PHARMACOLOGY: Core Concepts and Learning Objectives
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications
International Journal of Molecular Sciences Review Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications Daniel Fernández-Villa 1, Maria Rosa Aguilar 1,2 and Luis Rojo 1,2,* 1 Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; [email protected] (D.F.-V.); [email protected] (M.R.A.) 2 Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-915-622-900 Received: 18 September 2019; Accepted: 7 October 2019; Published: 9 October 2019 Abstract: Bacterial, protozoan and other microbial infections share an accelerated metabolic rate. In order to ensure a proper functioning of cell replication and proteins and nucleic acids synthesis processes, folate metabolism rate is also increased in these cases. For this reason, folic acid antagonists have been used since their discovery to treat different kinds of microbial infections, taking advantage of this metabolic difference when compared with human cells. However, resistances to these compounds have emerged since then and only combined therapies are currently used in clinic. In addition, some of these compounds have been found to have an immunomodulatory behavior that allows clinicians using them as anti-inflammatory or immunosuppressive drugs. Therefore, the aim of this review is to provide an updated state-of-the-art on the use of antifolates as antibacterial and immunomodulating agents in the clinical setting, as well as to present their action mechanisms and currently investigated biomedical applications. Keywords: folic acid antagonists; antifolates; antibiotics; antibacterials; immunomodulation; sulfonamides; antimalarial 1. -
Selective Mtorc2 Inhibitor Therapeutically Blocks Breast Cancer Cell Growth and Survival
Author Manuscript Published OnlineFirst on January 22, 2018; DOI: 10.1158/0008-5472.CAN-17-2388 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Selective mTORC2 inhibitor therapeutically blocks breast cancer cell growth and survival Thomas A. Werfel1, 3, Shan Wang2, Meredith A. Jackson1, Taylor E. Kavanaugh1, Meghan Morrison Joly3, Linus H. Lee1, Donna J. Hicks3, Violeta Sanchez4, Paula Gonzalez Ericsson4, Kameron V. Kilchrist1, Somtochukwu C. Dimobi1, Samantha M. Sarett1, Dana Brantley-Sieders2, Rebecca S. Cook1,3,4* and Craig L. Duvall1* 1Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232 USA 2Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232.USA 3Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA 4Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232 USA Running Title: A selective mTORC2 inhibitor blocks breast cancer growth Key Words: Breast Cancer, mTOR, Rictor, RNA interference, Nanomedicine *To whom correspondence should be addressed: Craig L. Duvall, PhD Vanderbilt University School of Engineering Department of Biomedical Engineering Nashville, TN 37232 Phone: (615) 322-3598 Fax: (615) 343-7919 Email: [email protected] Rebecca S. Cook, PhD Vanderbilt University Medical Center Department of Cancer Biology Nashville, TN 37232 Phone: (615) 936-3813 Fax: (615) 936-3811 Email: [email protected] Funding. This work was supported by Specialized Program of Research Excellence (SPORE) grant NIH P50 CA098131 (VICC), Cancer Center Support grant NIH P30 CA68485 (VICC), NIH F31 CA195989-01 (MMW), NIH R01 EB019409, DOD CDMRP OR130302, NSF GFRP 1445197, and CTSA UL1TR000445 from the National Center for Advancing Translational Sciences. -
Fasted and Fed State Human Duodenal Fluids: Characterization, Drug Solubility, and Comparison to Simulated Fluids and with Human Bioavailability
European Journal of Pharmaceutics and Biopharmaceutics 163 (2021) 240–251 Contents lists available at ScienceDirect European Journal of Pharmaceutics and Biopharmaceutics journal homepage: www.elsevier.com/locate/ejpb Fasted and fed state human duodenal fluids: Characterization, drug solubility, and comparison to simulated fluids and with human bioavailability D. Dahlgren a, M. Venczel b,c, J.-P. Ridoux b,c, C. Skjold¨ a, A. Müllertz d, R. Holm e, P. Augustijns f, P.M. Hellstrom¨ g, H. Lennernas¨ a,* a Department of Pharmaceutical Biosciences, Biopharmaceutics, Uppsala University, Sweden b Global CMC Development Sanofi, Frankfurt, Germany c Global CMC Development Sanofi, Vitry, France d Physiological Pharmaceutics, University of Copenhagen, Copenhagen, Denmark e Drug Product Development, Janssen R&D, Johnson & Johnson, Beerse, Belgium f Drug Delivery and Disposition, KU Leuven, Leuven, Belgium g Department of Medical Sciences, Gastroenterology/Hepatology, Uppsala University, Sweden ARTICLE INFO ABSTRACT Keywords: Accurate in vivo predictions of intestinal absorption of low solubility drugs require knowing their solubility in Bioavailability physiologically relevant dissolution media. Aspirated human intestinal fluids (HIF) are the gold standard, fol Food effects lowed by simulated intestinal HIF in the fasted and fed state (FaSSIF/FeSSIF). However, current HIF charac Drug solubility terization data vary, and there is also some controversy regarding the accuracy of FaSSIF and FeSSIF for Human intestinal fluids predicting drug solubility in HIF. This study aimed at characterizing fasted and fed state duodenal HIF from 16 Drug absorption Drug dissolution human volunteers with respect to pH, buffer capacity, osmolarity, surface tension, as well as protein, phos Drug delivery pholipid, and bile salt content. -
Angiotensin-Converting Enzyme (ACE) Inhibitors Single Entity Agents
Therapeutic Class Overview Angiotensin-Converting Enzyme (ACE) Inhibitors Single Entity Agents Therapeutic Class Overview/Summary: The renin-angiotensin-aldosterone system (RAAS) is the most important component in the homeostatic regulation of blood pressure.1,2 Excessive activity of the RAAS may lead to hypertension and disorders of fluid and electrolyte imbalance.3 Renin catalyzes the conversion of angiotensinogen to angiotensin I. Angiotensin I is then cleaved to angiotensin II by angiotensin- converting enzyme (ACE). Angiotensin II may also be generated through other pathways (angiotensin I convertase).1 Angiotensin II can increase blood pressure by direct vasoconstriction and through actions on the brain and autonomic nervous system.1,3 In addition, angiotensin II stimulates aldosterone synthesis from the adrenal cortex, leading to sodium and water reabsorption. Angiotensin II exerts other detrimental cardiovascular effects including ventricular hypertrophy, remodeling and myocyte apoptosis.1,2 The ACE inhibitors block the conversion of angiotensin I to angiotensin II, and also inhibit the breakdown of bradykinin, a potent vasodilator.4 Evidence-based guidelines recognize the important role that ACE inhibitors play in the treatment of hypertension and other cardiovascular and renal diseases. With the exception of Epaned® (enalapril solution) and Qbrelis® (lisinopril solution), all of the ACE inhibitors are available generically. Table 1. Current Medications Available in Therapeutic Class5-19 Generic Food and Drug Administration -
Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development
Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development Gerlie Gieser, Ph.D. Office of Clinical Pharmacology, Div. IV Objectives • Outline the Phase 1 studies conducted to characterize the Clinical Pharmacology of a drug; describe important design elements of and the information gained from these studies. • List the Clinical Pharmacology characteristics of an Ideal Drug • Describe how the Clinical Pharmacology information from Phase 1 can help design Phase 2/3 trials • Discuss the timing of Clinical Pharmacology studies during drug development, and provide examples of how the information generated could impact the overall clinical development plan and product labeling. Phase 1 of Drug Development CLINICAL DEVELOPMENT RESEARCH PRE POST AND CLINICAL APPROVAL 1 DISCOVERY DEVELOPMENT 2 3 PHASE e e e s s s a a a h h h P P P Clinical Pharmacology Studies Initial IND (first in human) NDA/BLA SUBMISSION Phase 1 – studies designed mainly to investigate the safety/tolerability (if possible, identify MTD), pharmacokinetics and pharmacodynamics of an investigational drug in humans Clinical Pharmacology • Study of the Pharmacokinetics (PK) and Pharmacodynamics (PD) of the drug in humans – PK: what the body does to the drug (Absorption, Distribution, Metabolism, Excretion) – PD: what the drug does to the body • PK and PD profiles of the drug are influenced by physicochemical properties of the drug, product/formulation, administration route, patient’s intrinsic and extrinsic factors (e.g., organ dysfunction, diseases, concomitant medications, -
Prescription Drug List
Your 2017 Prescription Drug List Effective January 1, 2017 Oxford Connecticut Traditional Three-Tier Please read: This document contains information about commonly prescribed medications. This Prescription Drug List (PDL) is accurate as of August 1, 2016 and is subject to change after this date. The next anticipated update will be in January 2017. Your estimated coverage and copay/co-insurance may vary based on the benefit plan you choose and the effective date of the plan. For more information: Call us at the toll-free phone number on your health plan ID card. TTY users can dial 711. Si usted necesita ayuda en español llame al número de teléfono en su tarjeta de identificación, 1- 800-303-6719, 1-888-201-4746. Visit oxfordhealth.com, click on the Pharmacies & Prescriptions tab and then “Online Pharmacy” to log in to the OptumRx1 website and: • Locate a participating retail pharmacy by ZIP code. • Look up possible lower-cost medication alternatives. • Compare medication pricing and options. 1OptumRx is the administrator of your Oxford pharmacy benefit plan. Note: Diabetic supplies and prescription medications may be subject to different cost-share arrangements. Specialized non-standard infant formulas and nutritional supplements may be subject to prior authorization. Please see your Summary of Benefits and Coverage (SBC) for specifics. 1 Your Prescription Drug List This Prescription Drug List (PDL) outlines covered medications and organizes them into cost levels, also known as tiers. An important part of the PDL is giving you choices so you and your doctor can choose the best course of treatment for you. Go to oxfordhealth.com for drug information. -
Pharmacokinetic Interactions of Pioglitazone
Department of Clinical Pharmacology University of Helsinki Finland PHARMACOKINETIC INTERACTIONS OF PIOGLITAZONE Tiina Jaakkola ACADEMIC DISSERTATION To be presented, with the permission of the Medical Faculty of the University of Helsinki, for public examination in Auditorium 2 of Biomedicum, on August 24th, 2007, at 12 noon. Helsinki 2007 JJaakkola_Tiina_vaitos.inddaakkola_Tiina_vaitos.indd 1 117.7.20077.7.2007 221:11:231:11:23 Supervisors: Professor Pertti Neuvonen, MD Department of Clinical Pharmacology University of Helsinki Helsinki, Finland Docent Janne Backman, MD Department of Clinical Pharmacology University of Helsinki Helsinki, Finland Reviewers: Docent Kimmo Malminiemi, MD, MSc Department of Pharmacology, Clinical Pharmacology and Toxicology University of Tampere Tampere, Finland Professor emeritus Pertti Pentikäinen, MD Department of Medicine University of Helsinki Helsinki, Finland Opponent: Professor Kari Kivistö, MD Department of Pharmacology, Clinical Pharmacology and Toxicology University of Tampere Tampere, Finland ISBN 978-952-92-2224-7 (paperback) ISBN 978-952-10-4020-7 (PDF, http://ethesis.helsinki.fi ) Helsinki 2007 Yliopistopaino JJaakkola_Tiina_vaitos.inddaakkola_Tiina_vaitos.indd 2 117.7.20077.7.2007 221:11:551:11:55 JJaakkola_Tiina_vaitos.inddaakkola_Tiina_vaitos.indd 3 117.7.20077.7.2007 221:11:551:11:55 CONTENTS CONTENTS ABBREVIATIONS.......................................................................................................................................... 6 LIST OF ORIGINAL PUBLICATIONS....................................................................................................... -
DESCRIPTION CLINICAL PHARMACOLOGY Mechanism Of
NDA 20-844/ Topamav Sprinkle Capsules Approved Labeling Text Version: 10/26/98 DESCRIPTION Topiramate is a sulfamate-substituted monosaccharide that is intended for use as an antiepileptic drug. TOPAMAX@ (topiramate capsules) Sprinkle Capsules are available as I5 mg, 25 mg and 50mg sprinkle capsules for oral administration as whole capsules or for opening and sprinkling onto soft food. Topiramate is a white crystalline powder with a bitter taste. Topiramate is most soluble in alkaline solutions containing sodium hydroxide or sodium phosphate and hawng a pH of 9 to IO. It is freely soluble in acetone, chloroform, dimethylsulfoxide, and ethanol. The solubility in water is 9.8 mg/mL. Its saturated solution has a pH of 6.3. Topiramate has the molecular formula C,,H,,NO,S and a molecular weight of 339.37. Topiramate is designated chemically as 2,3:4,5-Di-O-isopropylidene-~- D-fructopyranose sulfamate and has the following structural formula: H3C CH3 TOPAMAX” (topiramate capsules) Sprinkle Capsules contain topiramate coated beads in a hard gelatin capsule. The inactive ingredients are: sugar spheres (sucrose and starch), povidone, cellulose acetate, gelatin, silicone dioxide, sodium lauryl sulfate, titanium dioxide, and black pharmaceutical ink. CLINICAL PHARMACOLOGY Mechanism of Action: The precise mechanism by which topiramate exerts its antiseizure effect is unknown; however, electrophysiological and biochemical studies of the effects of topiramate on cultured neurons have revealed three properties that may contribute to topiramate’s antiepileptic efficacy. First, action potentials elicited repetitively by a sustained depolarization of the neurons are blocked by topiramate in a time-dependent manner, suggestive of a state-dependent sodium channel blocking action. -
Moving Beyond Single Gene-Drug Pairs in Clinical Pharmacogenomics Testing
Moving Beyond Single Gene-Drug Pairs in Clinical Pharmacogenomics Testing Yuan Ji, PhD, DABCP, FACMG Gwendolyn McMillin, PhD, DABCC Learning Objectives • Describe the strengths and limitations of pharmacogenomic testing. • List examples of single gene-drug associations with the strongest levels of evidence for clinical implementation. • Discuss cautions when considering the use of multi-gene drug associations to inform drug therapy decisions. 2 Disclosure • None 3 Outline • Singe gene-drug based pharmacogenomics (PGx) testing – An introduction – Evidence and examples – Considerations for developing and evaluating clinical PGx laboratory developed tests (LDTs) • Multi-gene PGx panels – Evidence and examples – PROs and CONs for utilizing PGx panels – Considerations for successful PGx implementation 4 Single Gene-Drug Based PGx Testing Yuan Ji, PhD, DABCP, FACMG Medical Director of Genomics and Genetics; PGx, ARUP Laboratories Associate Professor (Clinical) of Pathology, University of Utah Medications: Myths and Facts • are~30% peoplenot take“one at least-size one medication fits all” within a 30-day period • Most medications cause adverse drug events (ADEs) • Some medications like antibiotics may do more harm than good • CDC statistics: – ~ 200,000 ADEs-related ER visits in pediatric population (17 years or younger) – ~ 450,000 ADEs-related ER visits in older adults (65 years or older) – Medications, e.g., anticoagulant warfarin • Many ADEs are preventable by closely supervising of dosing, blood tests (therapeutic drug monitoring, TDM), -
2019 National Library of Medicine Classification Schedules
National Library of Medicine Classification 2019 Schedule S-1 QS Human Anatomy Classify here general works on normal human anatomy. Works that treat men, women, or children separately are classed here. • Classify works on anatomy of a part of the body with the part. • Classify works on surgical anatomy in WO 101. • Classify works on artistic anatomy of human or animal in NC 760-783.8. • Classify works on anatomy of animals in QL or SF. QS 1-132 Anatomy QS 504-532 Histology QS 604-681 Embryology Anatomy Note that form numbers are also used under Histology (QS 504-539) and under Embryology (QS 604-681). QS 1 Organizations. Societies (General or not elsewhere classified) (Cutter from name of organization or society) (Table G) (Used for both monographs and serials) Includes membership lists issued serially or separately. Classify directories in QS 22. Classify annual reports, journals, etc., in W1. For academies and institutes, see QS 23-24. QS 4 General works Classify here works on regional anatomy. If written for the surgeon, classify in WO 101 Surgical anatomy. Classify material on comparative anatomy in QS 124. Collected works QS 5 By several authors QS 7 By individual authors QS 9 Addresses. Essays. Lectures QS 11 History (Table G) QS 11.1 General coverage (Not Table G) QS 13 Dictionaries. Encyclopedias QS 15 Classification. Terminology (Used for both monographs and serials) QS 16 Tables. Statistics. Surveys (Table G) (Used for both monographs and serials) QS 16.1 General coverage (Not Table G) (Used for both monographs and serials) QS 17 Atlases. -
BRS Pharmacology
Pharmacology Gary C. Rosenfeld, Ph.D. Professor Department of Integrated Biology and Pharmacology and Graduate School of Biomedical Sciences Assistant Dean for Education Programs University of Texas Medical School at Houston Houston, Texas David S. Loose, Ph.D. Associate Professor Department of Integrated Biology and Pharmacology and Graduate School of Biomedical Sciences University of Texas Medical School at Houston Houston, Texas With special contributions by Medina Kushen, M.D. William Beaumont Hospital Royal Oak, Michigan Todd A. Swanson, M.D., Ph.D. William Beaumont Hospital Royal Oak, Michigan Acquisitions Editor: Charles W. Mitchell Product Manager: Stacey L. Sebring Marketing Manager: Jennifer Kuklinski Production Editor: Paula Williams Copyright C 2010 Lippincott Williams & Wilkins 351 West Camden Street Baltimore, Maryland 21201-2436 USA 530 Walnut Street Philadelphia, PA 19106 All rights reserved. This book is protected by copyright. No part of this book may be reproduced in any form or by any means, including photocopying, or utilized by any information storage and retrieval system without written permission from the copyright owner. The publisher is not responsible (as a matter of product liability, negligence or otherwise) for any injury resulting from any material contained herein. This publication contains information relating to general principles of medical care which should not be construed as specific instructions for individual patients. Manufacturers’ product information and package inserts should be reviewed for current information, including contraindications, dosages and precautions. Printed in the United States of America Library of Congress Cataloging-in-Publication Data Rosenfeld, Gary C. Pharmacology / Gary C. Rosenfeld, David S. Loose ; with special contributions by Medina Kushen, Todd A. -
Us Anti-Doping Agency
2019U.S. ANTI-DOPING AGENCY WALLET CARDEXAMPLES OF PROHIBITED AND PERMITTED SUBSTANCES AND METHODS Effective Jan. 1 – Dec. 31, 2019 CATEGORIES OF SUBSTANCES PROHIBITED AT ALL TIMES (IN AND OUT-OF-COMPETITION) • Non-Approved Substances: investigational drugs and pharmaceuticals with no approval by a governmental regulatory health authority for human therapeutic use. • Anabolic Agents: androstenediol, androstenedione, bolasterone, boldenone, clenbuterol, danazol, desoxymethyltestosterone (madol), dehydrochlormethyltestosterone (DHCMT), Prasterone (dehydroepiandrosterone, DHEA , Intrarosa) and its prohormones, drostanolone, epitestosterone, methasterone, methyl-1-testosterone, methyltestosterone (Covaryx, EEMT, Est Estrogens-methyltest DS, Methitest), nandrolone, oxandrolone, prostanozol, Selective Androgen Receptor Modulators (enobosarm, (ostarine, MK-2866), andarine, LGD-4033, RAD-140). stanozolol, testosterone and its metabolites or isomers (Androgel), THG, tibolone, trenbolone, zeranol, zilpaterol, and similar substances. • Beta-2 Agonists: All selective and non-selective beta-2 agonists, including all optical isomers, are prohibited. Most inhaled beta-2 agonists are prohibited, including arformoterol (Brovana), fenoterol, higenamine (norcoclaurine, Tinospora crispa), indacaterol (Arcapta), levalbuterol (Xopenex), metaproternol (Alupent), orciprenaline, olodaterol (Striverdi), pirbuterol (Maxair), terbutaline (Brethaire), vilanterol (Breo). The only exceptions are albuterol, formoterol, and salmeterol by a metered-dose inhaler when used