Programming Unikernels in the Large Via Functor Driven Development (Experience Report)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Formal Modelling of Separation Kernels
The University of York Department of Computer Science Submitted in part fulfilment for the degree of MSc in Software Engineering. Formal Modelling of Separation Kernels Andrius Velykis 18th September 20091 Supervised by Dr Leo Freitas Number of words = 45327, as counted by detex <report.tex> j wc -w. This report consists of 98 pages in total. This includes the body of the report (without blank pages) and Appendix A, but not Appendices B, C, D, E and F. 1Updated transactional operation proofs, 21st September 2009. Abstract A separation kernel is an architecture for secure applications, which benefits from inherent security of distributed systems. Due to its small size and usage in high-integrity environments, it makes a good target for formal modelling and verification. This project presents results from mechanisation and modelling of separation kernel components: a process table, a process queue and a scheduler. The results have been developed as a part of the pilot project within the international Grand Challenge in Verified Software. This thesis covers full development life-cycle from project initiation through design and evaluation to successful completion. Important findings about kernel properties, formal modelling and design decisions are discussed. The developed formal specification is fully verified and contributes to the pilot project aim of creating a formal kernel model and refining it down to implementation code. Other reusable artefacts, such as general lemmas and a new technique of ensuring transactional properties of operations are defined. The results will be curated within the Verified Software Repository. i Robertai. Aˇci¯u. Acknowledgements I would like to thank Dr Leo Freitas for his supervision, encouragement and getting me hooked on formal methods. -
MILS Architectural Approach Supporting Trustworthiness of the Iiot Solutions
MILS Architectural Approach Supporting Trustworthiness of the IIoT Solutions An Industrial Internet Consortium Whitepaper Rance J. DeLong (The Open Group); Ekaterina Rudina (Kaspersky) MILS Architectural Approach Context and Overview 1 Context and Overview ...................................................................................................... 4 1.1 Need for Trustworthy System Operation ............................................................................. 5 1.2 What is MILS today .............................................................................................................. 6 1.3 How MILS Addresses Safety ................................................................................................. 7 1.4 How MILS Addresses Security .............................................................................................. 8 1.5 How MILS Supports Reliability, Resilience, and Privacy ........................................................ 9 2 MILS Concepts .................................................................................................................. 9 2.1 Centralized vs Distributed Security Architecture .................................................................. 9 2.1.1 Domain Isolation .................................................................................................................................. 10 2.1.2 Isolation and Information Flow Control ............................................................................................... 11 2.1.3 Separation -
National Information Assurance Partnership
National Information Assurance Partnership ® TM Common Criteria Evaluation and Validation Scheme Validation Report Green Hills Software INTEGRITY-178B Separation Kernel Report Number: CCEVS-VR-10119-2008 Dated: 01 September 2008 Version: 1.0 National Institute of Standards and Technology National Security Agency Information Technology Laboratory Information Assurance Directorate 100 Bureau Drive 9800 Savage Road STE 6757 Gaithersburg, MD 20899 Fort George G. Meade, MD 20755-6757 VALIDATION REPORT Green Hills Software INTEGRITY-178B Separation Kernel ACKNOWLEDGEMENTS Validation Team Shaun Gilmore Santosh Chokhani Ken Elliott Jerry Myers Paul Bicknell Common Criteria Testing Laboratory SAIC, Inc. Columbia, Maryland ii VALIDATION REPORT Green Hills Software INTEGRITY-178B Separation Kernel Table of Contents 1 Executive Summary................................................................1 1.1 Evaluation Details.............................................................2 2 Identification...........................................................................4 3 Threats to Security ..................................................................5 4 Security Policy........................................................................7 5 Assumptions............................................................................8 5.1 Physical Assumptions .......................................................8 5.2 Personnel Assumptions.....................................................8 5.3 Connectivity Assumptions................................................8 -
Microkernel Construction Introduction
Microkernel Construction Introduction Nils Asmussen 04/09/2020 1 / 32 Normal Organization Thursday, 4th DS, 2 SWS Slides: www.tudos.org ! Studies ! Lectures ! MKC Subscribe to our mailing list: www.tudos.org/mailman/listinfo/mkc2020 In winter term: Microkernel-based operating systems (MOS) Various labs 2 / 32 Organization due to COVID-19 Slides and video recordings of lectures will be published Questions can be asked on the mailing list Subscribe to the mailing list! Practical exercises are planed for the end of the semester Depending on how COVID-19 continues, exercises are in person or we use some video-conferencing tool 3 / 32 Goals 1 Provide deeper understanding of OS mechanisms 2 Look at the implementation details of microkernels 3 Make you become enthusiastic microkernel hackers 4 Propaganda for OS research done at TU Dresden and Barkhausen Institut 4 / 32 Outline Organization Monolithic vs. Microkernel Kernel design comparison Examples for microkernel-based systems Vision vs. Reality Challenges Overview About L4/NOVA 5 / 32 Monolithic Kernel System Design u s Application Application Application e r k Kernel e r File Network n e Systems Stacks l m Memory Process o Drivers Management Management d e Hardware 6 / 32 Monolithic Kernel OS (Propaganda) System components run in privileged mode No protection between system components Faulty driver can crash the whole system Malicious app could exploit bug in faulty driver More than 2=3 of today's OS code are drivers No need for good system design Direct access to data structures Undocumented -
Can Microkernels Mitigate Microarchitectural Attacks?⋆
Can Microkernels Mitigate Microarchitectural Attacks?? Gunnar Grimsdal1, Patrik Lundgren2, Christian Vestlund3, Felipe Boeira1, and Mikael Asplund1[0000−0003−1916−3398] 1 Department of Computer and Information Science, Link¨oping University, Sweden ffelipe.boeira,[email protected] 2 Westermo Network Technologies [email protected] 3 Sectra AB, Link¨oping,Sweden Abstract. Microarchitectural attacks such as Meltdown and Spectre have attracted much attention recently. In this paper we study how effec- tive these attacks are on the Genode microkernel framework using three different kernels, Okl4, Nova, and Linux. We try to answer the question whether the strict process separation provided by Genode combined with security-oriented kernels such as Okl4 and Nova can mitigate microar- chitectural attacks. We evaluate the attack effectiveness by measuring the throughput of data transfer that violates the security properties of the system. Our results show that the underlying side-channel attack Flush+Reload used in both Meltdown and Spectre, is effective on all in- vestigated platforms. We were also able to achieve high throughput using the Spectre attack, but we were not able to show any effective Meltdown attack on Okl4 or Nova. Keywords: Genode, Meltdown, Spectre, Flush+Reload, Okl4, Nova 1 Introduction It used to be the case that general-purpose operating systems were mostly found in desktop computers and servers. However, as IoT devices are becoming in- creasingly more sophisticated, they tend more and more to require a powerful operating system such as Linux, since otherwise all basic services must be im- plemented and maintained by the device developers. At the same time, security has become a prime concern both in IoT and in the cloud domain. -
Operating System Support for Run-Time Security with a Trusted Execution Environment
Operating System Support for Run-Time Security with a Trusted Execution Environment - Usage Control and Trusted Storage for Linux-based Systems - by Javier Gonz´alez Ph.D Thesis IT University of Copenhagen Advisor: Philippe Bonnet Submitted: January 31, 2015 Last Revision: May 30, 2015 ITU DS-nummer: D-2015-107 ISSN: 1602-3536 ISBN: 978-87-7949-302-5 1 Contents Preface8 1 Introduction 10 1.1 Context....................................... 10 1.2 Problem....................................... 12 1.3 Approach...................................... 14 1.4 Contribution.................................... 15 1.5 Thesis Structure.................................. 16 I State of the Art 18 2 Trusted Execution Environments 20 2.1 Smart Cards.................................... 21 2.1.1 Secure Element............................... 23 2.2 Trusted Platform Module (TPM)......................... 23 2.3 Intel Security Extensions.............................. 26 2.3.1 Intel TXT.................................. 26 2.3.2 Intel SGX.................................. 27 2.4 ARM TrustZone.................................. 29 2.5 Other Techniques.................................. 32 2.5.1 Hardware Replication........................... 32 2.5.2 Hardware Virtualization.......................... 33 2.5.3 Only Software............................... 33 2.6 Discussion...................................... 33 3 Run-Time Security 36 3.1 Access and Usage Control............................. 36 3.2 Data Protection................................... 39 3.3 Reference -
Partitioned System with Xtratum on Powerpc
Tesina de M´asteren Autom´aticae Inform´aticaIndustrial Partitioned System with XtratuM on PowerPC Author: Rui Zhou Advisor: Prof. Alfons Crespo i Lorente December 2009 Contents 1. Introduction1 1.1. MILS......................................2 1.2. ARINC 653..................................3 1.3. PikeOS.....................................6 1.4. ADEOS....................................7 2. Overview of XtratuM 11 2.1. Virtualization and Hypervisor........................ 11 2.2. XtratuM.................................... 12 3. Overview of PowerPC 16 3.1. POWER.................................... 16 3.2. PowerPC.................................... 17 3.3. PowerPC in Safety-critical.......................... 19 4. Main PowerPC Drivers to Virtualize 20 4.1. Processors................................... 20 4.2. Timer..................................... 21 4.3. Interrupt.................................... 23 4.4. Memory.................................... 24 5. Porting Implementation 25 5.1. Hypercall................................... 26 5.2. Timer..................................... 27 5.3. Interrupt.................................... 28 5.4. Memory.................................... 31 5.5. Partition.................................... 32 6. Benchmark 34 7. Conclusions and Future Work 38 Abstract Nowadays, the diversity of embedded applications has been developed into a new stage with the availability of various new high-performance processors and low cost on-chip memory. As the result of these new advances in hardware, there is a -
Empirical Performance Comparison of Hardware and Software Task Context Switching
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 2009-06 Empirical Performance Comparison of Hardware and Software Task Context Switching Schultz, Eric A. Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/46226 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS EMPIRICAL PERFORMANCE COMPARISON OF HARDWARE AND SOFTWARE TASK CONTEXT SWITCHING by Eric A. Schultz June 2009 Thesis Advisor: Cynthia E. Irvine Second Reader: David J. Shifflett Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK ii Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704–0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. -
KOS - Principles, Design, and Implementation
KOS - Principles, Design, and Implementation Martin Karsten, University of Waterloo Work In Progress - September 29, 2015 Abstract KOS is an experimental operating system kernel that is designed to be simple and accessible to serve as a platform for research, experimen- tation, and teaching. The overall focus of this project is on system-level infrastructure software, in particular runtime systems. 1 Introduction KOS (pronounce "Chaos") is an experimental operating system kernel that is designed to be simple and accessible to serve as a platform for research, ex- perimentation, and teaching. It is focused on building a nucleus kernel that provides the basic set of operating system functionality, primarily for resource mediation, that must realistically be implemented for execution in privileged mode. While being simple KOS is not simplistic and avoids taking design shortcuts that would prohibit adding more sophisticated resource management strategies later on { inside the kernel or at higher software layers. The nu- cleus kernel is augmented with several prototype subsystems typically found in an operating system to eventually support running realistic applications. The entire code base is written in C++, except for small assembler parts. The C++ code makes use of advanced language features, such as code reuse with efficient strong type safety using templates, the C++ library for data struc- ture reuse, as well as (limited) polymorphism. Existing open-source software is reused for non-nucleus subsystems as much as possible. The project is hosted at https://git.uwaterloo.ca/mkarsten/KOS 2 Motivation In principle, an operating system has two basic functions. First, it consolidates low-level hardware interfaces and provides higher-level software abstractions to facilitate and alleviate application programming. -
Embassies: Radically Refactoring the Web Jon Howell, Bryan Parno, John R
Embassies: Radically Refactoring the Web Jon Howell, Bryan Parno, John R. Douceur, Microsoft Research Abstract of evolving complexity. On the Internet, application Web browsers ostensibly provide strong isolation for providers, or vendors, run server-side applications over the client-side components of web applications. Unfor- which they exercise total control, from the app down tunately, this isolation is weak in practice; as browsers to the network stack, firewall, and OS. Even when ven- add increasingly rich APIs to please developers, these dors are tenants of a shared datacenter, each tenant au- complex interfaces bloat the trusted computing base and tonomously controls its software stack down to the ma- erode cross-app isolation boundaries. chine code, and each tenant is accessible only via IP. We reenvision the web interface based on the notion The strong isolation among virtualized Infrastructure-as- of a pico-datacenter, the client-side version of a shared a-Service datacenter tenants derives not from physical server datacenter. Mutually untrusting vendors run their separation but from the execution interface’s simplicity. code on the user’s computer in low-level native code con- This paper extends the semantics of datacenter rela- tainers that communicate with the outside world only via tionships to the client’s web experience. Suspending dis- IP. Just as in the cloud datacenter, the simple semantics belief momentarily, suppose every client had ubiquitous makes isolation tractable, yet native code gives vendors high-performance Internet connectivity. In such a world, the freedom to run any software stack. Since the datacen- exploiting datacenter semantics is easy: The client is ter model is designed to be robust to malicious tenants, it merely a screencast (VNC) viewer; every app runs on is never dangerous for the user to click a link and invite its vendor’s servers and streams a video of its display to a possibly-hostile party onto the client. -
Raytheon Secure Systems and Networks Delivering Mission Assurance in a Hostile Cyberspace Feature the Benefits of Multi-Level Security
TecHIGhHLIGHTnING RAoYTHEON l’S oTECHNOgLOGY y Tod2a007 Issyue 2 Raytheon Secure Systems and Networks Delivering Mission Assurance in a Hostile Cyberspace Feature The Benefits of Multi-Level Security ulti-level security (MLS) should be accessible to the individ - secret, confidential and unclassified has been a holy grail ever ual. To ameliorate this problem, data all can reside in a single MLS Msince the early days of high-speed guards requiring addi - domain. MLS provides the ability to applying computer systems to meet tional hardware and processing simultaneously receive, process, Col. Roger Shell was the automation needs of military overhead, or labor intensive proce - store and disseminate data of mul - the deputy director of and intelligence systems. In the dures such as manually reviewing tiple classifications within a domain the National Security 1970s, MITRE published a series of data, are commonly used when where not all users have the securi - Agency’s (NSA) papers (by Bell and LaPadua) that moving data between domains. ty clearance to access all the data National Computer describe the issues and rules of within the domain. MLS needs to Security Center (NCSC) determining access rights of individ - The single-level security domain permeate into the computing envi - as it was formed in the ual users to information, based on paradigm is not compatible with ronment (workstations, servers and early 1980s. Dr. Kenneth their credentials. In fact, in 1971, this time-sensitive collaborative pro - operating systems), the network, Kung joined NCSC in Dr. Roger Schell (then a U.S. Air cessing environment needed to the database and the mission appli - 1984 as one of the Force major) conducted his Ph.D. -
Separation Kernels on Commodity Workstations
Systems and Network Analysis Center Information Assurance Directorate Separation Kernels on Commodity Workstations 11 March 2010 SNAC DoD, 9800 Savage Rd. Ft. Meade, MD 20755-6704 410-854-6632 DSN: 244-6632 FAX: 410-854-6604 www.nsa.gov/snac [email protected] 1 Separation Kernels on Commodity Workstations 1 Executive Summary ................................................................................................. 3 2 Introduction .............................................................................................................. 4 2.1 SKPP Evaluation ................................................................................................ 4 2.2 Assurance Maintenance ..................................................................................... 5 3 Commodity Workstation Security ............................................................................. 7 3.1 Workstation Security Argument .......................................................................... 7 3.1.1 The Applications .......................................................................................... 7 3.1.2 The Operating System ................................................................................. 7 3.1.3 The Hardware Platform ................................................................................ 8 3.2 Evaluating the Workstation Security Argument .................................................. 8 3.3 Too Many Cooks in the Kitchen ........................................................................