Advanced C Programming Profiling

Total Page:16

File Type:pdf, Size:1020Kb

Advanced C Programming Profiling Advanced C Programming Profiling Sebastian Hack [email protected] Christoph Weidenbach [email protected] 25.11.2008 saarland university computer science 1 Today Profiling Invasive Profiling Non-Invasive Profiling Tools gprof gcov valgrind oprofile Conclusion 2 What is a Profiler? Analyse the runtime behavior of the program I Which parts (functions, statements, . ) of a program take how long? I How often are functions called? I Which functions call which I Construct the dynamic call graph I Memory consumption I Memory accesses I memory leaks I Cache performance 3 Invasive Profiling I Modify the program (code instrumentation) I Insert calls to functions that record data I Advantages: I Very precise I Theoretically at the instruction level I Precise call graph I Disadvantages: I Potentially very high overhead I Depends on the instrumentation code that is inserted I Cannot profile already running systems (long running servers) I Can only profile application (not complete system) 4 Non-Invasive Profiling I Statistic sampling of the program I Use a fixed time interval or Hardware performance counters (CPU feature) to trigger sampling events I Record instruction pointer at each sampling event I Advantages: I Small overhead I Hardware assisted I Can profile the whole system (even the kernel!) I Disadvantages: I not precise + \only" statistical data I Call Graph possibly not complete + some functions are never sampled 5 Profiles I Flat Profile How much time does the program spend in which function? I Call Graph Which function calls which function how often? I Annotated Sources Annotate each source line with number of executions 6 gprof I Mixture of invasive and statistical profiling Invasive Part I gcc inserts calls to a function mcount into prologue of each function I Compile with -g and -pg I mcount can figure out its caller + we can construct the call graph I mcount counts the number of invocations for each function I Call to mcount is the only instrumentation + almost as efficient as normal build I After program is run, there is a file called gmon.out containing profiling data I Evaluate contents of gmon.out with gprof name-of-program 7 gprof Statistical Part I Kernel samples instruction pointer (IP) on each timer interrupt (100/s) I Increments a counter in a histogram of address ranges + cannot track the exact location where timer interrupt happened I Provides a frequency distribution over code locations I Beware of low samplerate I Short running programs will mostly not provide meaningful data I Accumulation of several profile runs is possible: $ ./test_program $ mv gmon.out gmon.sum $ ./test_program $ gprof -s ./test_program gmon.out gmon.sum 8 gcov I Analyses coverage of program code I Which line was executed how often I Helps for finding code that I can profit from optimizations I that is not covered by test cases I Use GCC flags I -fprofile-arcs: collect info about jumps I -ftest-coverage: collect info about code coverage I Attention: Multiple code lines might be merged to one instruction 100: 12:if (a != b) 100: 13: c= 1; 100: 14:else 100: 15: c= 0; 9 valgrind I JIT-compiler / translator: I Construct intermediate representation from x86 assembly code I Add instrumentation code I Compile back to x86 I Done while program is loaded I Is not only a profiler! I No compiler flags / recompilation needed (though -g -fno-inline advisable to analyse output) I Program runtime can degrade drastically due to instrumentation code and recompilation I can escape to debugger on certain events + very handy when debugging memory leaks I Disadvantage: I program might run an order of magnitude slower I program might consume an order of magnitude more memory 10 valgrind Tools memcheck I Redirects calls to malloc and the like I Keeps track of all allocated memory I Instruments references to warn about \bad" memory accesses I uninitialized I already freed I Detects memory leaks I Warns about jumps taken upon uninitialized values cachegrind I Instruments memory accesses I Simulates (!) a L1 and L2 cache in software I Gives precise data about cache misses callgrind I Records the call graph Hint Use kcachegrind for visualization 11 oprofile I Non-invasive I Kernel module and user-space daemon I Does not modify the program at all I -g for debug symbols recommendable I Sampling uses performance counters I . or timer interrupt of perf. counters not available I Profiles the whole system (also the kernel!) I Can distill data for each binary separately I For Windows, use Intel vTune ($$$) 12 oprofile Performance Counter I Set of hardware registers for a plethora of events I Differ from processor model to another I Very detailed events trackable. Examples: I L2 cache misses I Retired instructions I Outstanding bus requests I . and many more I Basic modus operandi: I Kernel module tells the CPU to fire an exception after a certain number of events of a certain type have occurred I CPU traps into kernel I instruction pointer is recorded in a buffer (no histograms) 13 oprofile Howto I Use opcontrol to control the daemon/module I opcontrol --init to load module and daemon I opcontrol -s to start sampling I opcontrol -t to stop sampling I opcontrol --dump flushes the event log I opcontrol --list-events shows available performance counters I opreport -l prog-name gives breakdown of samples per function in prog-name 14 Conclusion I Many different profiling methods exist I gprof I is obsolete I use only to get a quick impression I and for the call graph I sampling might be too imprecise I valgrind I easy to use I no recompile I precise I good visualization (kcachegrind) I but large increase in runtime I oprofile I much more precise than gprof I can profile exotic machine events if you are going for the last cycles I not as precise as valgrind I need root rights on the machine 15.
Recommended publications
  • Developer Guide
    Red Hat Enterprise Linux 6 Developer Guide An introduction to application development tools in Red Hat Enterprise Linux 6 Last Updated: 2017-10-20 Red Hat Enterprise Linux 6 Developer Guide An introduction to application development tools in Red Hat Enterprise Linux 6 Robert Krátký Red Hat Customer Content Services [email protected] Don Domingo Red Hat Customer Content Services Jacquelynn East Red Hat Customer Content Services Legal Notice Copyright © 2016 Red Hat, Inc. and others. This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0 Unported License. If you distribute this document, or a modified version of it, you must provide attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat trademarks must be removed. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. Linux ® is the registered trademark of Linus Torvalds in the United States and other countries. Java ® is a registered trademark of Oracle and/or its affiliates. XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and other countries. Node.js ® is an official trademark of Joyent.
    [Show full text]
  • Analysing CMS Software Performance Using Igprof, Oprofile and Callgrind
    Analysing CMS software performance using IgProf, OPro¯le and callgrind L Tuura1, V Innocente2, G Eulisse1 1 Northeastern University, Boston, MA, USA 2 CERN, Geneva, Switzerland Abstract. The CMS experiment at LHC has a very large body of software of its own and uses extensively software from outside the experiment. Understanding the performance of such a complex system is a very challenging task, not the least because there are extremely few developer tools capable of pro¯ling software systems of this scale, or producing useful reports. CMS has mainly used IgProf, valgrind, callgrind and OPro¯le for analysing the performance and memory usage patterns of our software. We describe the challenges, at times rather extreme ones, faced as we've analysed the performance of our software and how we've developed an understanding of the performance features. We outline the key lessons learnt so far and the actions taken to make improvements. We describe why an in-house general pro¯ler tool still ends up besting a number of renowned open-source tools, and the improvements we've made to it in the recent year. 1. The performance optimisation issue The Compact Muon Solenoid (CMS) experiment on the Large Hadron Collider at CERN [1] is expected to start running within a year. The computing requirements for the experiment are immense. For the ¯rst year of operation, 2008, we budget 32.5M SI2k (SPECint 2000) computing capacity. This corresponds to some 2650 servers if translated into the most capable computers currently available to us.1 It is critical CMS on the one hand acquires the resources needed for the planned physics analyses, and on the other hand optimises the software to complete the task with the resources available.
    [Show full text]
  • Understanding the Linux Kernel, 3Rd Edition by Daniel P
    1 Understanding the Linux Kernel, 3rd Edition By Daniel P. Bovet, Marco Cesati ............................................... Publisher: O'Reilly Pub Date: November 2005 ISBN: 0-596-00565-2 Pages: 942 Table of Contents | Index In order to thoroughly understand what makes Linux tick and why it works so well on a wide variety of systems, you need to delve deep into the heart of the kernel. The kernel handles all interactions between the CPU and the external world, and determines which programs will share processor time, in what order. It manages limited memory so well that hundreds of processes can share the system efficiently, and expertly organizes data transfers so that the CPU isn't kept waiting any longer than necessary for the relatively slow disks. The third edition of Understanding the Linux Kernel takes you on a guided tour of the most significant data structures, algorithms, and programming tricks used in the kernel. Probing beyond superficial features, the authors offer valuable insights to people who want to know how things really work inside their machine. Important Intel-specific features are discussed. Relevant segments of code are dissected line by line. But the book covers more than just the functioning of the code; it explains the theoretical underpinnings of why Linux does things the way it does. This edition of the book covers Version 2.6, which has seen significant changes to nearly every kernel subsystem, particularly in the areas of memory management and block devices. The book focuses on the following topics: • Memory management, including file buffering, process swapping, and Direct memory Access (DMA) • The Virtual Filesystem layer and the Second and Third Extended Filesystems • Process creation and scheduling • Signals, interrupts, and the essential interfaces to device drivers • Timing • Synchronization within the kernel • Interprocess Communication (IPC) • Program execution Understanding the Linux Kernel will acquaint you with all the inner workings of Linux, but it's more than just an academic exercise.
    [Show full text]
  • Best Practice Guide - Generic X86 Vegard Eide, NTNU Nikos Anastopoulos, GRNET Henrik Nagel, NTNU 02-05-2013
    Best Practice Guide - Generic x86 Vegard Eide, NTNU Nikos Anastopoulos, GRNET Henrik Nagel, NTNU 02-05-2013 1 Best Practice Guide - Generic x86 Table of Contents 1. Introduction .............................................................................................................................. 3 2. x86 - Basic Properties ................................................................................................................ 3 2.1. Basic Properties .............................................................................................................. 3 2.2. Simultaneous Multithreading ............................................................................................. 4 3. Programming Environment ......................................................................................................... 5 3.1. Modules ........................................................................................................................ 5 3.2. Compiling ..................................................................................................................... 6 3.2.1. Compilers ........................................................................................................... 6 3.2.2. General Compiler Flags ......................................................................................... 6 3.2.2.1. GCC ........................................................................................................ 6 3.2.2.2. Intel ........................................................................................................
    [Show full text]
  • Pipenightdreams Osgcal-Doc Mumudvb Mpg123-Alsa Tbb
    pipenightdreams osgcal-doc mumudvb mpg123-alsa tbb-examples libgammu4-dbg gcc-4.1-doc snort-rules-default davical cutmp3 libevolution5.0-cil aspell-am python-gobject-doc openoffice.org-l10n-mn libc6-xen xserver-xorg trophy-data t38modem pioneers-console libnb-platform10-java libgtkglext1-ruby libboost-wave1.39-dev drgenius bfbtester libchromexvmcpro1 isdnutils-xtools ubuntuone-client openoffice.org2-math openoffice.org-l10n-lt lsb-cxx-ia32 kdeartwork-emoticons-kde4 wmpuzzle trafshow python-plplot lx-gdb link-monitor-applet libscm-dev liblog-agent-logger-perl libccrtp-doc libclass-throwable-perl kde-i18n-csb jack-jconv hamradio-menus coinor-libvol-doc msx-emulator bitbake nabi language-pack-gnome-zh libpaperg popularity-contest xracer-tools xfont-nexus opendrim-lmp-baseserver libvorbisfile-ruby liblinebreak-doc libgfcui-2.0-0c2a-dbg libblacs-mpi-dev dict-freedict-spa-eng blender-ogrexml aspell-da x11-apps openoffice.org-l10n-lv openoffice.org-l10n-nl pnmtopng libodbcinstq1 libhsqldb-java-doc libmono-addins-gui0.2-cil sg3-utils linux-backports-modules-alsa-2.6.31-19-generic yorick-yeti-gsl python-pymssql plasma-widget-cpuload mcpp gpsim-lcd cl-csv libhtml-clean-perl asterisk-dbg apt-dater-dbg libgnome-mag1-dev language-pack-gnome-yo python-crypto svn-autoreleasedeb sugar-terminal-activity mii-diag maria-doc libplexus-component-api-java-doc libhugs-hgl-bundled libchipcard-libgwenhywfar47-plugins libghc6-random-dev freefem3d ezmlm cakephp-scripts aspell-ar ara-byte not+sparc openoffice.org-l10n-nn linux-backports-modules-karmic-generic-pae
    [Show full text]
  • Improving the Approach to Linux Performance Analysis an Analyst Point of View
    Improving the Approach to Linux Performance Analysis An analyst point of view Jose Santos Guanglei Li IBM’s Linux Technology Center IBM’s China Development Lab [email protected] [email protected] Abstract 1 Introduction In-depth Linux kernel performance analysis As the complexity of the Linux kernel in- and debugging historically has been a focus creases, so does the complexity of the prob- which required resident kernel hackers. This lems that impact performance on a produc- effort not only required deep kernel knowledge tion system. In addition, the hardware sys- to analyze the code, but also required program- tems on which Linux runs today is also increas- ming skills in order to modify the code, re-build ing in complexity, scale, and size. Customers the kernel, re-boot and extract and format the are also running more robust and challenging information from the system. workloads in production environments and are A variety of powerful Linux system tools expecting more reliability, stability, and perfor- are emerging which provide significantly more mance from the underlying operating system flexibility for the analyst and the system owner. and hardware platform. The end result of all This paper highlights an example set of per- this complexity is that new performance bar- formance problems which are often seen on a riers continue to emerge which in many cases system, and focuses on the methodology, ap- are increasingly difficult to analyze and under- proach, and steps that can be used to address stand. each problem. In the past, many of these problems required the Examples of a set of pre-defined SystemTAP expertise of kernel developers to create special- “tapsets” are provided which make it easier ized one-off tools that were specific to the prob- for the non-programmer to extract information lem at hand and are of little use to other prob- about kernel events from a running system, ef- lems.
    [Show full text]
  • Performance Tuning
    Computer Architecture and Performance Tuning Understanding performance tuning Andrzej Nowak CERN openlab CERN openlab Summer Student Lectures 2008 Understanding Performance Tuning Contents 1. Software performance tuning in general 2. Drilling down on performance figures 3. General tips In this talk, we focus on x86_64 processors (Intel Core and friends, AMD Athlon/Barcelona, etc) 2 Andrzej Nowak – CERN Understanding Performance Tuning Performance tuning in general 3 Andrzej Nowak – CERN Understanding Performance Tuning Improving application performance Question #1 – “Why is it SOOOOOO SLOW?” Exchanging hardware Removing common bottlenecks New CPU, new hard drive, more memory New, new, new… Replacing whole software components Replacing shared or external libraries Improving existing code Performance monitoring will give you the answer It allows you to find the things you could change in your setup to improve performance 4 Andrzej Nowak – CERN Understanding Performance Tuning Performance tuning Why tune performance? To get more speed and/or throughput… …or to just keep up with the hardware or previous performance figures Processor clock frequencies don’t go up anymore! No free meals since the millennium Who needs performance tuning? Who can do performance tuning? Some bottlenecks are really easy to find… … but performance tuning can be VERY tricky Performance tuning is a lot like tuning a car… but you can do well with only one wrench and you don’t need all those expensive parts 5 Andrzej Nowak – CERN Understanding Performance Tuning Performance tuning levels Source code Function calls Excessive calls of a function or a group of functions Blocking (i.e. I/O) Loops within your program Iterating over sparse/long structures General characteristics of your program Excessive memory allocations and copying, excessive calculations, checks, malformed conditions, etc.
    [Show full text]
  • Perf Tool: Performance Analysis Tool for Linux
    Performance Measurements: Perf Tool /************************************************************************************ ** Notes on Linux perf tool ** ** Intended audience: Those who would like to learn more about ** Linux perf performance analysis and profiling tool. ** ** Used: CPE 631 Advanced Computer Systems and Architectures ** CPE 619 Modeling and Analysis of Computer and Communication Systems ** ** ver 0.1, Spring 2012 ** ver 0.2, Spring 2018 ** ver 0.3, Spring 2021 ** ** @Aleksandar Milenkovic, [email protected] ************************************************************************************/ Perf Tool: Performance Analysis Tool for Linux 1. Introduction Perf is a profiler tool for Linux 2.6+ based systems that abstracts away CPU hardware differences in Linux performance measurements and presents a simple command line interface. It covers hardware level (CPU/PMU, Performance Monitoring Unit) features and software features (software counters, tracepoints) as well. To learn more about perf type in man perf. <<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -bash-4.2$ man perf -bash-4.2$ $ man perf-stat -bash-4.2$ $ man perf-top ... # Note before the start, do the following to enable devtoolset-6 -bash-4.2$ scl enable devtoolset-6 bash # You can verify that you are using the right environment -bash-4.2$ bash-4.2$ which gcc /opt/rh/devtoolset-6/root/usr/bin/gcc ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~>> 2. Commands The perf tool offers a rich set of commands to collect and analyze performance and trace data. The command
    [Show full text]
  • Technical Notes All Changes in Fedora 13
    Fedora 13 Technical Notes All changes in Fedora 13 Edited by The Fedora Docs Team Copyright © 2010 Red Hat, Inc. and others. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. The original authors of this document, and Red Hat, designate the Fedora Project as the "Attribution Party" for purposes of CC-BY-SA. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. For guidelines on the permitted uses of the Fedora trademarks, refer to https:// fedoraproject.org/wiki/Legal:Trademark_guidelines. Linux® is the registered trademark of Linus Torvalds in the United States and other countries. Java® is a registered trademark of Oracle and/or its affiliates. XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. All other trademarks are the property of their respective owners. Abstract This document lists all changed packages between Fedora 12 and Fedora 13.
    [Show full text]
  • Gerbes-Automatic Profiling for Climate Modeling.Pdf
    Automatic Profiling for Climate Modeling Anja Gerbes1, Nabeeh Jumah2, Julian Kunkel3 1Center for Scientific Computing (CSC) 2Universität Hamburg 3Deutsches Klimarechenzentrum (DKRZ) ABSTRACT PROFILER Some applications are time consuming like climate modeling, which include lengthy simulations. • CPU Profiling is necessary to understand CPU • LIKWID is not build on top of the Linux perf Hence, coding is sensitive for performance. Spending more time on optimization of specific code usage quickly and completely interface; this allows LIKWID to provide full parts can improve total performance. Profiling an application is a well-known technique to do that. support for new architectures quick and inde- • Perf, Oprofile and LIKWID are a performance pendent from special kernel versions. Many tools are available for developers to get performance information about their code. With our measurement and profiling system to identify provided python package Performance Analysis and Source-Code Instrumentation Toolsuite (PASCIT) is and analyze the hot spots. • LIKWID supports hardware based events and an automatic instrumentation of an user’s source code possible. Developers mark the parts that they metrics to each hardware counter, this is more need performance information about. • Perf, Oprofile and LIKWID follows the UNIX than just CPU clock cycles. design philosophy of „one task, one tool“. We present an effort to profile climate modeling codes with two alternative methods. • Compared LIKWID to Oprofile • usage of GGDML translation tool to mark directly the computational kernels of an application for • Typical questions during performance analysis: – Oprofile does not require any special compi- profiling. – Which parts of the program take the most ex- lation flags, or even recompiled code.
    [Show full text]
  • Hardware Performance Counters (HWPMC)
    Advanced Operating System: Hardware Performance Counters (HWPMC) Dr Robert N. M. Watson 2020-2021 Hardware performance counters are a processor facility that gathers statistics about architectural and micro- architectural performance properties of code execution and data access: Architectural features are those exposed explicitly via the documented instruction set and device interfaces – e.g., the number of instructions executed, or the number of load instructions executed. Micro-architectural features have to do with the programmer-transparent implementation details, such as pipelin- ing, superscalar execution, caches, and so on – e.g., the number of L2 cache misses taken. The scope for programmer transparency (e.g., what is included in the architecture vs. micro-architecture) varies by Instruction-Set Architecture (ISA): whereas MIPS exposes certain pipelining effects to the programmer (e.g., branch-delay slots), ARM and x86 minimise the visible exposure other than performance impact. MIPS and ARM both require explicit cache management by the operating system during I/O operations and code loading, whereas x86 also masks those behaviours. Although this distinction between architectural and microarchitectural events seems clear, in fact life is more tricky. In some microarchitectures (especially superscalar ones), tracking committed instructions can affect area and frequency – e.g., by requiring the full program counter (PC) or instruction encoding to be plumbed through the implementation where the design might not otherwise require it. As a result, counters for architectural events (e.g., loads and stores) might in fact be for speculated rather than committed instructions. When the processor is predicting accurately, committed instruction count will dominate incorrectly inspected instruction count, leading the two to be largely the same.
    [Show full text]
  • ARM Cortex-A Series Programmer's Guide
    ARM® Cortex™-A Series Version: 4.0 Programmer’s Guide Copyright © 2011 – 2013 ARM. All rights reserved. ARM DEN0013D (ID012214) ARM Cortex-A Series Programmer’s Guide Copyright © 2011 – 2013 ARM. All rights reserved. Release Information The following changes have been made to this book. Change history Date Issue Confidentiality Change 25 March 2011 A Non-Confidential First release 10 August 2011 B Non-Confidential Second release. Updated to include Virtualization, Cortex-A15 processor, and LPAE. Corrected and revised throughout 25 June 2012 C Non-Confidential Updated to include Cortex-A7 processor, and big.LITTLE. Index added. Corrected and revised throughout. 22 January 2014 D Non-Confidential Updated to include Cortex-A12 processor, Cache Coherent Interconnect, expanded GIC coverage, Multi-core processors, Corrected and revised throughout. Proprietary Notice This Cortex-A Series Programmer’s Guide is protected by copyright and the practice or implementation of the information herein may be protected by one or more patents or pending applications. No part of this Cortex-A Series Programmer’s Guide may be reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this Cortex-A Series Programmer’s Guide. Your access to the information in this Cortex-A Series Programmer’s Guide is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations of the information herein infringe any third party patents. This Cortex-A Series Programmer’s Guide is provided “as is”.
    [Show full text]