPL for wetland delineation purposes. 2) A few UPL species are listed because they are rated FACU or wetter in at least one Corps region. -
American Palms Used for Medicine, in the Ethnobotanical and Pharmacological Publications
Rev. peru. biol. 15(supl. 1): 143- 146 (Noviembre 2008) Las palmeras en América del Sur AmericanVersión palms Online used ISSN for 1727-9933 medicine © Facultad de Ciencias Biológicas UNMSM American palms used for medicine, in the ethnobotanical and pharmacological publications Las palmeras americanas con uso medicinal en las publicaciones etnobotánicas y farmacológicas Joanna Sosnowska1 and Henrik Balslev2 1 W. Szafer Institute of Botany, Po- Abstract lish Academy of Sciences, Lubicz The center of diversity of palms (Arecaceae) in tropical America is found in the Amazon basin and along the 46, 31-512 Krakow, Poland. Panamanian isthmus.The greatest palm species richness has been reported for the Iquitos and Chocó areas. Email Joanna Sosnowska: [email protected] Many species of palms are used mainly for construction and due to their edible fruits. In addition, there are 2 Department of Biological Scien- 104 palm species that are used for medicinal purposes in many regions of the Americas. Cocos nucifera and ces, Aarhus University, Build. 1540, Oenocarpus bataua are the most commonly used species for medicinal purposes. The fruit is the most com- Ny Munkegade, 8000 Aarhus C., monly used part of palms for medicinal purposes (57 species). The traditional and medicinal use of plants has Denmark. deep roots in indigenous communities of Latin America. The significance of ethnomedicine for health care of Email Henrik Balslev: henrik.bals- [email protected] local populations can not be ignored anymore because it plays a significant role in basic health care in devel- oping countries. Interdisciplinary research in antropology, ethnobotany and ethnopharmacology helps gather information on ethnomedicine and design new drugs for modern medicine. -
The Exotic Palm Roystonea Oleracea (Jacq.) of Cook As a Rural Biotype
Revista da Sociedade Brasileira de Medicina Tropical 47(5):642-645, Sep-Oct, 2014 Short Communication http://dx.doi.org/10.1590/0037-8682-0221-2013 The exotic palm Roystonea oleracea (Jacq.) O.F. Cook as a rural biotype for Rhodnius neglectus Lent, 1954, in Caçu, State of Goiás Elisa Neves Vianna[1],[2], Andrey José de Andrade[3], Fernando Braga Stehling Dias[2] and Liléia Diotaiuti[2] [1]. Programa de Pós-Graduação em Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG. [2]. Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG. [3]. Faculdade de Medicina, Universidade de Brasília, Brasília, DF. ABSTRACT Introduction: Rhodnius neglectus is a triatomine that colonizes different palm species. In this study, we aimed to describe the presence of this triatomine bug in the royal palms (Roystonea oleracea) in a rural region of the State of Goiás. Methods: Palm infestation was investigated by dissecting the palms or by using live-bait traps. Results: Two palm trees were infested by R. neglectus negative for Trypanosoma cruzi, the etiological agent for Chagas disease. In the study area, R. neglectus is frequently found in households. Conclusions: The adaptation of this species to palm trees introduced in Brazil for landscaping purposes poses another challenge for controlling the vectors of Chagas disease. Keywords: Triatomine bugs. Infestation. Palm trees. Rhodnius neglectus Lent, 1954 (Hemiptera, Triatominae) is palm trees such as gueiroba (Syagrus oleracea) and bacuri a triatomine bug that mainly inhabits palm trees in the Brazilian (Attalea phalerata) are widely found close to dwellings in this Savanna1-3, Pantanal, and Caatinga biomes4.