Ugent Biblio
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management G
Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management G. S. Saharan • Naresh Mehta Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management Dr. G. S. Saharan Dr. Naresh Mehta CCS Haryana Agricultural University CCS Haryana Agricultural University Hisar, Haryana, India Hisar, Haryana, India ISBN 978-1-4020-8407-2 e-ISBN 978-1-4020-8408-9 Library of Congress Control Number: 2008924858 © 2008 Springer Science+Business Media B.V. No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com Foreword The fungus Sclerotinia has always been a fancy and interesting subject of research both for the mycologists and pathologists. More than 250 species of the fungus have been reported in different host plants all over the world that cause heavy economic losses. It was a challenge to discover weak links in the disease cycle to manage Sclerotinia diseases of large number of crops. For researchers and stu- dents, it has been a matter of concern, how to access voluminous literature on Sclerotinia scattered in different journals, reviews, proceedings of symposia, workshops, books, abstracts etc. to get a comprehensive picture. With the publi- cation of book on ‘Sclerotinia’, it has now become quite clear that now only three species of Sclerotinia viz., S. -
Epidemiology of Sclerotinia Sclerotiorum, Causal Agent of Sclerotinia Stem Rot, on SE US Brassica Carinata
Epidemiology of Sclerotinia sclerotiorum, causal agent of Sclerotinia Stem Rot, on SE US Brassica carinata by Christopher James Gorman A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Masters of Science Auburn, Alabama May 2, 2020 Keywords: Sclerotinia sclerotiorum, epidemiology, sclerotia conditioning, apothecia germination, ascospore infection, fungicide assay Copyright 2020 by Christopher James Gorman Approved by Kira Bowen, Professor of Plant Pathology Jeffrey Coleman, Assistant Professor of Plant Pathology Ian Smalls, Assistant Professor of Plant Pathology, UF Austin Hagan, Professor of Plant Pathology ABSTRACT Brassica carinata is a non-food oil seed crop currently being introduced to the Southeast US as a winter crop. Sclerotinia sclerotiorum, causal agent of Sclerotinia Stem Rot (SSR) in oilseed brassicas, is the disease of most concern to SE US winter carinata, having the potential to reduce yield and ultimately farm-gate income. A disease management plan is currently in development which will include the use of a disease forecasting system. Implementation of a disease forecasting system necessitates determining the optimal environmental conditions for various life-stages of SE US isolates of this pathogen for use in validating or modifying such a system. This is because temperature requirements and optimums for disease onset and subsequent development may vary depending on the geographical origin of S. sclerotiorum isolates. We investigated the optimal conditions necessary for three life-stages; conditioning of sclerotia, germination of apothecia, and ascospore infection of dehiscent carinata petals. Multiple isolates of S. sclerotiorum were tested, collected from winter carinata or canola grown in the SE US. -
Molecular Identification of Fungi
Molecular Identification of Fungi Youssuf Gherbawy l Kerstin Voigt Editors Molecular Identification of Fungi Editors Prof. Dr. Youssuf Gherbawy Dr. Kerstin Voigt South Valley University University of Jena Faculty of Science School of Biology and Pharmacy Department of Botany Institute of Microbiology 83523 Qena, Egypt Neugasse 25 [email protected] 07743 Jena, Germany [email protected] ISBN 978-3-642-05041-1 e-ISBN 978-3-642-05042-8 DOI 10.1007/978-3-642-05042-8 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2009938949 # Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany, kindly supported by ‘leopardy.com’ Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Dedicated to Prof. Lajos Ferenczy (1930–2004) microbiologist, mycologist and member of the Hungarian Academy of Sciences, one of the most outstanding Hungarian biologists of the twentieth century Preface Fungi comprise a vast variety of microorganisms and are numerically among the most abundant eukaryotes on Earth’s biosphere. -
On Canola (Brassica Napus L.) Leaves 28 Abstract
Pathogen growth inhibition and disease suppression on cucumber and canola plants with ActiveFlower™ (AF), a foliar nutrient spray containing boron by Li Ni B.Sc., Dalhousie University, 2016 B.Sc., Fujian Agricultural and Forestry University, 2016 Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Biological Sciences Faculty of Science © Li Ni 2019 SIMON FRASER UNIVERSITY Summer 2019 Copyright in this work rests with the author. Please ensure that any reproduction or re-use is done in accordance with the relevant national copyright legislation. Approval Name: Li Ni Degree: Master of Science Title: Pathogen growth inhibition and disease suppression on cucumber and canola plants with ActiveFlowerTM (AF), a foliar nutrient spray containing boron Examining Committee: Chair: Gerhard Gries Professor Zamir Punja Senior Supervisor Professor Sherryl Bisgrove Supervisor Associate Professor Rishi Burlakoti External Examiner Research Scientist – Plant Pathology Agriculture and Agri-Food Canada Date Defended/Approved: July 30, 2019 ii Abstract The effectiveness of ActiveFlower (AF), a fertilizer containing 3% boron in reducing pathogen growth and diseases on cucumber and canola plants was evaluated. In vitro, growth of S. sclerotiorum with AF at 0.1, 0.3 and 0.5 mL/100 mL showed pronounced inhibition at 0.5 mL/100 mL. In greenhouse experiments, the number of powdery mildew colonies on cucumber was significantly reduced by AF at the higher concentrations applied as weekly foliar sprays. On detached canola leaves, AF at 0.5 mL/100 mL and boric acid (BA) at 10 mL/L significantly reduced lesion size of S. -
Investigations on the Occurrence of Fungal Root Endophytes and an Associated Mycovirus in Context with Apple Replant Disease
Investigations on the occurrence of fungal root endophytes and an associated mycovirus in context with apple replant disease Von der Naturwissenschaftlichen Fakultät der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades Doktorin der Gartenbauwissenschaften (Dr. rer. hort.) genehmigte Dissertation von Gösta Carolin Dorette Popp, M. Sc. 2020 Referent: Prof. Dr. Edgar Maiss Korreferentin: Prof. Dr. Traud Winkelmann Tag der Promotion: 12.08.2020 Abstract I Abstract Apple replant disease (ARD) negatively affects the production in nurseries and orchards worldwide. A biotic cause of the disease is most likely since soil disinfection can restore plant growth. Fungi have appeared to contribute to the complex of biotic factors, but up to now the actual cause of the disease remains unknown. Further, environmentally friendly and practically applicable mitigation strategies are missing. Fungal root endophytes were isolated in two central experiments of the ORDIAmur consortium. Dark septate endophytes (Leptodontidium spp.) were frequently isolated from apple roots. An abundant occurrence of Nectriaceae fungi (Dactylonectria torresensis and Ilyonectria robusta) was found in ARD roots. Reference sites displayed a different characteristic fungal community. In roots grown in irradiated soil, a reduction of the number of isolated fungi and a changed composition of the fungal community was found. To investigate the effect of fungal endophytes on apple plants a quick and soil-free bio test in Petri dishes was developed using perlite. Inoculated fungi isolated from ARD roots induced neutral (Plectosphaerella, Pleotrichocladium, and Zalerion) to negative (Cadophora, Calonectria, Dactylonectria, Ilyonectria, and Leptosphaeria) plant reactions. After re-isolation, most of the Nectriaceae isolates were confirmed as pathogens. Microscopic analyses of ARD-affected roots revealed necroses caused by an unknown fungus that forms cauliflower-like (CF) structures in diseased cortex cells. -
Biological Control of Sclerotinia Stem Rot of Soybean with Sporidesmium Sclerotivorum Luis Enrique Del Rió Mendoza Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1999 Biological control of Sclerotinia stem rot of soybean with Sporidesmium sclerotivorum Luis Enrique del Rió Mendoza Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, and the Plant Pathology Commons Recommended Citation del Rió Mendoza, Luis Enrique, "Biological control of Sclerotinia stem rot of soybean with Sporidesmium sclerotivorum " (1999). Retrospective Theses and Dissertations. 12658. https://lib.dr.iastate.edu/rtd/12658 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. -
Water Potential Interaction with Host and Pathogen and Development of a Multiplex Pcr for Sclerotinia Species
WATER POTENTIAL INTERACTION WITH HOST AND PATHOGEN AND DEVELOPMENT OF A MULTIPLEX PCR FOR SCLEROTINIA SPECIES By AHMED ABD-ELMAGID Bachelor of Science in Agriculture Assiut University Assiut, Egypt 1999 Master of Science in Plant Pathology Assiut University Assiut, Egypt 2003 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY July, 2012 WATER POTENTIAL INTERACTION WITH HOST AND PATHOGEN AND DEVELOPMENT OF A MULTIPLEX PCR FOR SCLEROTINIA SPECIES Dissertation Approved: Dr. Hassan Melouk Dissertation Adviser Dr. Robert Hunger Dr. Carla Garzon Dr. Mark Payton Outside Committee Member Dr. Sheryl A. Tucker Dean of the Graduate College . ii TABLE OF CONTENTS Chapter Page I. INTRODUCTION AND REVIEW OF LITERATURE ............................................1 Water, fungi and plants ............................................................................................1 Sclerotinia blight of peanut ......................................................................................5 Sclerotinia minor .....................................................................................................6 Sclerotinia sclerotiorum ...........................................................................................7 Impact of water potential on S. minor and S. sclerotiorum .....................................7 Tan spot of wheat .....................................................................................................9 -
Shifts in Diversification Rates and Host Jump Frequencies Shaped the Diversity of Host Range Among Sclerotiniaceae Fungal Plant Pathogens
Original citation: Navaud, Olivier, Barbacci, Adelin, Taylor, Andrew, Clarkson, John P. and Raffaele, Sylvain (2018) Shifts in diversification rates and host jump frequencies shaped the diversity of host range among Sclerotiniaceae fungal plant pathogens. Molecular Ecology . doi:10.1111/mec.14523 Permanent WRAP URL: http://wrap.warwick.ac.uk/100464 Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions. This article is made available under the Creative Commons Attribution 4.0 International license (CC BY 4.0) and may be reused according to the conditions of the license. For more details see: http://creativecommons.org/licenses/by/4.0/ A note on versions: The version presented in WRAP is the published version, or, version of record, and may be cited as it appears here. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Received: 30 May 2017 | Revised: 26 January 2018 | Accepted: 29 January 2018 DOI: 10.1111/mec.14523 ORIGINAL ARTICLE Shifts in diversification rates and host jump frequencies shaped the diversity of host range among Sclerotiniaceae fungal plant pathogens Olivier Navaud1 | Adelin Barbacci1 | Andrew Taylor2 | John P. Clarkson2 | Sylvain Raffaele1 1LIPM, Universite de Toulouse, INRA, CNRS, Castanet-Tolosan, France Abstract 2Warwick Crop Centre, School of Life The range of hosts that a parasite can infect in nature is a trait determined by its Sciences, University of Warwick, Coventry, own evolutionary history and that of its potential hosts. However, knowledge on UK host range diversity and evolution at the family level is often lacking. -
Microbial Factors Associated with the Natural Suppression of Take-All In
Title Page Microbial factors associated with the natural suppression of take-all in wheat in New Zealand A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy At Lincoln University, Canterbury, New Zealand by Soon Fang Chng Lincoln University 2009 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy Abstract Microbial factors associated with the natural suppression of take- all in wheat in New Zealand by Soon Fang Chng Take-all, caused by the soilborne fungus, Gaeumannomyces graminis var. tritici (Ggt), is an important root disease of wheat that can be reduced by take-all decline (TAD) in successive wheat crops, due to general and/or specific suppression. A study of 112 New Zealand wheat soils in 2003 had shown that Ggt DNA concentrations (analysed using real-time PCR) increased with successive years of wheat crops (1-3 y) and generally reflected take-all severity in subsequent crops. However, some wheat soils with high Ggt DNA concentrations had low take-all, suggesting presence of TAD. This study investigated 26 such soils for presence of TAD and possible suppressive mechanisms, and characterised the microorganisms from wheat roots and rhizosphere using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE). A preliminary pot trial of 29 soils (including three from ryegrass fields) amended with 12.5% w/w Ggt inoculum, screened their suppressiveness against take-all in a growth chamber. Results indicated that the inoculum level was too high to detect the differences between soils and that the environmental conditions used were unsuitable. -
Overwinter Survival of Sclerotium Rolfsii and S. Rolfsii Var. Delphinii, Screening Hosta for Resistance to S. Rolfsii Var. Delph
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2008 Overwinter survival of Sclerotium rolfsii and S. rolfsii var. delphinii, screening hosta for resistance to S. rolfsii var. delphinii, and phylogenetic relationships among Sclerotium species Zhihan Xu Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Plant Pathology Commons Recommended Citation Xu, Zhihan, "Overwinter survival of Sclerotium rolfsii and S. rolfsii var. delphinii, screening hosta for resistance to S. rolfsii var. delphinii, and phylogenetic relationships among Sclerotium species" (2008). Graduate Theses and Dissertations. 10366. https://lib.dr.iastate.edu/etd/10366 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Overwinter survival of Sclerotium rolfsii and S. rolfsii var. delphinii, screening hosta for resistance to S. rolfsii var. delphinii, and phylogenetic relationships among Sclerotium species by Zhihan Xu A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Pathology Program of Study Committee: Mark L. Gleason, Major Professor Philip M. Dixon Richard J. Gladon Larry J. Halverson Thomas C. Harrington X.B. Yang Iowa State University Ames, Iowa 2008 Copyright © Zhihan Xu, 2008. All rights reserved. ii This dissertation is dedicated to my family. iii TABLE OF CONTENTS ABSTRACT v CHAPTER 1. -
New Contributions to the Turkish Ascomycota
Turkish Journal of Botany Turk J Bot (2018) 42: 644-652 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1712-1 New contributions to the Turkish Ascomycota Abdullah KAYA*, Yasin UZUN Department of Biology, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, Karaman, Turkey Received: 01.12.2017 Accepted/Published Online: 06.05.2018 Final Version: 26.09.2018 Abstract: Nine discomycete and one sordariomycete (Ascomycota) species are reported for the first time from Turkey. The genera Coccomyces, Kompsoscypha, Pseudopithyella, Strobiloscypha, and Lasiosphaeris have not been reported before in the country. Anthracobia, Plicaria, Sclerotinia, and Pithya species are new records added to the previous knowledge. Macro- and micromorphological descriptions and illustrations for each new taxon are provided. Key words: Ascomycota, biodiversity, new records, Turkey 1. Introduction Spooner (2001), Monti and Marchetti (2003), Medardi The knowledge of higher fungi in Turkey has been (2006), Peric et al. (2013), Thompson (2013), and Beug et increasing over the years. More than 2500 species has been al. (2014). identified so far in the country, and most of them have Specimens are deposited at Karamanoğlu Mehmetbey been published as checklists (Sesli and Denchev, 2014; University, Kamil Özdağ Science Faculty, Department of Solak et al., 2015). The number of taxa reached almost Biology. 210 ascomycetes. Since then, nearly 90 more species of Ascomycota were added to the former list (Akata et al., 3. Results 2016a, 2016b; Akçay and Uzun, 2016; Doğan et al., 2016; The systematics of the species are given according to Dülger and Akata, 2016; Elliot et al., 2016; Kaya, 2016; Index Fungorum (www.indexfungorum.org; accessed 30 Kaya et al., 2016; Taşkın et al., 2016; Acar and Uzun, 2017; November 2017) and Wijayawardene et al. -
Diversity and Management of Sclerotinia Sclerotiorum in Brassica Spp
Diversity and Management of Sclerotinia sclerotiorum in Brassica spp. in Bangladesh Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Md. Mynul Islam, MS Graduate Program in Plant Pathology The Ohio State University 2018 Dissertation Committee: Sally A. Miller, Advisor Anne Dorrance Pierce A. Paul Christopher Taylor Copyright by Md. Mynul Islam 2018 Abstract Sclerotinia sclerotiorum is an important pathogen of many crops including rapeseed- mustard (Brassica spp.). The pathogen has emerged relatively recently in Bangladesh and there is no information available regarding its population structure in mustard-growing regions of the country. A series of experiments were conducted to determine the variability of S. sclerotiorum isolates from different regions of Bangladesh and from Ohio, USA. In 2014, a total of 132 S. sclerotiorum isolates were collected from 11 locations in Bangladesh and Ohio. Morphological characteristics including mycelial radial growth and number and fresh weight of sclerotia were measured. Genetic variability was also assessed by Internal Transcribed Spacer (ITS) rDNA sequencing, microsatellite markers and mycelial compatibility grouping. Overall, isolates from Bangladesh showed low variability based on morphological and molecular characteristics. Mycelial radial growth of isolates from one location in Bangladesh was significantly higher than the radial growth of isolates from Ohio. No significant difference was observed in the number of sclerotia produced by isolates from the 11 locations. The weight of sclerotia produced by isolates from Tangail, Mirzapur was smaller than that of isolates from Ohio and from Tangail, Ghatail and Shirajganj, Chalakpara, Bangladesh. No significant variation was observed among isolates from any location based on their ITS rDNA sequences.