NRDC Fiber Selection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Materials for the Textile Industry Alain Stout
English by Alain Stout For the Textile Industry Natural Materials for the Textile Industry Alain Stout Compiled and created by: Alain Stout in 2015 Official E-Book: 10-3-3016 Website: www.TakodaBrand.com Social Media: @TakodaBrand Location: Rotterdam, Holland Sources: www.wikipedia.com www.sensiseeds.nl Translated by: Microsoft Translator via http://www.bing.com/translator Natural Materials for the Textile Industry Alain Stout Table of Contents For Word .............................................................................................................................. 5 Textile in General ................................................................................................................. 7 Manufacture ....................................................................................................................... 8 History ................................................................................................................................ 9 Raw materials .................................................................................................................... 9 Techniques ......................................................................................................................... 9 Applications ...................................................................................................................... 10 Textile trade in Netherlands and Belgium .................................................................... 11 Textile industry ................................................................................................................... -
Choosing the Proper Short Cut Fiber for Your Nonwoven Web
Choosing The Proper Short Cut Fiber for Your Nonwoven Web ABSTRACT You have decided that your web needs a synthetic fiber. There are three important factors that have to be considered: generic type, diameter, and length. In order to make the right choice, it is important to know the chemical and physical characteristics of the numerous man-made fibers, and to understand what is meant by terms such as denier and denier per filament (dpf). PROPERTIES Denier Denier is a property that varies depending on the fiber type. It is defined as the weight in grams of 9,000 meters of fiber. The current standard of denier is 0.05 grams per 450 meters. Yarn is usually made up of numerous filaments. The denier of the yarn divided by its number of filaments is the denier per filament (dpf). Thus, denier per filament is a method of expressing the diameter of a fiber. Obviously, the smaller the denier per filament, the more filaments there are in the yarn. If a fairly closed, tight web is desired, then lower dpf fibers (1.5 or 3.0) are preferred. On the other hand, if high porosity is desired in the web, a larger dpf fiber - perhaps 6.0 or 12.0 - should be chosen. Here are the formulas for converting denier into microns, mils, or decitex: Diameter in microns = 11.89 x (denier / density in grams per milliliter)½ Diameter in mils = diameter in microns x .03937 Decitex = denier x 1.1 The following chart may be helpful. Our stock fibers are listed along with their density and the diameter in denier, micron, mils, and decitex for each: Diameter Generic Type -
Performance Evaluation of 3-D Basalt Fiber Reinforced Concrete & Basalt
Highway IDEA Program Performance Evaluation of 3-D Basalt Fiber Reinforced Concrete & Basalt Rod Reinforced Concrete Final Report for Highway IDEA Project 45 Prepared by: V Ramakrishnan and Neeraj S. Tolmare, South Dakota School of Mines & Technology, Rapid City, SD Vladimir B. Brik, Research & Technology, Inc., Madison, WI November 1998 IDEA PROGRAM F'INAL REPORT Contract No. NCHRP-45 IDEA Program Transportation Resea¡ch Board National Research Council November 1998 PERFORMANCE EVALUATION OF 3.I) BASALT ITIBER REINFORCED CONCRETE & BASALT R:D RETNFORCED CONCRETE V. Rarnalaishnan Neeraj S. Tolmare South Dakota School of Mines & Technolory, Rapid City, SD Principal Investigator: Madimir B. Brik Research & Technology, lnc., Madison, WI INNOVATIONS DESERVING EXPLORATORY ANALYSIS (IDEA) PROGRAMS MANAGED BY THE TRANSPORTATION RESEARCH BOARD (TRB) This NCHRP-IDEA investigation was completed as part of the National Cooperative Highway Research Program (NCHRP). The NCHRP-IDEA program is one of the four IDEA programs managed by the Transportation Research Board (TRB) to foster innovations in highway and intermodal surface transportation systems. The other three IDEA program areas are Transit-IDEA, which focuses on products and results for transit practice, in support of the Transit Cooperative Research Program (TCRP), Safety-IDEA, which focuses on motor carrier safety practice, in support of the Federal Motor Carrier Safety Administration and Federal Railroad Administration, and High Speed Rail-IDEA (HSR), which focuses on products and results for high speed rail practice, in support of the Federal Railroad Administration. The four IDEA program areas are integrated to promote the development and testing of nontraditional and innovative concepts, methods, and technologies for surface transportation systems. -
Morphology and Mechanical Behavior of a Natural Composite
16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS MORPHOLOGY AND MECHA NICAL BEHAVIOR OF A NATURAL COMPOSITE: THE FLAX FIBER Charlet Karine*, Jernot Jean-Paul*, Gomina Moussa* Baley Christophe**, Bizet Laurent***, Bréard Joël*** *CRISMAT, Caen, France, **L2PIC, Lorient, France, *** LMPG, Le Havre, France Keywords : flax, morphology, mechanical properties, natural composite material, microfibril angle Abstract this fiber as a reinforcement for composite materials, its microstructural and mechanical properties have to In this paper, we present some relationships be well understood. between the tensile mechanical properties and the After a brief description of the flax fiber microstructural features of a natural composite structure, its mechanical properties are given in the material: the flax fiber. The beginning of the stress- first part of the paper. Then, the relationships strain curve of a flax fiber upon tensile loading between the mechanical properties and the appears markedly non-linear. The hypothesis of a microstructure are discussed in the second part. progressive alignment of the cellulose microfibrils with the tensile axis provides a quantitative 2 Structure of flax explanation of this departure from the linearity. This The multilayer composite structure of the flax hypothesis is confirmed by a similar analysis of the fiber is presented in figure 1. The fibers are located behavior of cotton fibers. Besides, it has long been within the stems, between the bark and the xylem. recognized that the natural character of flax fibers Around twenty bundles can be seen on the section of induces a large scattering of their mechanical a stem and each bundle contains between ten and properties. This scattering is shown not to be forty fibers linked together by a pectic middle ascribed to the pronounced cross-section size lamella. -
New Synthetic Fibers Come from Natural Sources by Maria C
%" m •*^.. ? •^^:; m^ "•~.y.-, .-,. Id X LCI New Synthetic Fibers Come from Natural Sources By Maria C. Thiry, Features Editor n the beginning, textile fibers of applications for synthetic fibers able properties, such abrasion resis- came from the natural world: and their increasing popularity. Cot- tance, stain repellency, and wrinkle animal skins, hair, and wool; silk ton producers decided to fight back. resistance. In addition, according to from silkworms; and plants like Cotton Incorporated's famous market- Wallace, genetic research has gone into a flax, cotton, and hemp. For ing campaign is credited for bringing improving the quality of the fiber it- Icenturies, all textiles came from fibers the public's attention and loyalty self—qualities such as increased that were harvested fron:i a plant, ani- "back to nature." length, and improved strength of the mal, or insect. Then, at the beginning "Cotton is the original high-tech fiber over the last 30 years. "In the of the 20th century, people discovered fiber," says the company's Michelle marketplace, it is important to have a that they could create textile fibers of Wallace. The fiber's material proper- differentiated product," notes Cotton their own. Those early synthetic fibers ties, such as moisture management, Incorporated's Ira Livingston. "We are still originated in a natural source— comfortable hand, and wet tensile continually looking for ways to intro- cellulose from wood pulp—but soon strength contribute to its appeal. The duce cotton that surprises the con- enough in the 1930s, 40s, and 50s, a development of various finishes has sumer. One of those ways is our re- stream of synthetic fibers came on the given cotton fabrics additional favor- search into biogenetics, to enhance scene that owed their origins to chemical plants instead of plants Cotton's Share of Market that could be grown in a field. -
Lecture 8 (Synthetic Fibers)
CH0204 Organic Chemical Technology Lecture 12 Chapter 4 Synthe2c fibers Balasubramanian S Assistant Professor (OG) Department of Chemical Engineering Balasubramanian S 1 Overview of topics Chapter 4 Synthe2c Fibers 1 Acrylics 2 Polyamides 3 Polyesters 17/02/11 Balasubramanian S 2 Synthetic (or man-made fibers) What are Synthe2c Fibers? The clothes that we wear are made up of fabrics Fabrics are made up of fibers Depending on the sources the fibers are classified in two types 1. Natural and 2. Synthe2c Natural fibers are the fibers which are obtained from plants and animals e.g. silk and wool Synthe2c fibers are made by human beings or also called as man- made fibers Nylon, Polyester, Rayon etc. Balasubramanian S 3 Synthetic (or man-made fibers) Natural Fiber, Silk wool Balasubramanian S 4 Synthetic (or man-made fibers) Synthe2c Fibers Nylon Polyester Balasubramanian S 5 Synthetic (or man-made fibers) The first synthe2c or man-made fiber is cellulose nitrate and the next synthe2c fiber is regenerated cellulose or viscose. Some of the man-made fibers emerged aer 1940’s were acrylics, polyamides, polyesters and polyolefin. The uses of man-made fibers depend upon the nature of the individual fiber. Clothing, Carpets, and Upholstery are all made largely, or wholly, of synthe2c fibers. Balasubramanian S 6 Acrylics Acrylic fibers are synthe'c fibers made from a polymer (polyacrylonitrile) with an average molecular weight of ~100, 000 about 1900 monomer units The Dupont Corporaon created the first Acrylic fibers in 1941 and trademarked them under the name “Orlon” Balasubramanian S 7 Polyamide (Nylon fiber) Production Adipic Acid Water Hexamethylene diamine Process Ace2c acid Polyamide (Nylon) Nitrogen Air Steam Balasubramanian S 8 Polyamides A polyamide is a polymer containing monomers of amides. -
Natural Fibers and Fiber-Based Materials in Biorefineries
Natural Fibers and Fiber-based Materials in Biorefineries Status Report 2018 This report was issued on behalf of IEA Bioenergy Task 42. It provides an overview of various fiber sources, their properties and their relevance in biorefineries. Their status in the scientific literature and market aspects are discussed. The report provides information for a broader audience about opportunities to sustainably add value to biorefineries by considerin g fiber applications as possible alternatives to other usage paths. IEA Bioenergy Task 42: December 2018 Natural Fibers and Fiber-based Materials in Biorefineries Status Report 2018 Report prepared by Julia Wenger, Tobias Stern, Josef-Peter Schöggl (University of Graz), René van Ree (Wageningen Food and Bio-based Research), Ugo De Corato, Isabella De Bari (ENEA), Geoff Bell (Microbiogen Australia Pty Ltd.), Heinz Stichnothe (Thünen Institute) With input from Jan van Dam, Martien van den Oever (Wageningen Food and Bio-based Research), Julia Graf (University of Graz), Henning Jørgensen (University of Copenhagen), Karin Fackler (Lenzing AG), Nicoletta Ravasio (CNR-ISTM), Michael Mandl (tbw research GesmbH), Borislava Kostova (formerly: U.S. Department of Energy) and many NTLs of IEA Bioenergy Task 42 in various discussions Disclaimer Whilst the information in this publication is derived from reliable sources, and reasonable care has been taken in its compilation, IEA Bioenergy, its Task42 Biorefinery and the authors of the publication cannot make any representation of warranty, expressed or implied, regarding the verity, accuracy, adequacy, or completeness of the information contained herein. IEA Bioenergy, its Task42 Biorefinery and the authors do not accept any liability towards the readers and users of the publication for any inaccuracy, error, or omission, regardless of the cause, or any damages resulting therefrom. -
Investigating the Mechanical Properties of Polyester- Natural Fiber Composite
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 07 | July -2017 www.irjet.net p-ISSN: 2395-0072 INVESTIGATING THE MECHANICAL PROPERTIES OF POLYESTER- NATURAL FIBER COMPOSITE OMKAR NATH1, MOHD ZIAULHAQ2 1M.Tech Scholar,Mech. Engg. Deptt.,Azad Institute of Engineering & Technology,Uttar Pradesh,India 2Asst. Prof. Mechanical Engg. Deptt.,Azad Institute of Engineering & Technology, Uttar Pradesh,India ------------------------------------------------------------------------***----------------------------------------------------------------------- Abstract : Reinforced polymer composites have played an Here chemically treated and untreated fibres were mixed ascendant role in a variety of applications for their high separately with polyester matrix and by using hand lay –up meticulous strength and modulus. The fiber may be synthetic technique these reinforced composite material is moulded or natural used to serves as reinforcement in reinforced into dumbbell shape. Five specimens were prepared in composites. Glass and other synthetic fiber reinforced different arrangement of natural fibres and glass fiber in composites consists high meticulous strength but their fields of order to get more accurate results. applications are restrained because of their high cost of production. Natural fibres are not only strong & light weight In the present era of environmental consciousness, but mostly cheap and abundantly available material especially more and more material are emerging worldwide, Efficient in central uttar Pradesh region and north middle east region. utilization of plant species and utilizing the smaller particles Now a days most of the automotive parts are made with and fibers obtained from various lignocellulosic materials different materials which cannot be recycled. Recently including agro wastes to develop eco-friendly materials is European Union (E.U) and Asian countries have released thus certainly a rational and sustainable approach. -
Review on Natural and Carbon Fiber Filled Hybrid Composite
Special Issue - 2016 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 ETMET - 2016 Conference Proceedings Review on Natural and Carbon Fiber Filled Hybrid Composite Sandhya Rani B A. Hareesh Dr. A. Ramesh Mechanical,Gates it,Gooty, Mechanical,K.S.S.E.M, Mechanical,Principal BITS, Anantapur Bangalore Hindupur Abstract: During the past 10 years, a lot of fundamental and Resistance, Chemical Resistance are Excellent and young’s applied researches have been carried out in polymer matrix modulus is 125-181. [7] Nano composites. Due to the molecular size and their The general class of Hybrid composite developed by reinforcement, polymer Nano composites offer ample possibility combining natural fiber and synthetic fiber or natural fiber or to develop new material with un- usual properties. Thermo set synthetic fiber with epoxy, polyester, phenolic, poly vinyl polymers have been widely used for engineering components, adhesives and matrix for fiber reinforced composites due to their ester, poly urethane resins, etc., [8]. good mechanical properties compared to those of thermoplastic polymers .Carbon Fiber having strength 4127, laminate strength II. PROPERTIES OF FIBERS 1600, Density 1.58,Stength to weight 1013,Youngs Modulus 125 to 181 .Carbon fibers with diameters in the range of 6-10 μm A. Source, and Classification of Lignocellulose Fibers posses’ high elastic modules. In this paper an attempt is made to discuss behaviour of composites and hybrid composites of short sansevieria trifasciata Lignocellulose fibers are natural fibers. Natural fibers are the carbon fiber in a polyester matrix under thermal, mechanical, most copious and renewable bio-based materials source in structural, chemical and physical conditions with the nature. -
New Hemp-Based Fiber Enhances Wet-Mix Shotcrete Performance
New Hemp-Based Fiber Enhances Wet-Mix Shotcrete Performance By Dudley R. (Rusty) Morgan, Lihe (John) Zhang, and Mike Pildysh n innovative processed natural hemp-based fiber without any fibers and mixtures with a synthetic (polypro- has been developed for use in concrete and shot- pylene) microfiber. These studies, conducted in Vancouver, A crete (wet- and dry-mix shotcrete processes) in lieu BC, Canada, demonstrated that when used at equivalent of conventional synthetic fibers, which are derived from fiber-volume addition rates, not only was the natural hemp- hydro-carbon (oil and/or gas) feedstock. A driving force based fiber more effective in mitigating plastic shrinkage behind this development has been the desire to produce cracking than synthetic microfiber but it also provided many a truly sustainable green fiber with dramatic reductions in additional benefits in the plastic and hardened concretes. This was particularly true for the wet-mix shotcrete process, CO2 emissions into the atmosphere during fiber production, compared to the synthetic (mainly polypropylene) fibers cur- where some marked benefits to the shotcrete application rently being used in the concrete and shotcrete industries. and finishing processes were found. Synthetic microfibers have mainly been used in concrete This article provides a summary of the findings from and shotcrete to help mitigate early-age plastic shrinkage the wet-mix shotcrete laboratory study. It also provides cracking. In the absence of adequate protection and initial observations from a subsequent full-scale field application curing, plastic shrinkage cracking has been an issue in the of wet-mix shotcrete with the natural hemp-based fiber, shotcrete industry. -
Download Our Educational Materials
2 Cotton: A Miraculous Fiber A Unique, Natural Fiber Cotton is a natural fiber with layers of highly organized cellulose surrounding a Even after 8,000 years, cotton remains Why we love Cotton hollow core. The pitch, or angle, of the cell the most miraculous fiber under the sun. Cotton is the most used fiber in the layers alternate, first one way then the No other single fiber comes close to dupli- world. It’s popular because it’s versatile. other, which accounts for cotton’s extraor- cating all the desirable characteristics It’s used in apparel, home furnishings, and dinary strength. combined in cotton. industrial and other consumer products. Recently, a science museum in Newark, Cotton is noted for its versatility, There isn’t a part of your day that you did- NJ, lifted a 3,500-pound car with seven appearance, performance, and above all n’t use something made from cotton. The pairs of denim jeans attached to the crane. else, its natural comfort. Cotton in today’s towel after your shower, the shirt and The hollowness and the layering of the fast-moving world is still nature’s wonder pants you put on, the seats in your car. cells also contribute to cotton’s ability fiber, providing thousands of useful prod- The money you used to buy a biscuit for readily to absorb water and to “wick” ucts and supporting millions of jobs. breakfast. All made from cotton. moisture away from the body. A 480 pound bale of cotton can produce: 1,200 men’s T-shirts, 3,000 baby diapers, 1,300 pairs of pillowcases, 690 terrycloth bath towels, more than 730 shirts or blouses, or 215 pairs of 100% Cotton, 100% Usable, men’s denim jeans. -
All About Fibers
RawRaw MaterialsMaterials ¾ More than half the mix is silica sand, the basic building block of any glass. ¾ Other ingredients are borates and trace amounts of specialty chemicals. Return © 2003, P. Joyce BatchBatch HouseHouse && FurnaceFurnace ¾ The materials are blended together in a bulk quantity, called the "batch." ¾ The blended mix is then fed into the furnace or "tank." ¾ The temperature is so high that the sand and other ingredients dissolve into molten glass. Return © 2003, P. Joyce BushingsBushings ¾The molten glass flows to numerous high heat-resistant platinum trays which have thousands of small, precisely drilled tubular openings, called "bushings." Return © 2003, P. Joyce FilamentsFilaments ¾This thin stream of molten glass is pulled and attenuated (drawn down) to a precise diameter, then quenched or cooled by air and water to fix this diameter and create a filament. Return © 2003, P. Joyce SizingSizing ¾The hair-like filaments are coated with an aqueous chemical mixture called a "sizing," which serves two main purposes: 1) protecting the filaments from each other during processing and handling, and 2) ensuring good adhesion of the glass fiber to the resin. Return © 2003, P. Joyce WindersWinders ¾ In most cases, the strand is wound onto high-speed winders which collect the continuous fiber glass into balls or "doffs.“ Single end roving ¾ Most of these packages are shipped directly to customers for such processes as pultrusion and filament winding. ¾ Doffs are heated in an oven to dry the chemical sizing. Return © 2003, P. Joyce IntermediateIntermediate PackagePackage ¾ In one type of winding operation, strands are collected into an "intermediate" package that is further processed in one of several ways.