Mouse Nvl Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Nvl Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Nvl Knockout Project (CRISPR/Cas9) Objective: To create a Nvl knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Nvl gene (NCBI Reference Sequence: NM_026171 ; Ensembl: ENSMUSG00000026516 ) is located on Mouse chromosome 1. 23 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 23 (Transcript: ENSMUST00000027797). Exon 3~9 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 3 starts from about 5.15% of the coding region. Exon 3~9 covers 32.2% of the coding region. The size of effective KO region: ~9798 bp. The KO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 4 1 3 5 6 7 8 9 23 Legends Exon of mouse Nvl Knockout region Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 3 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of Exon 9 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 8 https://www.alphaknockout.com Overview of the GC Content Distribution (up) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(31.9% 638) | C(21.1% 422) | T(26.55% 531) | G(20.45% 409) Note: The 2000 bp section upstream of Exon 3 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution (down) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(26.35% 527) | C(20.8% 416) | T(33.5% 670) | G(19.35% 387) Note: The 2000 bp section downstream of Exon 9 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 4 of 8 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chr1 - 181139307 181141306 2000 browser details YourSeq 669 1 822 2000 91.4% chr3 - 57889930 57890762 833 browser details YourSeq 667 1 818 2000 91.4% chr17 + 86848841 86849656 816 browser details YourSeq 655 1 822 2000 90.3% chr4 + 99787548 99788375 828 browser details YourSeq 652 1 822 2000 89.9% chr2 - 29609772 29610595 824 browser details YourSeq 648 1 822 2000 89.8% chrX - 71722768 71723583 816 browser details YourSeq 647 1 822 2000 90.3% chr14 - 46855948 46856767 820 browser details YourSeq 646 1 822 2000 90.4% chr7 + 97942293 97943115 823 browser details YourSeq 645 1 822 2000 91.2% chr5 + 29299558 29300380 823 browser details YourSeq 644 1 822 2000 90.4% chr16 + 13346037 13346863 827 browser details YourSeq 642 19 822 2000 91.1% chr1 - 167525767 167526574 808 browser details YourSeq 641 1 822 2000 89.7% chr19 - 42642477 42643299 823 browser details YourSeq 640 1 822 2000 89.8% chr18 - 77111213 77112034 822 browser details YourSeq 640 1 822 2000 90.0% chr13 + 76015383 76016206 824 browser details YourSeq 639 1 821 2000 90.0% chr16 - 7415243 7416065 823 browser details YourSeq 639 1 822 2000 90.3% chr17 + 53408520 53409343 824 browser details YourSeq 638 1 822 2000 89.6% chr16 + 36458505 36459328 824 browser details YourSeq 637 1 822 2000 90.5% chr18 + 12398908 12399706 799 browser details YourSeq 635 1 822 2000 90.0% chr6 - 149371790 149372613 824 browser details YourSeq 635 1 822 2000 90.5% chr11 + 20761080 20761902 823 Note: The 2000 bp section upstream of Exon 3 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chr1 - 181127509 181129508 2000 browser details YourSeq 217 1195 1482 2000 90.1% chr5 - 25585161 25585783 623 browser details YourSeq 178 23 442 2000 85.8% chr8 - 116361525 116361730 206 browser details YourSeq 173 262 543 2000 92.6% chr2 + 112711854 112712359 506 browser details YourSeq 170 263 472 2000 92.5% chr2 - 33524802 33525022 221 browser details YourSeq 169 263 448 2000 95.7% chrX + 151131834 151132020 187 browser details YourSeq 169 258 444 2000 95.2% chr10 + 117713891 117714077 187 browser details YourSeq 168 254 445 2000 95.7% chr2 - 169975594 169976005 412 browser details YourSeq 167 260 447 2000 94.7% chr8 + 57389708 57389899 192 browser details YourSeq 166 258 447 2000 94.7% chr10 - 119514066 119514255 190 browser details YourSeq 166 113 446 2000 90.2% chr18 + 17073570 17074038 469 browser details YourSeq 166 255 446 2000 93.3% chr12 + 83937234 83937425 192 browser details YourSeq 166 257 446 2000 93.7% chr11 + 106554240 106554429 190 browser details YourSeq 166 255 447 2000 93.3% chr11 + 86550694 86550887 194 browser details YourSeq 164 173 445 2000 92.3% chrX + 159287841 159288497 657 browser details YourSeq 163 266 444 2000 96.6% chrX - 92491645 92491827 183 browser details YourSeq 163 257 445 2000 92.5% chr4 - 126062112 126062298 187 browser details YourSeq 163 257 446 2000 94.1% chr2 - 38850961 38851150 190 browser details YourSeq 163 261 444 2000 93.9% chr19 + 5783560 5783741 182 browser details YourSeq 163 255 445 2000 91.6% chr12 + 59167268 59167457 190 Note: The 2000 bp section downstream of Exon 9 is BLAT searched against the genome. No significant similarity is found. Page 5 of 8 https://www.alphaknockout.com Gene and protein information: Nvl nuclear VCP-like [ Mus musculus (house mouse) ] Gene ID: 67459, updated on 12-Aug-2019 Gene summary Official Symbol Nvl provided by MGI Official Full Name nuclear VCP-like provided by MGI Primary source MGI:MGI:1914709 See related Ensembl:ENSMUSG00000026516 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as 1200009I24Rik Expression Ubiquitous expression in CNS E18 (RPKM 9.1), CNS E14 (RPKM 8.2) and 28 other tissues See more Orthologs human all Genomic context Location: 1; 1 H4 See Nvl in Genome Data Viewer Exon count: 24 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 1 NC_000067.6 (181087138..181144214, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 1 NC_000067.5 (183023554..183074288, complement) Chromosome 1 - NC_000067.6 Page 6 of 8 https://www.alphaknockout.com Transcript information: This gene has 5 transcripts Gene: Nvl ENSMUSG00000026516 Description nuclear VCP-like [Source:MGI Symbol;Acc:MGI:1914709] Gene Synonyms 1200009I24Rik Location Chromosome 1: 181,087,138-181,144,204 reverse strand. GRCm38:CM000994.2 About this gene This gene has 5 transcripts (splice variants), 204 orthologues, 5 paralogues and is a member of 1 Ensembl protein family. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Nvl-201 ENSMUST00000027797.8 9392 855aa ENSMUSP00000027797.7 Protein coding CCDS15581 Q9DBY8 TSL:1 GENCODE basic APPRIS P1 Nvl-204 ENSMUST00000193758.1 2529 No protein - Retained intron - - TSL:NA Nvl-203 ENSMUST00000191728.1 1502 No protein - Retained intron - - TSL:1 Nvl-205 ENSMUST00000195209.1 1193 No protein - Retained intron - - TSL:2 Nvl-202 ENSMUST00000191721.1 603 No protein - lncRNA - - TSL:2 77.07 kb Forward strand 181.08Mb 181.10Mb 181.12Mb 181.14Mb Genes Fgfr3-ps-201 >processed pseudogene Cnih4-205 >protein coding (Comprehensive set... Cnih4-203 >protein coding Cnih4-204 >protein coding Contigs < AC119911.10 Genes (Comprehensive set... < Nvl-201protein coding < Nvl-202lncRNA < Nvl-204retained intron < Nvl-205retained intron < Nvl-203retained intron Regulatory Build 181.08Mb 181.10Mb 181.12Mb 181.14Mb Reverse strand 77.07 kb Regulation Legend CTCF Open Chromatin Promoter Promoter Flank Transcription Factor Binding Site Gene Legend Protein Coding Ensembl protein coding merged Ensembl/Havana Non-Protein Coding RNA gene processed transcript pseudogene Page 7 of 8 https://www.alphaknockout.com Transcript: ENSMUST00000027797 < Nvl-201protein coding Reverse strand 57.07 kb ENSMUSP00000027... PDB-ENSP mappings MobiDB lite Low complexity (Seg) Coiled-coils (Ncoils) Superfamily P-loop containing nucleoside triphosphate hydrolase SMART AAA+ ATPase domain Pfam NVL2, nucleolin binding domain ATPase, AAA-type, core AAA ATPase, AAA+ lid domain PROSITE patterns ATPase, AAA-type, conserved site PANTHER PTHR23077:SF55 PTHR23077 Gene3D NVL2, N-terminal domain superfamily 3.40.50.300 1.10.8.60 CDD cd00009 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend missense variant splice region variant synonymous variant Scale bar 0 80 160 240 320 400 480 560 640 720 855 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 8 of 8.
Recommended publications
  • Proteomics Provides Insights Into the Inhibition of Chinese Hamster V79
    www.nature.com/scientificreports OPEN Proteomics provides insights into the inhibition of Chinese hamster V79 cell proliferation in the deep underground environment Jifeng Liu1,2, Tengfei Ma1,2, Mingzhong Gao3, Yilin Liu4, Jun Liu1, Shichao Wang2, Yike Xie2, Ling Wang2, Juan Cheng2, Shixi Liu1*, Jian Zou1,2*, Jiang Wu2, Weimin Li2 & Heping Xie2,3,5 As resources in the shallow depths of the earth exhausted, people will spend extended periods of time in the deep underground space. However, little is known about the deep underground environment afecting the health of organisms. Hence, we established both deep underground laboratory (DUGL) and above ground laboratory (AGL) to investigate the efect of environmental factors on organisms. Six environmental parameters were monitored in the DUGL and AGL. Growth curves were recorded and tandem mass tag (TMT) proteomics analysis were performed to explore the proliferative ability and diferentially abundant proteins (DAPs) in V79 cells (a cell line widely used in biological study in DUGLs) cultured in the DUGL and AGL. Parallel Reaction Monitoring was conducted to verify the TMT results. γ ray dose rate showed the most detectable diference between the two laboratories, whereby γ ray dose rate was signifcantly lower in the DUGL compared to the AGL. V79 cell proliferation was slower in the DUGL. Quantitative proteomics detected 980 DAPs (absolute fold change ≥ 1.2, p < 0.05) between V79 cells cultured in the DUGL and AGL. Of these, 576 proteins were up-regulated and 404 proteins were down-regulated in V79 cells cultured in the DUGL. KEGG pathway analysis revealed that seven pathways (e.g.
    [Show full text]
  • Chromosome Abnormalities in Two Patients with Features of Autosomal Dominant Robinow Syndrome
    ß 2007 Wiley-Liss, Inc. American Journal of Medical Genetics Part A 143A:1790–1795 (2007) Research Letter Chromosome Abnormalities in Two Patients With Features of Autosomal Dominant Robinow Syndrome Juliana F. Mazzeu,1 Ana Cristina Krepischi-Santos,1 Carla Rosenberg,1 Karoly Szuhai,2 Jeroen Knijnenburg,2 Janneke M.M. Weiss,3 Irina Kerkis,1 Zan Mustacchi,4 Guilherme Colin,5 Roˆmulo Mombach,6 Rita de Ca´ssia M. Pavanello,1 Paulo A. Otto,1 and Angela M. Vianna-Morgante1* 1Centro de Estudos do Genoma Humano, Departamento de Gene´tica e Biologia Evolutiva, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo, Sa˜o Paulo, Brazil 2Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands 3Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands 4Hospital Infantil Darcy Vargas, Sa˜o Paulo, Brazil 5Departamento de Gene´tica Me´dica, Univille, Joinville, Brazil 6Centrinho Prefeito Luiz Gomes, Secretaria Municipal de Sau´de, Joinville, Brazil Received 13 April 2006; Accepted 13 December 2006 How to cite this article: Mazzeu JF, Krepischi-Santos AC, Rosenberg C, Szuhai K, Knijnenburg J, Weiss JMM, Kerkis I, Mustacchi Z, Colin G, Mombach R, Pavanello RM, Otto PA, Vianna-Morgante AM. 2007. Chromosome abnormalities in two patients with features of autosomal dominant Robinow syndrome. Am J Med Genet Part A 143A:1790–1795. To the Editor: Patient 1 Robinow syndrome [OMIM 180700] is characteriz- At age 3 4/12 years the girl was diagnosed as ed by fetal facies, mesomelic dwarfism, and hypo- affected by DRS (Fig. 1A). Detailed clinical examina- plastic genitalia.
    [Show full text]
  • Revostmm Vol 10-4-2018 Ingles Maquetaciûn 1
    108 ORIGINALS / Rev Osteoporos Metab Miner. 2018;10(4):108-18 Roca-Ayats N1, Falcó-Mascaró M1, García-Giralt N2, Cozar M1, Abril JF3, Quesada-Gómez JM4, Prieto-Alhambra D5,6, Nogués X2, Mellibovsky L2, Díez-Pérez A2, Grinberg D1, Balcells S1 1 Departamento de Genética, Microbiología y Estadística - Facultad de Biología - Universidad de Barcelona - Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) - Instituto de Salud Carlos III (ISCIII) - Instituto de Biomedicina de la Universidad de Barcelona (IBUB) - Instituto de Investigación Sant Joan de Déu (IRSJD) - Barcelona (España) 2 Unidad de Investigación en Fisiopatología Ósea y Articular (URFOA); Instituto Hospital del Mar de Investigaciones Médicas (IMIM) - Parque de Salud Mar - Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES); Instituto de Salud Carlos III (ISCIII) - Barcelona (España) 3 Departamento de Genética, Microbiología y Estadística; Facultad de Biología; Universidad de Barcelona - Instituto de Biomedicina de la Universidad de Barcelona (IBUB) - Barcelona (España) 4 Unidad de Metabolismo Mineral; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC); Hospital Universitario Reina Sofía - Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES); Instituto de Salud Carlos III (ISCIII) - Córdoba (España) 5 Grupo de Investigación en Enfermedades Prevalentes del Aparato Locomotor (GREMPAL) - Instituto de Investigación en Atención Primaria (IDIAP) Jordi Gol - Centro de Investigación
    [Show full text]
  • 35Th International Society for Animal Genetics Conference 7
    35th INTERNATIONAL SOCIETY FOR ANIMAL GENETICS CONFERENCE 7. 23.16 – 7.27. 2016 Salt Lake City, Utah ABSTRACT BOOK https://www.asas.org/meetings/isag2016 INVITED SPEAKERS S0100 – S0124 https://www.asas.org/meetings/isag2016 epigenetic modifications, such as DNA methylation, and measuring different proteins and cellular metab- INVITED SPEAKERS: FUNCTIONAL olites. These advancements provide unprecedented ANNOTATION OF ANIMAL opportunities to uncover the genetic architecture GENOMES (FAANG) ASAS-ISAG underlying phenotypic variation. In this context, the JOINT SYMPOSIUM main challenge is to decipher the flow of biological information that lies between the genotypes and phe- notypes under study. In other words, the new challenge S0100 Important lessons from complex genomes. is to integrate multiple sources of molecular infor- T. R. Gingeras* (Cold Spring Harbor Laboratory, mation (i.e., multiple layers of omics data to reveal Functional Genomics, Cold Spring Harbor, NY) the causal biological networks that underlie complex traits). It is important to note that knowledge regarding The ~3 billion base pairs of the human DNA rep- causal relationships among genes and phenotypes can resent a storage devise encoding information for be used to predict the behavior of complex systems, as hundreds of thousands of processes that can go on well as optimize management practices and selection within and outside a human cell. This information is strategies. Here, we describe a multi-step procedure revealed in the RNAs that are composed of 12 billion for inferring causal gene-phenotype networks underly- nucleotides, considering the strandedness and allelic ing complex phenotypes integrating multi-omics data. content of each of the diploid copies of the genome.
    [Show full text]
  • Oracle Health Sciences Omics Data Bank Programmer’S Guide Release 3.0.2.1 E35680-12
    Oracle® Health Sciences Omics Data Bank Programmer’s Guide Release 3.0.2.1 E35680-12 March 2016 Oracle Health Sciences Omics Data Bank Programmer’s Guide Release 3.0.2.1 E35680-12 Copyright © 2013, 2016, Oracle and/or its affiliates. All rights reserved. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
    [Show full text]
  • WO 2016/040794 Al 17 March 2016 (17.03.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/040794 Al 17 March 2016 (17.03.2016) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 1/19 (2006.01) C12Q 1/02 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C12N 15/81 (2006.01) C07K 14/47 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/US20 15/049674 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 11 September 2015 ( 11.09.201 5) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/050,045 12 September 2014 (12.09.2014) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: WHITEHEAD INSTITUTE FOR BIOMED¬ DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, ICAL RESEARCH [US/US]; Nine Cambridge Center, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Cambridge, Massachusetts 02142-1479 (US).
    [Show full text]
  • Integrated Analysis of DNA Methylation and Transcriptome Profiling of Polycystic Ovary Syndrome
    2138 MOLECULAR MEDICINE REPORTS 21: 2138-2150, 2020 Integrated analysis of DNA methylation and transcriptome profiling of polycystic ovary syndrome LI LIU1, DONGYUN HE1, YANG WANG2 and MINJIA SHENG1 1Reproductive Medical Center, Department of Gynecology and Obstetrics, China‑Japan Union Hospital of Jilin University; 2Department of Dermatology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin 130031, P.R. China Received December 17, 2018; Accepted July 30, 2019 DOI: 10.3892/mmr.2020.11005 Abstract. The present study aimed to identify potentially impor- Introduction tant biomarkers associated with polycystic ovary syndrome (PCOS) by integrating DNA methylation with transcriptome Polycystic ovary syndrome (PCOS) is a common reproduc- profiling. The transcription (E‑MTAB‑3768) and methylation tive disorder, affecting 5-20% of the reproductive-age female (E‑MTAB‑3777) datasets were retrieved from ArrayExpress. population worldwide (1,2). In addition, PCOS is associated Paired transcription and methylation profiling data of 10 cases with ovulatory dysfunction, abdominal adiposity, insulin of PCOS and 10 healthy controls were available for screening resistance, obesity, excessive androgen production and cardio- differentially expressed genes (DEGs) and differentially vascular risk factors (3). However, the genetic mechanisms methylated genes (DMGs). Genes with a negative correlation of PCOS remain largely unknown, since the etiology of the between expression levels and methylation levels were retained disease is very complex and affected both by genomic and by correlation analysis to construct a protein-protein interaction environmental factors. Therefore, an improved understanding (PPI) network. Subsequently, functional and pathway enrich- of the genetic mechanisms of PCOS may provide novel insights ment analyses were performed to identify genes in the PPI into the treatment and diagnosis of PCOS (4).
    [Show full text]
  • Psychomotor Retardation with a 1Q42.11–Q42.12 Deletion
    He et al. Hereditas (2017) 154:6 DOI 10.1186/s41065-016-0022-0 BRIEF REPORT Open Access Psychomotor retardation with a 1q42.11– q42.12 deletion Jialing He1, Yingjun Xie2, Shu Kong2, Wenjun Qiu2, Xiaoman Wang2, Ding Wang2, Xiaofang Sun2 and Deming Sun1* Abstract A 1q42 deletion is a rare structure variation that commonly harbours various deletion breakpoints along with diversified phenotypes. In our study, we found a de novo 1q42 deletion in a boy who did not have a cleft palate or a congenital diaphragmatic hernia but presented with psychomotor retardation. A 1.9 Mb deletion located within 1q42.11-q42.12 was validated at the molecular cytogenetic level. This is the first report of a 1q42.11-q42.12 deletion in a patient with onlypsychomotor retardation. The precise break points could facilitate the discovery of potential causative genes, such as LBR, EPHX1, etc. The correlation between the psychomotor retardation and the underlying genetic factors could not only shed light on the diagnosis of psychomotor retardation at the genetic level but also provide potential therapeutic targets. Keywords: 1q42 deletion, Psychomotor retardation, Genotype-phenotype correlation, Microarray analysis Introduction immunity-related diseases [11–13]. According to previ- Psychomotor retardation has always been described as a ous reports, CNVs usually play an important role in gene slowing of physical and emotional reactions and shared dosage, gene disruption, gene fusion, and position effects similarities with depression [1]. As a component of de- where abnormal CNVs could cause various diseases pression, psychomotor retardation could provide clinical [14, 15]. Compared with other deletions, cases with and therapeutic clues for effective treatments [2].
    [Show full text]
  • Link Between Short Tandem Repeats and Translation Initiation Site Selection Masoud Arabfard1,2, Kaveh Kavousi2*, Ahmad Delbari3 and Mina Ohadi3*
    Arabfard et al. Human Genomics (2018) 12:47 https://doi.org/10.1186/s40246-018-0181-3 PRIMARY RESEARCH Open Access Link between short tandem repeats and translation initiation site selection Masoud Arabfard1,2, Kaveh Kavousi2*, Ahmad Delbari3 and Mina Ohadi3* Abstract Background: Despite their vast biological implication, the relevance of short tandem repeats (STRs)/microsatellites to the protein-coding gene translation initiation sites (TISs) remains largely unknown. Methods: We performed an Ensembl-based comparative genomics study of all annotated orthologous TIS-flanking sequences in human and 46 other species across vertebrates, on the genomic DNA and cDNA platforms (755,956 TISs), aimed at identifying human-specific STRs in this interval. The collected data were used to examine the hypothesis of a link between STRs and TISs. BLAST was used to compare the initial five amino acids (excluding the initial methionine), codons of which were flanked by STRs in human, with the initial five amino acids of all annotated proteins for the orthologous genes in other vertebrates (total of 5,314,979 pair-wise TIS comparisons on the genomic DNA and cDNA platforms) in order to compare the number of events in which human-specific and non-specific STRs occurred with homologous and non-homologous TISs (i.e., ≥ 50% and < 50% similarity of the five amino acids). Results: We detected differential distribution of the human-specific STRs in comparison to the overall distribution of STRs on the genomic DNA and cDNA platforms (Mann Whitney U test p =1.4×10−11 and p <7.9×10−11, respectively). We also found excess occurrence of non-homologous TISs with human-specific STRs and excess occurrence of homologous TISs with non-specific STRs on both platforms (p < 0.00001).
    [Show full text]
  • Agricultural University of Athens
    ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΩΝ ΖΩΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΖΩΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΚΑΙ ΕΙΔΙΚΗΣ ΖΩΟΤΕΧΝΙΑΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ ΑΘΗΝΑ 2020 ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Genome-wide association analysis and gene network analysis for (re)production traits in commercial broilers ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ Τριμελής Επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Επταμελής εξεταστική επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Πηνελόπη Μπεμπέλη (Καθ. ΓΠΑ) Δημήτριος Βλαχάκης (Επ. Καθ. ΓΠΑ) Ευάγγελος Ζωίδης (Επ.Καθ. ΓΠΑ) Γεώργιος Θεοδώρου (Επ.Καθ. ΓΠΑ) 2 Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Περίληψη Σκοπός της παρούσας διδακτορικής διατριβής ήταν ο εντοπισμός γενετικών δεικτών και υποψηφίων γονιδίων που εμπλέκονται στο γενετικό έλεγχο δύο τυπικών πολυγονιδιακών ιδιοτήτων σε κρεοπαραγωγικά ορνίθια. Μία ιδιότητα σχετίζεται με την ανάπτυξη (σωματικό βάρος στις 35 ημέρες, ΣΒ) και η άλλη με την αναπαραγωγική
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • Multiethnic Genome-Wide Association Study of Diabetic Retinopathy Using Liability Threshold Modeling of Duration of Diabetes and Glycemic Control
    Diabetes Volume 68, February 2019 441 Multiethnic Genome-Wide Association Study of Diabetic Retinopathy Using Liability Threshold Modeling of Duration of Diabetes and Glycemic Control Samuela Pollack,1 Robert P. Igo Jr.,2 Richard A. Jensen,3 Mark Christiansen,3 Xiaohui Li,4 Ching-Yu Cheng,5,6 Maggie C.Y. Ng,7,8 Albert V. Smith,9 Elizabeth J. Rossin,10 Ayellet V. Segrè,10 Samaneh Davoudi,10 Gavin S. Tan,5,6 Yii-Der Ida Chen,4 Jane Z. Kuo,4,11 Latchezar M. Dimitrov,7,8 Lynn K. Stanwyck,10 Weihua Meng,12 S. Mohsen Hosseini,13 Minako Imamura,14,15,16 Darryl Nousome,17 Jihye Kim,18 Yang Hai,4 Yucheng Jia,4 Jeeyun Ahn,19 Aaron Leong,20 Kaanan Shah,21 Kyu Hyung Park,22 Xiuqing Guo,4 Eli Ipp,23 Kent D. Taylor,4 Sharon G. Adler,24 John R. Sedor,25,26,27 Barry I. Freedman,28 Family Investigation of Nephropathy and Diabetes-Eye Research Group, DCCT/EDIC Research Group, I-Te Lee,29,30,31 Wayne H.-H. Sheu,29,30,31,32 Michiaki Kubo,33 Atsushi Takahashi,34,35 Samy Hadjadj,36,37,38,39 Michel Marre,40,41,42 David-Alexandre Tregouet,43,44 Roberta Mckean-Cowdin,17,45 Rohit Varma,17,45 Mark I. McCarthy,46,47,48 Leif Groop,49 Emma Ahlqvist,49 Valeriya Lyssenko,49,50 Elisabet Agardh,49 Andrew Morris,51 Alex S.F. Doney,52 Helen M. Colhoun,53 Iiro Toppila,54,55,56 Niina Sandholm,54,55,56 Per-Henrik Groop,54,55,56,57 Shiro Maeda,14,15,16 Craig L.
    [Show full text]