AVIAN PARAMYXOVIRUSES in SHOREBIRDS and Gulls

Total Page:16

File Type:pdf, Size:1020Kb

AVIAN PARAMYXOVIRUSES in SHOREBIRDS and Gulls journal Diseases, 46(2), 2010, pp. 481-487 \Vildlife Disease Association 2010 AVIAN PARAMYXOVIRUSES IN SHOREBIRDS AND GUllS laura l. Coffee,1,5 Britta A. Hanson,' M. Page Luttrell;' David E. Swa~ne,2 Dennis A. Senne,3 Virginia H. Goekjlan," lawrence J. Niles,4,6 and David E. Stallknecht1, 1 Southeastern Cooperative Wildlife Disease Study, Departrnent of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, Georgia 30602, USA 2 Southeast Poultry Research Laboratory, Agricultural Research Service, US Departrnent of Agriculture, Athens, Georgia 30605, USA 3 US Departrnent of Agriculture, Anirnal and Plant Health Inspection Service, National Veterinary Services Laboratories, Ames, Iowa 50010, USA 4 Endangered and Nongame Species Program, New Jersey Division of Fish and Wildlife, PO Box 400, Trenton, New Jersey 08625, USA 5 Current address: Cornell University, College of Veterinary Medicine, S2-118 Schurman Hall, Biomedical Sciences, Ithaca, New York 14853, USA 6 Current address: Conserve Wildlife Foundation, 516 Farnsworth Avenue, Bordertown, New Jersey 08505, USA 7 Corresponding author (email: [email protected]) ABSTRACT: There are nine serotypes of avian paramyxovirus (APMV), including APMV-1, or Newcastle disease virus. Although free-flying ducks and geese have been extensively monitored for APMV, limited information is available for species in the order Charadriiforrnes. From 2000 to 2005 we tested cloacal swabs from 9,128 shorebirds and gulls (33 species, five families) captured in 10 states within the USA and in three countries in the Caribbean and South America. Avian paramyxoviruses were isolated from 60 (0.7%) samples by inoculation of embryonating chicken eggs; isolates only included APMV-1 and APMV-2. Two isolates (APMV-2) were made from gulls and 58 isolates (APMV-1 [41isolates] and APMV-2 [17 isolates]) were made from shorebirds. All of the positive shorebirds were sampled at Delaware Bay (Delaware and NewJersey) and 45 (78%) of these isolates came from Ruddy Turnstones (Arenaria interpres). The AFMV-1 infection rate was higher among Ruddy Turnstones compared with other shorebird species and varied by year. Avian paramyxovirus-Z was isolated from two of394 (0.5%) Ruddy Turnstones at Delaware Bay in 2001 and from 13 of 735 (1.8%) Ruddy Turnstones during 2002. For both APMV-1 and APMV-2, infection rates were higher among Ruddy Turnstones sampled on the south shore ofDelaware Bay compared to north shore populations, This spatial variation may be related to local movements of Ruddy Turnstones within this ecosystem. The higher prevalence of APMV in Ruddy Turnstones mirrors results observed for avian influenzaviruses in shorebirds and may suggest similar modes of transmission. KEy words: Avian paramyxovirus, Delaware Bay, Red Knot, Ruddy Turnstone, shorebird. INTRODUCTION isolated from wild birds (Stallknecht et al., 1991; Hlinak et al., 2006). Avian paramyxoviruses (APMV) are The occurrence and natural history of negative-strand RNA viruses of the genus APMVs 1-9 are poorly documented in Avulavirus in the family Paramyxoviridae. charadriiform birds, but isolations of The genus includes nine serotypes that APMV-1, -4, and -6 have been reported have been documented in a variety of (Hlinak et al., 2006). Because some of wild, domestic, and pet birds worldwide these birds are highly migratory, crossing (Alexander, 1995). The most economically the equator bi-annually during long mi­ important serotype is APMV-1 (Newcastle grations from winter nesting grounds in disease virus), but other APMV serotypes South America to arctic breeding grounds have been isolated from domestic poultry, (Clark et al., 1993), they present a where they occasionally cause respiratory potential mechanism for the global move­ and reproductive disease (Warke et al., ment of these viruses. To date, domestic 2008). Information about the distribution surveillance in shorebirds has focused of APMVs 2-9 in wild species is limited primarily on avian influenza viruses (Hli­ compared with APMV-1; however, all nine nak et al., 2006). serotypes, except APMV-5, have been Delaware Bay is a major North Amer- 481 482 JOURNAL OF WILDLIFE DISEASES, VOL. 46, NO.2, APRIL 2010 ican stopover site for spring-migrating (Calidris pusilla). Other shorebirds inciden­ shorebirds due to its strategic location tally captured during these efforts were and seasonal abundance ofhorseshoe crab included in this study. With the exception of Sanderlings, birds at Delaware Bay were (Limulus polyphemus) eggs. Aerial surveys sampled in both New Jersey (North shore) of shorebirds during spring migration and Delaware (South shore). Sanderlings were ranked Delaware Bay as the second­ only sampled on the North shore and, during largest stopover site in the Western 2005, sampling of all shorebirds was restricted Hemisphere (Clark et al., 1993). Shore­ to the North shore due to their late arrival and a limited sampling period. birds arrive in poor body condition in mid­ Cloacal samples were collected from cap­ May and spend 2-3 wk rebuilding their tured birds using sterile, cotton-tipped appli­ caloric reserves and body condition for cators (Puritan Medical Products Co., Guil­ breeding (Clark et al., 1993). Due to its ford, Maine, USA) that were placed in sterile, high concentration of migrating shore­ 4-ml cryogenic vials (Corning Inc., Corning, New York, USA) containing 2-3 ml of chilled birds during spring migration, Delaware brain heart infusion broth (Becton, Dickinson Bay represents an ideal sampling site for and Co., Sparks, Maryland, USA) supplement­ investigating avian influenza virus (AIV) ed with 1,000 Ulml penicillin G, 1.0 mg/ml and APMV infections in these species; a streptomycin sulfate, 0.25 mglml gentamicin, high annual prevalence ofAIV infection in 0.50 mglml kanamycin, and 0.025 mglml shorebirds at Delaware Bay, primarily in amphotericin B (Sigma Chemical Company, St. Louis, Missouri, USA). Samples were Ruddy Turnstones (Arenaria interpres), temporarily placed on ice in coolers and has been previously reported (Hanson et transferred into liquid nitrogen at the end of al., 2008). The objectives of this study the sampling event (generally less than 8 hr). were to analyze and report APMV preva­ They remained in liquid nitrogen for 2-21 days lence in shorebirds and gulls at this, and until they were transported to the laboratory and stored at -70 C. other, sites and to determine if the Samples were removed from the freezer, occurrence of these viruses in birds at allowed to thaw at room temperature for 30­ Delaware Bay is species or site related. 40 min, vortexed at high speed for 10 sec, and centrifuged at 1,500 X G for 15 min. From MATERIALS AND METHODS each sample, 0.25 ml was injected into four, specific-pathogen-free, 9-day-old embryonat­ From 2000 to 2005, 9,128 charadriiform ing chicken eggs from the University of birds (including species in families Haernoto­ Georgia's Poultry Disease Research Center dididae, Recurvirostridae, Charadriidae, Sco­ in Athens, Georgia, USA. Eggs were incubated lopacidae, and Laridae) were sampled (Ta­ at 37 C for 5 days, and amnio-allantoic fluid ble 1). These included 6,061 birds from was harvested and tested for hemagglutination . Delaware Bay, 2,360 birds from 10 other (HA). All HA-positive samples were submitted . states (Arkansas, Florida, Georgia, Kansas, to the National Veterinary Services Laborato­ Louisiana, Missouri, Massachusetts, New ries, Veterinary Services, Animal and Plant York, South Carolina, and Texas), and 707 Health Inspection Service, US Department of birds from South America (Argentina and Agriculture for virus serotyping by hemagglu­ Chile) and Bermuda sampled during winter tination inhibition (HI); HA and HI tests were (2001-2002). Collection site, capture tech­ done as described by the Committee on niques, and dates of sampling were described Standard Methods for the Hemagglutination in Hanson et al. (2008). Sampling at Delaware and Hemagglutination Inhibition Test for Bay was conducted in conjunction with Newcastle Disease (1975). banding and surveillance activities conducted Data were analyzed using SAS Software by the Division of Fish and Wildlife of the (SAS Institute Inc., Cary, North Carolina, New Jersey Department of Environmental USA). Virus isolation results were dichoto­ Protection and the Delaware Department of mized for each subtype and set as outcome Natural Resources and Environmental Con­ disease variables. Uniform distribution of trol'. Four species of shorebirds were prefer­ APMV prevalence was tested among popula­ entially sampled: Red Knots (Calidris canu­ tions (by species, geographic location, and tu.s}, Sanderlings (Calidris alba), Ruddy year) using the chi-square goodness-of-fit test, Turnstones, and Semipalmated Sandpipers the Mantel-Haenzel chi-square test, or COFFEE ET AL-APMV IN SHOREBIRDS AND GULLS 483 TABLE 1. Birds sampled and tested for avian paramyxovirus during 2000-2005 at Delaware Bay, USA and other sites. Family Species Charadriidae (n=43) Semipalmated Plover (Charadrius semipalrnatus) 20 Killdeer (Charadrius vociferous) 11 Wilson's Plover (Charadrius wilsonia) 5 Black-bellied Plover (Pluvialis squatarola) 7 Haematopodidae (n=84) American Oystercatcher (Haematopus palliatus) 84 Recurvirostridae (n=6) Black-necked Stilt (Himantopus mexicanus) 6 Scolopacidae (n=7999) Spotted Sandpiper (Actitis macularius) 5 Ruddy Turnstone (Arenaria interpres) 26 (2,368) Sanderling (Calidris alba) 11 (741) Dunlin (Calidris alpina) 137 (378) Red Knot (Calidris canutus)
Recommended publications
  • Age-Related Differences in Ruddy Turnstone Foraging and Aggressive Behavior
    AGE-RELATED DIFFERENCES IN RUDDY TURNSTONE FORAGING AND AGGRESSIVE BEHAVIOR SARAH GROVES ABSTRACT.--Theforaging behavior of fall migrant Ruddy Turnstoneswas studiedon the Mas- sachusettscoast on 2 different substrates,barnacle-covered rocks and sand and weed-litteredflats. Foragingrates differedsignificantly between the 2 substrates.On eachsubstrate the foragingand successrates of adults and juveniles differed significantly while the frequenciesof successwere similarfor both age-classes.The observeddifferences in foragingrates of adultsand juvenilesmay be due to the degreeof refinementof foragingtechniques. Experience in searchingfor and handling prey may be a primary factor accountingfor thesedifferences, and foragingperformance probably improves with age and experience.Alternatively, the differencesmay be due to the presenceof inefficient juveniles that do not survive to adulthood. Both adultsand juveniles in the tall-depressedposture were dominant in aggressiveinteractions much morefrequently than birds in the tall-levelposture. In mixedflocks of foragingadult and juvenile turnstones,the four possibletypes of aggressiveinteractions occurred nonrandomly. Adult over juvenile interactionsoccurred more frequently than expected,and juvenile over adult interac- tions were never seen.A tentative explanationof this phenomenonmay be that juveniles misinter- pret or respondambivalently to messagesconveyed behaviorally by adultsand thusbecome espe- cially vulnerableto aggressionby adults.The transiencyof migrantsmade it unfeasibleto evaluate
    [Show full text]
  • Wildlife Habitat Plan
    WILDLIFE HABITAT PLAN City of Novi, Michigan A QUALITY OF LIFE FOR THE 21ST CENTURY WILDLIFE HABITAT PLAN City of Novi, Michigan A QUALIlY OF LIFE FOR THE 21ST CENTURY JUNE 1993 Prepared By: Wildlife Management Services Brandon M. Rogers and Associates, P.C. JCK & Associates, Inc. ii ACKNOWLEDGEMENTS City Council Matthew C. Ouinn, Mayor Hugh C. Crawford, Mayor ProTem Nancy C. Cassis Carol A. Mason Tim Pope Robert D. Schmid Joseph G. Toth Planning Commission Kathleen S. McLallen, * Chairman John P. Balagna, Vice Chairman lodia Richards, Secretary Richard J. Clark Glen Bonaventura Laura J. lorenzo* Robert Mitzel* Timothy Gilberg Robert Taub City Manager Edward F. Kriewall Director of Planning and Community Development James R. Wahl Planning Consultant Team Wildlife Management Services - 640 Starkweather Plymouth, MI. 48170 Kevin Clark, Urban Wildlife Specialist Adrienne Kral, Wildlife Biologist Ashley long, Field Research Assistant Brandon M. Rogers and Associates, P.C. - 20490 Harper Ave. Harper Woods, MI. 48225 Unda C. lemke, RlA, ASLA JCK & Associates, Inc. - 45650 Grand River Ave. Novi, MI. 48374 Susan Tepatti, Water Resources Specialist * Participated with the Planning Consultant Team in developing the study. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS iii PREFACE vii EXECUTIVE SUMMARY viii FRAGMENTATION OF NATURAL RESOURCES " ., , 1 Consequences ............................................ .. 1 Effects Of Forest Fragmentation 2 Edges 2 Reduction of habitat 2 SPECIES SAMPLING TECHNIQUES ................................ .. 3 Methodology 3 Survey Targets ............................................ ., 6 Ranking System ., , 7 Core Reserves . .. 7 Wildlife Movement Corridor .............................. .. 9 FIELD SURVEY RESULTS AND RECOMMENDATIONS , 9 Analysis Results ................................ .. 9 Core Reserves . .. 9 Findings and Recommendations , 9 WALLED LAKE CORE RESERVE - DETAILED STUDy.... .. .... .. .... .. 19 Results and Recommendations ............................... .. 21 GUIDELINES TO ECOLOGICAL LANDSCAPE PLANNING AND WILDLIFE CONSERVATION.
    [Show full text]
  • Biogeographical Profiles of Shorebird Migration in Midcontinental North America
    U.S. Geological Survey Biological Resources Division Technical Report Series Information and Biological Science Reports ISSN 1081-292X Technology Reports ISSN 1081-2911 Papers published in this series record the significant find­ These reports are intended for the publication of book­ ings resulting from USGS/BRD-sponsored and cospon­ length-monographs; synthesis documents; compilations sored research programs. They may include extensive data of conference and workshop papers; important planning or theoretical analyses. These papers are the in-house coun­ and reference materials such as strategic plans, standard terpart to peer-reviewed journal articles, but with less strin­ operating procedures, protocols, handbooks, and manu­ gent restrictions on length, tables, or raw data, for example. als; and data compilations such as tables and bibliogra­ We encourage authors to publish their fmdings in the most phies. Papers in this series are held to the same peer-review appropriate journal possible. However, the Biological Sci­ and high quality standards as their journal counterparts. ence Reports represent an outlet in which BRD authors may publish papers that are difficult to publish elsewhere due to the formatting and length restrictions of journals. At the same time, papers in this series are held to the same peer-review and high quality standards as their journal counterparts. To purchase this report, contact the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161 (call toll free 1-800-553-684 7), or the Defense Technical Infonnation Center, 8725 Kingman Rd., Suite 0944, Fort Belvoir, VA 22060-6218. Biogeographical files o Shorebird Migration · Midcontinental Biological Science USGS/BRD/BSR--2000-0003 December 1 By Susan K.
    [Show full text]
  • List of Shorebird Profiles
    List of Shorebird Profiles Pacific Central Atlantic Species Page Flyway Flyway Flyway American Oystercatcher (Haematopus palliatus) •513 American Avocet (Recurvirostra americana) •••499 Black-bellied Plover (Pluvialis squatarola) •488 Black-necked Stilt (Himantopus mexicanus) •••501 Black Oystercatcher (Haematopus bachmani)•490 Buff-breasted Sandpiper (Tryngites subruficollis) •511 Dowitcher (Limnodromus spp.)•••485 Dunlin (Calidris alpina)•••483 Hudsonian Godwit (Limosa haemestica)••475 Killdeer (Charadrius vociferus)•••492 Long-billed Curlew (Numenius americanus) ••503 Marbled Godwit (Limosa fedoa)••505 Pacific Golden-Plover (Pluvialis fulva) •497 Red Knot (Calidris canutus rufa)••473 Ruddy Turnstone (Arenaria interpres)•••479 Sanderling (Calidris alba)•••477 Snowy Plover (Charadrius alexandrinus)••494 Spotted Sandpiper (Actitis macularia)•••507 Upland Sandpiper (Bartramia longicauda)•509 Western Sandpiper (Calidris mauri) •••481 Wilson’s Phalarope (Phalaropus tricolor) ••515 All illustrations in these profiles are copyrighted © George C. West, and used with permission. To view his work go to http://www.birchwoodstudio.com. S H O R E B I R D S M 472 I Explore the World with Shorebirds! S A T R ER G S RO CHOOLS P Red Knot (Calidris canutus) Description The Red Knot is a chunky, medium sized shorebird that measures about 10 inches from bill to tail. When in its breeding plumage, the edges of its head and the underside of its neck and belly are orangish. The bird’s upper body is streaked a dark brown. It has a brownish gray tail and yellow green legs and feet. In the winter, the Red Knot carries a plain, grayish plumage that has very few distinctive features. Call Its call is a low, two-note whistle that sometimes includes a churring “knot” sound that is what inspired its name.
    [Show full text]
  • Ageing and Sexing the Common Sandpiper Actitis Hypoleucos
    ageing & sexing series Wader Study 122(1): 54 –59. 10.18194/ws.00009 This series summarizing current knowledge on ageing and sexing waders is co-ordinated by Włodzimier Meissner (Avian Ecophysiology Unit, Department of Vertebrate Ecology & Zoology, University of Gdansk, ul. Wita Stwosza 59, 80-308 Gdansk, Poland, [email protected]). See Wader Study Group Bulletin vol. 113 p. 28 for the Introduction to the series. Part 11: Ageing and sexing the Common Sandpiper Actitis hypoleucos Włodzimierz Meissner 1, Philip K. Holland 2 & Tomasz Cofta 3 1Avian Ecophysiology Unit, Department of Vertebrate Ecology & Zoology, University of Gdańsk, ul.Wita Stwosza 59, 80-308 Gdańsk, Poland. [email protected] 232 Southlands, East Grinstead, RH19 4BZ, UK. [email protected] 3Hoene 5A/5, 80-041 Gdańsk, Poland. [email protected] Meissner, W., P.K. Holland & T. Coa. 2015. Ageing and sexing series 11: Ageing and sexing the Common Sandpiper Actitis hypoleucos . Wader Study 122(1): 54 –59. Keywords: Common Sandpiper, Actitis hypoleucos , ageing, sexing, moult, plumages The Common Sandpiper Actitis hypoleucos is treated as were validated using about 500 photographs available on monotypic through a breeding range that extends from the Internet and about 50 from WRG KULING ringing Ireland eastwards to Japan. Its main non-breeding area is sites in northern Poland. also vast, reaching from the Canary Islands to Australia with a few also in the British Isles, France, Spain, Portugal MOULT SCHEDULE and the Mediterranean (Cramp & Simmons 1983, del Juveniles and adults leave the breeding grounds as soon Hoyo et al. 1996, Glutz von Blotzheim et al.
    [Show full text]
  • First Record of the Terek Sandpiper in California
    FIRST RECORD OF THE TEREK SANDPIPER IN CALIFORNIA ERIKA M. WILSON, 1400 S. BartonSt. #421, Arlington,Virginia 22204 BETTIE R. HARRIMAN, 5188 BittersweetLane, Oshkosh,Wisconsin 54901 On 28 August 1988, while birding at Carmel River State Beach, MontereyCounty, California(36032 ' N, 121057' W), we discoveredan adult Terek Sandpiper (Xenus cinereus). We watched this Eurasian vagrantbetween 1110 and 1135 PDT; we saw it again,along with local birders, between 1215 and 1240 as it foraged on the open beach. Wilson observedthe bird a third time on 5 September 1988 between 1000 and 1130; otherssaw it regularlyuntil 23 September1988. During our first observationa light overcastsky resultedin good viewingconditions, without glare or strongshadows. The weather was mild with a slightbreeze and some offshorefog. We found the Terek Sandpiperfeeding in the Carmel River'sshallow lagoon, separated from the Pacific Ocean by sand dunes. Its long, upturnedbill, quite out of keepingwith any smallwader with whichwe were familiar,immediately attracted our attention. We moved closer and tried unsuccessfullyto photographit. Shortlythereafter all the birdspresent took to the air. The sandpiperflew out over the dunesbut curvedback and landedout of sighton the open beach. We telephonedRobin Roberson,and half an hour later she, Brian Weed, Jan Scott, Bob Tinfie, and Ron Branson arrived,the lattertwo armedwith telephotolenses. We quicklyrelocated the TerekSandpiper on the beach,foraging at the surfline. The followingdescription is basedon our field notes,with color names takenfrom Smithe(197.5). Our bird was a medium-sizedsandpiper resemblinga winter-plumagedSpotted Sandpiper (Actitis rnacularia)but distinguishedby bright yellow-orangelegs and an upturnedbill (Figure1). The evenlycurved, dark horn bill, 1.5 timesthe lengthof the bird'shead, had a fleshyorange base.
    [Show full text]
  • Hatching Dates for Common Sandpiper <I>Actitis Hypoleucos</I
    Hatching dates for Common Sandpiper Actitis hypoleucos chicks - variation with place and time T.W. Dougall, P.K. Holland& D.W. Yalden Dougall,T.W., Holland,P.K. & Yalden, D.W. 1995. Hatchingdates for CommonSandpiper Actitishypoleucos chicks - variationwith place and time. WaderStudy Group Bull. 76: 53-55. CommonSandpiper chicks hatched in 1990-94between 24 May (year-day146) and 13 July (year-day196), butthe averagehatch-date was variablebetween years, up to 10 days earlier in 1990 than in 1991. There are indicationsthat on average CommonSandpipers hatch a few days earlierin the Borders,the more northerlysite, butthis may reflecta changein the age structureof the Peak Districtpopulation between the 1970sand the 1980s- 1990s,perhaps the indirectconsequence of the bad weatherof April 1981. Dougall,T. W., 29 LaudstonGardens, Edinburgh EH3 9HJ, UK. Holland,P. K., 2 Rennie Court,Brettargh Drive, LancasterLA 1 5BN, UK. Yalden,D. W., Schoolof BiologicalSciences, University, Manchester M13 9PT, UK. INTRODUCTION Yalden(1991a) in calculatingthe originalregression, and comingfrom the years 1977-1989 (mostlythe 1980s). CommonSandpipers Actitis hypoleucos have a short We also have, for comparison,the knownhatch dates for breedingseason, like mostwaders; arriving back from 49 nestsreported by Hollandet al. (1982), comingfrom West Africa in late April, most have laid eggs by mid-May, various sites in the Peak District in the 1970s. which hatch around mid-June. Chicksfledge by early July, and by mid-Julymost breedingterritories are Ringingactivities continue through the breedingseason at deserted(Holland et al. 1982). The timingof the breeding both sites, and chickscan be at any age from 0 to 19 days season seems constantfrom year to year, but there are old when caught (thoughyoung chicks are generally few data to quantifythis impression.It is difficultto locate easier to find).
    [Show full text]
  • Bird Observations in Siriuspasset, North Greenland, 2016 and 2017
    Bird observations in Siriuspasset, North Greenland, 2016 and 2017 WON YOUNG LEE (Med et dansk resumé: Fugleobservationer i Siriuspasset, Nordgrønland, 2016 og ’17) Abstract During the summer seasons of 2016 and 2017, bird observations were recorded near Siriuspasset in Nansen Land, North Greenland. Breeding birds were surveyed in a 9 km2 area. Wader populations were dense compared to other sites in North and Northeast Greenland, and Red Phalarope Phalaropus fulicarius and Lapland Longspur Calca- rius lapponicus were found to breed far north of their previously known distributions in Greenland. Introduction Description of the study area and methods During the summers of 2016 and 2017, a Danish-Korean The study site was located on the east shore of J. P. Koch expedition performed biological and paleontological Fjord at the southwestern end of Siriuspasset, at alti- studies near Siriuspasset in Nansen Land, North Green- tudes of 0-300 m a.s.l., and here a well-vegetated area land. Compared to the North Greenland region as a of 9 km2 was censused for breeding birds (Figs 1 & 2). whole, Siriuspasset and its surroundings have very lush This was delimited by the coast, a river and features in vegetation, comparable to areas 900 km to the south in the terrain. Northeast Greenland (cf. Fig. 20 in Aastrup et al. 2005). From 25 July to 13 August, 2016 and 30 June to 21 Siriuspasset is a well-known habitat for both muskoxen July, 2017 breeding birds were monitored daily in the Ovibos moschatus and wolves Canis lupus, and high census area. In both years, the survey periods were actu- numbers of moulting Pink-footed Geese Anser brachyr- ally too late to census breeding waders, as failed breed- rhynchus were recorded there in 2009 during an aerial ers may have left by then (cf.
    [Show full text]
  • First Record of Long-Billed Curlew Numenius Americanus in Peru and Other Observations of Nearctic Waders at the Virilla Estuary Nathan R
    Cotinga 26 First record of Long-billed Curlew Numenius americanus in Peru and other observations of Nearctic waders at the Virilla estuary Nathan R. Senner Received 6 February 2006; final revision accepted 21 March 2006 Cotinga 26(2006): 39–42 Hay poca información sobre las rutas de migración y el uso de los sitios de la costa peruana por chorlos nearcticos. En el fin de agosto 2004 yo reconocí el estuario de Virilla en el dpto. Piura en el noroeste de Peru para identificar los sitios de descanso para los Limosa haemastica en su ruta de migración al sur y aprender más sobre la migración de chorlos nearcticos en Peru. En Virilla yo observí más de 2.000 individuales de 23 especios de chorlos nearcticos y el primer registro de Numenius americanus de Peru, la concentración más grande de Limosa fedoa en Peru, y una concentración excepcional de Limosa haemastica. La combinación de esas observaciones y los resultados de un estudio anterior en el invierno boreal sugiere la posibilidad que Virilla sea muy importante para chorlos nearcticos en Peru. Las observaciones, también, demuestren la necesidad hacer más estudios en la costa peruana durante el año entero, no solemente durante el punto máximo de la migración de chorlos entre septiembre y noviembre. Shorebirds are poorly known in Peru away from bordered for a few hundred metres by sand and established study sites such as Paracas reserve, gravel before low bluffs rise c.30 m. Very little dpto. Ica, and those close to metropolitan areas vegetation grows here, although cows, goats and frequented by visiting birdwatchers and tour pigs owned by Parachique residents graze the area.
    [Show full text]
  • Arenaria Interpres (Ruddy Turnstone)
    Arenaria interpres (Ruddy Turnstone) European Red List of Birds Supplementary Material The European Union (EU27) Red List assessments were based principally on the official data reported by EU Member States to the European Commission under Article 12 of the Birds Directive in 2013-14. For the European Red List assessments, similar data were sourced from BirdLife Partners and other collaborating experts in other European countries and territories. For more information, see BirdLife International (2015). Contents Reported national population sizes and trends p. 2 Trend maps of reported national population data p. 4 Sources of reported national population data p. 7 Species factsheet bibliography p. 10 Recommended citation BirdLife International (2015) European Red List of Birds. Luxembourg: Office for Official Publications of the European Communities. Further information http://www.birdlife.org/datazone/info/euroredlist http://www.birdlife.org/europe-and-central-asia/european-red-list-birds-0 http://www.iucnredlist.org/initiatives/europe http://ec.europa.eu/environment/nature/conservation/species/redlist/ Data requests and feedback To request access to these data in electronic format, provide new information, correct any errors or provide feedback, please email [email protected]. THE IUCN RED LIST OF THREATENED SPECIES™ BirdLife International (2015) European Red List of Birds Arenaria interpres (Ruddy Turnstone) Table 1. Reported national breeding population size and trends in Europe1. Country (or Population estimate Short-term population
    [Show full text]
  • Tringa Glareola 2000&Rdquo
    30 Workshop on Project "Tringa glareola 2000" and Seminar "Research on Wader Migration in Poland"- 21-22 November 1998, Gdynia, Poland. Magdalena Remisiewicz& Mateusz Sciborski Remisiewicz,M. & Sciborski,M. 1999.Workshop on Project"Tringa glareola 2000" andSeminar "Research on WaderMigration m Poland"- 21-22 November 1998, Gdynia, Poland.Wader Study Group Bull. 89:30 - 31 MagdalenaRemisiewicz & MateuszSciborski, Waterbird Research Group "KULING", c/o Dept. of VertebrateZoology and Ecology,Univ. of Gdansk,al. Legion6w9, 80-441 Gdansk,Poland,' E-mail.' [email protected] The WaderStudy Groupprogramme (Poland)by the WRG "KULING". keen "KULING" bird-ringers "Tringaglareola 2000", co-ordinated During the meeting,participants from succeededin catchinga male Mallard, by the WaterbirdResearch Group Poland, Sweden, Romania, Estonia and triumphantlygiving it the name "KULING" has developedremarkably Ukrainepresented the resultsof pastand "Conference". Other attractions sinceits startin 1997. Its main purpose, presentstudies on the speciesin their providedfor the guestswere two to definethe migrationroutes of Wood countries. A common set of exhibitionsprepared especially for the Sandpiperand investigate its migration measurements to be taken from Wood workshop.The "Museumof WRG strategy,seems to be met by the Sandpiperswas agreed,including new KULING" presentedhistorical pieces of methodsused. They include:colour measures(primary wear, fat score)to be equipmentused during fieldwork or ringing,dyeing, counts and tested.Topic groups, expressing specimensreferring to important observations(for more detailed individualinterests in analysing momentsin the historyof the group descriptionof the project- seeWSG particularproblems; migration (someof the exhibitswere 15 years Bull. 84: 21-22). The network of sites dynamics,recoveries, biometrics, moult, old). The other was a collection of contributinghas been growing refuelhngstrategy, were established.
    [Show full text]
  • SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does Not Include Alcidae
    SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does not include Alcidae CREATED BY AZA CHARADRIIFORMES TAXON ADVISORY GROUP IN ASSOCIATION WITH AZA ANIMAL WELFARE COMMITTEE Shorebirds (Charadriiformes) Care Manual Shorebirds (Charadriiformes) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Charadriiformes Taxon Advisory Group. (2014). Shorebirds (Charadriiformes) Care Manual. Silver Spring, MD: Association of Zoos and Aquariums. Original Completion Date: October 2013 Authors and Significant Contributors: Aimee Greenebaum: AZA Charadriiformes TAG Vice Chair, Monterey Bay Aquarium, USA Alex Waier: Milwaukee County Zoo, USA Carol Hendrickson: Birmingham Zoo, USA Cindy Pinger: AZA Charadriiformes TAG Chair, Birmingham Zoo, USA CJ McCarty: Oregon Coast Aquarium, USA Heidi Cline: Alaska SeaLife Center, USA Jamie Ries: Central Park Zoo, USA Joe Barkowski: Sedgwick County Zoo, USA Kim Wanders: Monterey Bay Aquarium, USA Mary Carlson: Charadriiformes Program Advisor, Seattle Aquarium, USA Sara Perry: Seattle Aquarium, USA Sara Crook-Martin: Buttonwood Park Zoo, USA Shana R. Lavin, Ph.D.,Wildlife Nutrition Fellow University of Florida, Dept. of Animal Sciences , Walt Disney World Animal Programs Dr. Stephanie McCain: AZA Charadriiformes TAG Veterinarian Advisor, DVM, Birmingham Zoo, USA Phil King: Assiniboine Park Zoo, Canada Reviewers: Dr. Mike Murray (Monterey Bay Aquarium, USA) John C. Anderson (Seattle Aquarium volunteer) Kristina Neuman (Point Blue Conservation Science) Sarah Saunders (Conservation Biology Graduate Program,University of Minnesota) AZA Staff Editors: Maya Seaman, MS, Animal Care Manual Editing Consultant Candice Dorsey, PhD, Director of Animal Programs Debborah Luke, PhD, Vice President, Conservation & Science Cover Photo Credits: Jeff Pribble Disclaimer: This manual presents a compilation of knowledge provided by recognized animal experts based on the current science, practice, and technology of animal management.
    [Show full text]