Pterostylis Chaetophora) in Columbey National Park (Hunter Valley, NSW) Reveal Substantial Populations and Elucidate Occupied Habitat

Total Page:16

File Type:pdf, Size:1020Kb

Pterostylis Chaetophora) in Columbey National Park (Hunter Valley, NSW) Reveal Substantial Populations and Elucidate Occupied Habitat Cunninghamia Date of Publication: October 2020 A journal of plant ecology for eastern Australia ISSN 0727- 9620 (print) • ISSN 2200 - 405X (Online) Targeted surveys of a poorly conserved threatened orchid (Pterostylis chaetophora) in Columbey National Park (Hunter Valley, NSW) reveal substantial populations and elucidate occupied habitat Stephen Bell1,3 and Paul Hillier2 1 School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, NSW 2308, AUSTRALIA. 2 Biodiversity Conservation Division, Department of Planning, Industry and Environment, 26 Honeysuckle Drive, Newcastle, NSW 2300, AUSTRALIA. 3 Corresponding author [email protected] Abstract: Systematic targeted surveys for the vulnerable and poorly conserved Pterostylis chaetophora (family Orchidaceae) were undertaken during peak flowering over ten days in 2018 and 2019 across 720 ha of Columbey National Park (Columbey). The assumed population size of this species in Columbey prior to this study (c. 20 individuals) was found to be unrepresentative of the number of sub-populations (175) and individuals (544) subsequently located along 141 km of search transects. Extrapolation of this result across the full Columbey study area suggests an upper population size of nearly 3000 plants, increasing the total documented New South Wales population 15-fold. The most commonly occupied communities for Pterostylis chaetophora were found to be Floodplain Redgum-Box Forest (57% of individuals and 54% of sub-populations), Lower Hunter Spotted Gum-Ironbark Forest (28% of individuals, 25% of sub-populations), and Seaham Spotted Gum-Ironbark Forest (14% of individuals, 18% of sub- populations). The largest sub-populations (>10 individuals) were in Floodplain Redgum-Box Forest where Eucalyptus moluccana dominated the canopy, followed by Lower Hunter Spotted Gum-Ironbark Forest and Seaham Spotted Gum- Ironbark Forest. All three occupied communities are relatively widespread in the lower Hunter Valley and lower North Coast regions, suggesting that such habitat elsewhere may harbour undetected populations of Pterostylis chaetophora. These results suggest that systematic targeted surveys for other threatened orchids are necessary to fully understand both the magnitude of a species’ population and its occupied habitat. Such surveys may ultimately lead to re-assessment of the conservation status of some of these species where, like Pterostylis chaetophora, considerably more populations and individuals are uncovered within secure land tenure. Cunninghamia (2020) 20: 199–207 doi:10.7751/cunninghamia.2020.20.011 Cunninghamia: a journal of plant ecology for eastern Australia © 2020 Royal Botanic Gardens and Domain Trust www.rbgsyd.nsw.gov.au/science/Scientific_publications/cunninghamia 200 Cunninghamia 20: 2020 Bell & Hillier, Targeted surveys for Pterostylis chaetophora Introduction there are currently 111 accepted taxa and 29 unpublished entities (Janes & Duretto 2010; Backhouse et al. 2019). Two Terrestrial orchids are a diverse group of plants globally subgenera have been constructed around this diverse group (c. 28000 species: Fay 2018) and within Australia (c. 1960 (but see Clements et al. 2011 for a differing view), largely species: Backhouse et al. 2019), and possess high rates of based on the alignment of the lateral sepals (reflexed or both species extinction and speciation (Chase et al. 2015; recurved) and labellum morphology. Pterostylis chaetophora Brundrett 2016). In a review of Australian threatened M.A.Clem. & D.L.Jones (Rusty Greenhood; the subject of orchid taxa, New South Wales (NSW) ranked fifth behind this paper) is the type species for section Oligochaetochilus Queensland, South Australia, Victoria, and Tasmania for the within subgenus Oligochaetochilus, a collection of number of significant (extinct, threatened and rare) species species characterised by multiple flowers comprising the (Backhouse 2007), with 78 (37%) of the then 210 endemic inflorescence, lateral sepals fully recurved, labella with NSW species listed as threatened. Increased listings over distinctive white setae, and column wings with barrier the last thirteen years in line with ongoing threats suggest, trichomes (Janes & Duretto 2010). There are 47 species of however, that State rankings may have changed largely Pterostylis described for section Oligochaetochilus, 19 of through additions of State endemic taxa. Relative to their which occur in New South Wales. Five species are currently earlier work in 2016, Backhouse et al. (2019), for example, listed as threatened in New South Wales (1 critically now show 588 orchid species for NSW and 232 endemic endangered, 2 endangered, 2 vulnerable), while 12 are taxa (including 64 undescribed). Of these, 77 (33%) are listed nationally (3 critically endangered, 5 endangered, currently listed as threatened under the NSW Biodiversity 4 vulnerable). Conservation Act 2016 (NSW BC Act). Apart from South This paper presents the results of systematic targeted surveys Australia (36 taxa), NSW has shown the largest increase undertaken across Columbey National Park over the course (22 taxa) in State endemic taxa over the past three years, of two flowering seasons (2018 and 2019), where only small over Queensland (10 taxa), Western Australia (8 taxa), and populations of Pterostylis chaetophora were previously Tasmania (3 taxa) (Backhouse et al. 2019), and it may be known. It uses Pterostylis chaetophora as a model species expected that increased listings have emanated from this to illustrate the value of systematic searches (rather than pool of endemic species. The Northern Territory has shown ad hoc occasional searches) in potential habitat to improve no change in the number of endemics since 2016, while understanding of distribution and population size. It also Victoria has seen a decrease of 7 taxa, presumably through examines habitat for the species and outlines vegetation the discovery of new populations of formerly Victorian communities currently known to support it, both in Columbey endemics in other States. Clearly, orchid taxonomy, and elsewhere. discovery and listing status remains dynamic, and there is still much to learn about the distribution and ecology of this iconic group of plants. Study Species The discovery of new populations of orchid species can be fortuitous but certain aspects of their morphology lend Pterostylis chaetophora (Figure 1) is a small terrestrial orchid considerable assistance. Many orchid genera produce vivid bearing ornate yet nectar-less flowers, and principally occurs and colourful flowers during a short flowering season which between Taree and Cessnock in central eastern New South aid detection, but the flowers of numerous others are often Wales. Pollination in this genus is thought to be enacted by small, less colourful and relatively insignificant. Knowledge male flies in the families Culicidae and Mycetophilidae, informing the conservation status of all such orchids is heavily attracted to flowers through sexual mimicry and the prospect reliant on the ability of surveyors to detect individuals and of copulation by pseudo-pheromones (Weston et al. 2005). populations within often floristically and structurally diverse The type specimen for the species was grown from material habitats. This is not always an easy task, with variations in collected at Neath, near Cessnock in the mid-Hunter seasonal emergence dramatically influencing measures of Valley in the early 1980s. Apart from a line drawing and population abundance (Gillman & Dodd 1998; Kindlmann & the required Latin diagnosis in Clements (1989), no other Balounova 2001; Kindlmann 2003), coupled with numerous detailed information has been published on this species. environmental stressors operating on plants that limit their Databased populations of Pterostylis chaetophora are effective detection (flowering) period (Kery & Gregg 2003; not representative of the true geographical distribution of McCormick & Jacquemyn 2014; Brundrett 2016). Essentially, this species. Records from the upper Hunter Valley in the measures of abundance in terrestrial orchids are a factor of Wingen (1998) and Denman (2001) localities are in error and detectability during surveys rather than a finite census of a represent different taxa (indeterminate but not Pterostylis population (Kery & Gregg 2003; Bell 2019). Because of the chaetophora for Wingen, Pterostylis aff. praetermissa feeble nature of orchid detection, any population count will be for Denman; L. Copeland, pers. com.), while Queensland an underestimate of the true number of individuals (Sanger & populations now form a separate and distinct un-named Waite 1998; Weston et al. 2005). species with close affinities to Pterostylis chaetophora The genus Pterostylis (‘Greenhoods’) contains at least 262 (Backhouse et al. 2019). Additionally, two early collections species across Australia, Indonesia, Papua New Guinea, New in the Australian Virtual Herbarium (AVH) from Sydney Caledonia and New Zealand, and within New South Wales (PERTH 8885168, R. Brown, 1804, Willoughby area; CBG Cunninghamia 20: 2020 Bell & Hillier, Targeted surveys for Pterostylis chaetophora 201 8704841.1, G. D’Aubert, October 1987, Georges River), drained Yellow Soloths, and shallow moderately-drained and an observation record from Glenhaven (1949), are also Lithosols of the Clarence Town soil landscape. Other less thought to be in error or are now locally extinct. Hosking common soil types include deep well-drained Yellow and and James (1998)
Recommended publications
  • Native Orchid Society South Australia
    Journal of the Native Orchid Society of South Australia Inc PRINT POST APPROVED VOLUME 25 NO. 11 PP 54366200018 DECEMBER 2001 NATIVE ORCHID SOCIETY OF SOUTH AUSTRALIA POST OFFICE BOX 565 UNLEY SOUTH AUSTRALIA 5061 The Native Orchid Society of South Australia promotes the conservation of orchids through the preservation of natural habitat and through cultivation. Except with the documented official representation from the Management Committee no person is authorised to represent the society on any matter. All native orchids are protected plants in the wild. Their collection without written Government permit is illegal. PRESIDENT: SECRETARY: Bill Dear Cathy Houston Telephone: 82962111 Telephone: 8356 7356 VICE-PRESIDENT David Pettifor Tel. 014095457 COMMITTEE David Hirst Thelma Bridle Bob Bates Malcolm Guy EDITOR: TREASURER Gerry Carne Iris Freeman 118 Hewitt Avenue Toorak Gardens SA 5061 Telephone/Fax 8332 7730 E-mail [email protected] LIFE MEMBERS Mr R. Hargreaves Mr G. Carne Mr L. Nesbitt Mr R. Bates Mr R. Robjohns Mr R Shooter Mr D. Wells Registrar of Judges: Reg Shooter Trading Table: Judy Penney Field Trips & Conservation: Thelma Bridle Tel. 83844174 Tuber Bank Coordinator: Malcolm Guy Tel. 82767350 New Members Coordinator David Pettifor Tel. 0416 095 095 PATRON: Mr T.R.N. Lothian The Native Orchid Society of South Australia Inc. while taking all due care, take no responsibility for the loss, destruction or damage to any plants whether at shows, meetings or exhibits. Views or opinions expressed by authors of articles within this Journal do not necessarily reflect the views or opinions of the Management. We condones the reprint of any articles if acknowledgement is given.
    [Show full text]
  • Native Orchid Society of South Australia
    NATIVE ORCHID SOCIETY of SOUTH AUSTRALIA NATIVE ORCHID SOCIETY OF SOUTH AUSTRALIA JOURNAL Volume 6, No. 10, November, 1982 Registered by Australia Post Publication No. SBH 1344. Price 40c PATRON: Mr T.R.N. Lothian PRESIDENT: Mr J.T. Simmons SECRETARY: Mr E.R. Hargreaves 4 Gothic Avenue 1 Halmon Avenue STONYFELL S.A. 5066 EVERARD PARK SA 5035 Telephone 32 5070 Telephone 293 2471 297 3724 VICE-PRESIDENT: Mr G.J. Nieuwenhoven COMMITTFE: Mr R. Shooter Mr P. Barnes TREASURER: Mr R.T. Robjohns Mrs A. Howe Mr R. Markwick EDITOR: Mr G.J. Nieuwenhoven NEXT MEETING WHEN: Tuesday, 23rd November, 1982 at 8.00 p.m. WHERE St. Matthews Hail, Bridge Street, Kensington. SUBJECT: This is our final meeting for 1982 and will take the form of a Social Evening. We will be showing a few slides to start the evening. Each member is requested to bring a plate. Tea, coffee, etc. will be provided. Plant Display and Commentary as usual, and Christmas raffle. NEW MEMBERS Mr. L. Field Mr. R.N. Pederson Mr. D. Unsworth Mrs. P.A. Biddiss Would all members please return any outstanding library books at the next meeting. FIELD TRIP -- CHANGE OF DATE AND VENUE The Field Trip to Peters Creek scheduled for 27th November, 1982, and announced in the last Journal has been cancelled. The extended dry season has not been conducive to flowering of the rarer moisture- loving Microtis spp., which were to be the objective of the trip. 92 FIELD TRIP - CHANGE OF DATE AND VENUE (Continued) Instead, an alternative trip has been arranged for Saturday afternoon, 4th December, 1982, meeting in Mount Compass at 2.00 p.m.
    [Show full text]
  • Pterostylis Curta Blunt Greenhood
    PLANT Pterostylis curta Blunt Greenhood AUS SA AMLR Endemism Life History RP, Myponga, Victor Harbor, Anstey Hill, Willunga, Ashbourne, Mount Barker and near Mount Bold - R V - Perennial Reservoir.5 Family ORCHIDACEAE Habitat Forms small to extensive colonies in fertile loams in deeply shaded gullies and along creeks in high rainfall areas.4 Occurs in sclerophyll forest, growing in slightly moist conditions.2 In the AMLR, recorded habitat includes: Cherry Gardens area, under Eucalyptus viminalis in grassy area, with Pterostylis nutans and P. pedunculata Onkaparinga River, near bottom of gorge in rocky damp places; Mount Bold (Thomas Gully) Wotton’s Scrub (Kenneth Stirling CP) (K. Brewer and J. Smith pers. comm.) Second Valley area on stream bank under heavy canopy of Pinus radiata.7 Photo: © Peter Lang Within the AMLR the preferred broad vegetation Conservation Significance groups are Grassy woodland and Riparian.5 The AMLR distribution is disjunct, isolated from other extant occurrences within SA. Within the AMLR the Within the AMLR the species’ degree of habitat species’ relative area of occupancy is classified as specialisation is classified as ‘High’.5 ‘Very Restricted’.5 Biology and Ecology Description Flowers from July to October.3,4 Terrestrial orchid; slender, glabrous, 10-20 cm high; leaves on rather long petioles in a radical rosette.4 All known pollinators of the genus Pterostylis are male Flower stem to 30 cm tall. Flower usually single, the insects of the fungus gnat and mosquito family.2 galea about 3 cm high, erect, green with pale brown Pterostylis curta will hybridise with P. pedunculata and tints.3 P.
    [Show full text]
  • Ecology Assessment Report Pre-Clearance Survey Report
    2 Ecology Assessment Report Pre-clearance Survey Report Consultant/contractor and sub-contractor document review/approval 48DY69, 46DY69, 69DY97, 70DY97, 74DY99, 14DY67, 2RP840942, Warra-Kogan Road reserve, Lot no. Healey's Crossing Road reserve, Dalby-Kogan Road reserve Property name Various Disturbance Tracker no. DP139 Origin/Australia Pacific LNG document no. Q-4331-15-RP-001 Contractor internal reference no. (if 17BRI-7037 applicable) Submitted by (full name of author) Kate Brodie, Loren Appleby, Emma Blacklock Consultant/contractor N/A comments Pre-clearance Survey Report expiry N/A date Technical Revision Date Status Checked Q/A Review 1 12/12/2017 Issued for Use L Appleby L Appleby L Appleby 2 27/08/2018 Issued for Use Liz Fisher Liz Fisher Ailsa Kerswell pp. pp. pp. Template Ref: Q-LNG01-15-AQ-0225 Revision: 2 Approvals, Land and Stakeholder, Australia Pacific LNG Upstream Phase 1 Uncontrolled when printed unless issued and stamped controlled copy. Rev. 0 approved by (name and title) Signature Tim Collins Kainama Development (Stage 1) – Terrestrial Ecology Survey Report Prepared for Origin Energy th 27 August 2018 Kainama Stage 1 Terrestrial Ecology Assessment DOCUMENT TRACKING Item Detail Project Name Kainama Development Stage 1 Ecology Survey Project Number 17BRI-7037 Loren Appleby Project Manager 07 3239 9401 Level 5 / 12 Creek St Brisbane Qld 4000 Prepared by Kate Brodie, Loren Appleby, Emma Blacklock Reviewed by Liz Fisher, Alan House Approved by Ailsa Kerswell Status Final Version Number Revision 2 Last saved on 27th August 2018 Cover Photo Philotheca sporadica and Eucalyputs curtisii, Loren Appleby, 2017. This report should be cited as ‘Eco Logical Australia 2018.
    [Show full text]
  • Pollination and Evolution of Plant and Insect Interaction JPP 2017; 6(3): 304-311 Received: 03-03-2017 Accepted: 04-04-2017 Showket a Dar, Gh
    Journal of Pharmacognosy and Phytochemistry 2017; 6(3): 304-311 E-ISSN: 2278-4136 P-ISSN: 2349-8234 Pollination and evolution of plant and insect interaction JPP 2017; 6(3): 304-311 Received: 03-03-2017 Accepted: 04-04-2017 Showket A Dar, Gh. I Hassan, Bilal A Padder, Ab R Wani and Sajad H Showket A Dar Parey Sher-e-Kashmir University of Agricultural Science and Technology, Shalimar, Jammu Abstract and Kashmir-India Flowers exploit insects to achieve pollination; at the same time insects exploit flowers for food. Insects and flowers are a partnership. Each insect group has evolved different sets of mouthparts to exploit the Gh. I Hassan food that flowers provide. From the insects' point of view collecting nectar or pollen is rather like fitting Sher-e-Kashmir University of a key into a lock; the mouthparts of each species can only exploit flowers of a certain size and shape. Agricultural Science and This is why, to support insect diversity in our gardens, we need to plant a diversity of suitable flowers. It Technology, Shalimar, Jammu is definitely not a case of 'one size fits all'. While some insects are generalists and can exploit a wide and Kashmir-India range of flowers, others are specialists and are quite particular in their needs. In flowering plants, pollen grains germinate to form pollen tubes that transport male gametes (sperm cells) to the egg cell in the Bilal A Padder embryo sac during sexual reproduction. Pollen tube biology is complex, presenting parallels with axon Sher-e-Kashmir University of guidance and moving cell systems in animals.
    [Show full text]
  • Name Authority, Common Name
    THREATENED SPECIES LISTING STATEMENT ORCHID Midland greenhood Pterostylis commutata D. L. Jones 1994 Status Tasmanian Threatened Species Protection Act 1995 ……………………………….……..………..………..….….endangered Commonwealth Environment Protection and Biodiversity Conservation Act 1999……………………..…...…Critically.Endangered Hans & Annie Wapstra Description plants are 12 to 22 cm tall. They have 1 to 5 erect Midland greenhood belongs to a group of orchids shiny green flowers with translucent markings on commonly known as greenhoods because the dorsal the hood. The hood apex curves down strongly and sepal and petals are united to form a predominantly terminates with an apical point 15 to 20 mm long. green, hood-like structure that dominates the The two lateral sepals are green with dark green flower. When triggered by touch, the labellum flips lines and transparent areas. They hang down and inwards towards the column, trapping any insect are joined together leaving the 25 to 30 mm long inside the flower, thereby aiding pollination as the points free and parted by 6 to 10 mm at the tips. insect struggles to escape. Greenhoods are The labellum, which also hangs down, is dark green deciduous terrestrials that have fleshy tubers, which with a turned up tip and has an irregularly wavy are replaced annually. At some stage in their life margin with short white bristles. Two longer cycle all greenhoods produce a rosette of leaves. bristles arise from near the base. In all, the flowers are 42 to 50 mm long and 6 to 8 mm wide. The rosette of the Midland greenhood encircles the base of the flower stem. The 6 to 10 rosette leaves Midland greenhood has a distinctive flower shape are elliptical to narrowly oval shaped, 18 to 32 mm and is not easily confused with other Tasmanian long and 5 to 8 mm wide.
    [Show full text]
  • Indigenous Plants of Bendigo
    Produced by Indigenous Plants of Bendigo Indigenous Plants of Bendigo PMS 1807 RED PMS 432 GREY PMS 142 GOLD A Gardener’s Guide to Growing and Protecting Local Plants 3rd Edition 9 © Copyright City of Greater Bendigo and Bendigo Native Plant Group Inc. This work is Copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the City of Greater Bendigo. First Published 2004 Second Edition 2007 Third Edition 2013 Printed by Bendigo Modern Press: www.bmp.com.au This book is also available on the City of Greater Bendigo website: www.bendigo.vic.gov.au Printed on 100% recycled paper. Disclaimer “The information contained in this publication is of a general nature only. This publication is not intended to provide a definitive analysis, or discussion, on each issue canvassed. While the Committee/Council believes the information contained herein is correct, it does not accept any liability whatsoever/howsoever arising from reliance on this publication. Therefore, readers should make their own enquiries, and conduct their own investigations, concerning every issue canvassed herein.” Front cover - Clockwise from centre top: Bendigo Wax-flower (Pam Sheean), Hoary Sunray (Marilyn Sprague), Red Ironbark (Pam Sheean), Green Mallee (Anthony Sheean), Whirrakee Wattle (Anthony Sheean). Table of contents Acknowledgements ...............................................2 Foreword..........................................................3 Introduction.......................................................4
    [Show full text]
  • THE PTEROSTYLIS RUFA COMPLEX - BENTHAMS MISTAKE This Is the Text of a Talk Given Bill Kosky to the Australian Native Orchid Society (Victorian Group) on 10 May 2019
    THE PTEROSTYLIS RUFA COMPLEX - BENTHAMS MISTAKE This is the text of a talk given Bill Kosky to the Australian Native Orchid Society (Victorian Group) on 10 May 2019 This talk is about somewhat similar, smaller, members of the Pterostylis rufa complex, P. rufa, P. squamata, P. aciculiformis, P. ferruginea, and P. pusilla. P. praetermissa, and other similar species from north of Sydney, are not considered here. The talk also provides insight into the rich history of Australia’s plants, and botanists, found in Australia’s Herbariam collections. Roughly the distribution of P. rufa is from north of Sydney to around Nowra; P. squamata (so called) from Nowra into the eastern half of Victoria and Tasmania; P. aciculiformis in a band across the central latitudes of Victoria into NSW and SA, with a disjunct population in East Gippsland; P. ferruginea Victoria west from the Grampians into SA; and P. pusilla in a band from central Victoria west into SA, unlike the others extending part way into the dryer northern parts of Victoria and SA. Taxonomy. The hierarchy of taxonomy can be likened to Wikipedia. That is the last valid ranking of a species takes precedence over an earlier one. Any new species named requires a type specimen (or in earlier times a specimen collection) to be nominated, and that type stands as the primary reference for that species. Bracts are modified leaves. Those that grow on and more or less embrace an orchids stem are referred to as stem bracts or sterile bracts. (In the past also as scales or empty scales, and in recent times, as stem leaves).
    [Show full text]
  • Brisbane Native Plants by Suburb
    INDEX - BRISBANE SUBURBS SPECIES LIST Acacia Ridge. ...........15 Chelmer ...................14 Hamilton. .................10 Mayne. .................25 Pullenvale............... 22 Toowong ....................46 Albion .......................25 Chermside West .11 Hawthorne................. 7 McDowall. ..............6 Torwood .....................47 Alderley ....................45 Clayfield ..................14 Heathwood.... 34. Meeandah.............. 2 Queensport ............32 Trinder Park ...............32 Algester.................... 15 Coopers Plains........32 Hemmant. .................32 Merthyr .................7 Annerley ...................32 Coorparoo ................3 Hendra. .................10 Middle Park .........19 Rainworth. ..............47 Underwood. ................41 Anstead ....................17 Corinda. ..................14 Herston ....................5 Milton ...................46 Ransome. ................32 Upper Brookfield .......23 Archerfield ...............32 Highgate Hill. ........43 Mitchelton ...........45 Red Hill.................... 43 Upper Mt gravatt. .......15 Ascot. .......................36 Darra .......................33 Hill End ..................45 Moggill. .................20 Richlands ................34 Ashgrove. ................26 Deagon ....................2 Holland Park........... 3 Moorooka. ............32 River Hills................ 19 Virginia ........................31 Aspley ......................31 Doboy ......................2 Morningside. .........3 Robertson ................42 Auchenflower
    [Show full text]
  • ACT, Australian Capital Territory
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Human‐Mediated Introductions of Australian Acacias— a Global Experiment in Biogeography
    EDITORIAL Human‐mediated introductions of Australian acacias— a global experiment in biogeography Running header Wattles: a model group for invasion science David M. Richardson1*, Jane Carruthers2, Cang Hui1, Fiona A.C. Impson3,4, Joseph T. Miller5, Mark P. Robertson6,1, Mathieu Rouget7, Johannes J. Le Roux1 & John R.U. Wilson8,1 1 Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland 7602, South Africa 2 Department of History, University of South Africa, P.O. Box 392, Unisa, 0003, South Africa 3 Zoology Department, University of Cape Town, Rondebosch 7701, South Africa 4 Plant Protection Research Institute, Private Bag X5017, Stellenbosch 7599, South Africa 5 Centre for Australian National Biodiversity Research, CSIRO Plant Industry, GPO Box 1600, Canberra, Australia 6 Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa 7 Department of Plant Science, University of Pretoria, Pretoria 0002, South Africa 8 South African National Biodiversity Institute, Private Bag X7, Claremont 7735, Cape Town, South Africa. Correspondence: David M. Richardson, Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland 7602, South Africa. E‐mail: [email protected] 1 ABSTRACT Aim Australian acacias (1012 recognised species, previously grouped in Acacia subgenus Phyllodineae, which are native to Australia) have been moved extensively around the world by humans over the past 250 years. This has created the opportunity to explore how evolutionary, ecological, historical, and sociological factors interact to affect the distribution, usage, invasiveness, and perceptions of a globally important group of alien plants. This editorial provides the background for the 20 papers in this special issue of Diversity and Distributions that focuses on the global cross‐disciplinary experiment of introduced Australian acacias.
    [Show full text]
  • Post-Fire Recovery of Woody Plants in the New England Tableland Bioregion
    Post-fire recovery of woody plants in the New England Tableland Bioregion Peter J. ClarkeA, Kirsten J. E. Knox, Monica L. Campbell and Lachlan M. Copeland Botany, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, AUSTRALIA. ACorresponding author; email: [email protected] Abstract: The resprouting response of plant species to fire is a key life history trait that has profound effects on post-fire population dynamics and community composition. This study documents the post-fire response (resprouting and maturation times) of woody species in six contrasting formations in the New England Tableland Bioregion of eastern Australia. Rainforest had the highest proportion of resprouting woody taxa and rocky outcrops had the lowest. Surprisingly, no significant difference in the median maturation length was found among habitats, but the communities varied in the range of maturation times. Within these communities, seedlings of species killed by fire, mature faster than seedlings of species that resprout. The slowest maturing species were those that have canopy held seed banks and were killed by fire, and these were used as indicator species to examine fire immaturity risk. Finally, we examine whether current fire management immaturity thresholds appear to be appropriate for these communities and find they need to be amended. Cunninghamia (2009) 11(2): 221–239 Introduction Maturation times of new recruits for those plants killed by fire is also a critical biological variable in the context of fire Fire is a pervasive ecological factor that influences the regimes because this time sets the lower limit for fire intervals evolution, distribution and abundance of woody plants that can cause local population decline or extirpation (Keith (Whelan 1995; Bond & van Wilgen 1996; Bradstock et al.
    [Show full text]