Fracture Identification and Evaluation Using S Waves; #40792 (2011)

Total Page:16

File Type:pdf, Size:1020Kb

Fracture Identification and Evaluation Using S Waves; #40792 (2011) GCFracture Identification and Evaluation Using S Waves* Bob Hardage1 Search and Discovery Article #40792 (2011) Posted August 15, 2011 *Adapted from the Geophysical Corner column, prepared by the author, in AAPG April-August Explorers, 2011, and entitled, respectively “S Waves Prove Their Worth With Fractures”, “Turn, Turn, Turn: Rotating for S-Wave Data”, “S-Waves on Crack? Not So Much”, “Measuring Fractures – Quality and Quantity”, “For Fractures, P + S = Maximum Efficiency”. Editor of Geophysical Corner is Bob A. Hardage ([email protected]). Managing Editor of AAPG Explorer is Vern Stefanic; Larry Nation is Communications Director. 1Bureau of Economic Geology, The University of Texas at Austin ([email protected]) General Statement When a shear (S) wave propagates through a rock unit that has vertical fractures oriented at a reasonably consistent azimuth, it splits into two S waves that propagate with distinct velocities. ● One of these S waves is a fast-velocity mode called S1, which is polarized in the same direction as the fracture orientation. ● The other is a slow-velocity mode called S2, which is polarized in a direction orthogonal to the fracture planes. The S1 mode has approximately the same velocity as an S wave that propagates in the rock when fractures are absent. In contrast to this S- wave physics, a compressional (P) wave does not split into fast and slow modes when it encounters a fractured interval. When fracturing causes significant differences in elastic moduli parallel and perpendicular to fractures, P-wave velocity can vary when measured parallel to and perpendicular to oriented fractures, as does S-wave velocity – but differences in P-wave velocity are not as dramatic as those in S-wave velocity. Thus, S waves are preferred over P waves for seismic-based evaluations of fractured rocks. S-Wave Splitting Phenomenon S-wave splitting phenomenon is illustrated on Figure 1, where an S wave illuminates a zone of well-aligned vertical fractures. The incident S wave is polarized so that its particle-displacement vector is oriented at an angle Ф relative to the azimuth of the vertical fractures. S1 and S2 Copyright © AAPG. Serial rights given by author. For all other rights contact author directly. modes exit the base of the fracture zone at different times because they propagate with different velocities inside the fracture space (S1 = fast; S2 = slow). As expected, the S1 mode is polarized parallel to the fracture planes, and the S2 mode is polarized perpendicular to the fracture planes. S1 and S2 modes also reflect from the fracture zone, but are not shown. A laboratory test that documents the S-wave physics described by this model was published by Sondergeld and Rai (1992). Their test procedure is illustrated on Figure 2. In this test, a piezoceramic element was secured to one end of a cylindrical volume of laminated shale to serve as an S-wave source. A similar piezoceramic element was positioned at the opposite end of the cylinder as an S-wave sensor. This layered propagation medium, and the fact that the source-receiver geometry causes S-waves to propagate parallel to the embedded interfaces of the rock sample, are a good simulation of S-wave propagation through a system of vertical fractures. In one test, the source remained in a fixed orientation relative to the plane of the simulated fractures and the receiver element was rotated at azimuth increments of 10 degrees to determine the azimuth dependence of S-wave propagation through the sample. The test results are illustrated on Figure 3 as an end-on view of the test sample from the source end; the objective was to simulate the propagation of a fast-S (or S1) mode, where the source displacement vector is parallel to the fracture planes (Figure 3a), and then to simulate the propagation of a slow- S (or S2) mode in which the displacement vector is perpendicular to the fracture planes (Figure 3b). Note how much longer it takes for the S2 wavelet to propagate through the test sample than the S1 wavelet – a confirmation that S2 velocity is slower than S1 velocity. The positive-polarity end of the source is oriented in the direction indicated by the arrowhead on the source vector. For response A, the positive-polarity of the receiver is oriented the same as the source. For response C, the receiver has been rotated so that its positive-polarity end points in an opposing direction. Thus the polarity of wavelet B is opposite to the polarity of wavelet A. In actual seismic fieldwork with S-wave sources and receivers, the positive polarities of all receivers are oriented in the same direction across a data-acquisition template so that wavelet polarities are identical in all quadrants around a source station. At receiver orientations B and D, the receiver is orthogonal to the source vector, which produces zero-amplitude responses. The translation of these experimental results into exploration practice means that seismic prospecting across fracture prospects should involve the acquisition of S-wave data – and further, the data-acquisition geometry should allow S-wave velocity to be measured as a function of azimuth. When an azimuth direction is found in which S velocity across the depth interval of a fracture system has its maximum velocity, then the orientation direction of the dominant vertical fracture in that interval is defined as that maximum-velocity azimuth. S Waves Laboratory Experiments on Real-Earth Media Now we expand our insights into the behavior of seismic S waves as they propagate through a fractured interval, with the emphasis placed on laboratory data of real S waves propagating through fractured real-Earth media. The experimental data illustrated on Figure 4, taken from work published by Sondergeld and Rai, simulate the general case of S-wave illumination of a fracture system in which the illuminating source vector is polarized at an arbitrary angle Ф relative to aligned fractures. The test sample used to acquire the data was illustrated and discussed above. The wavefields that propagate through the medium are now a combination of S1 (fast-S) and S2 (slow-S) wavelets, and not S1-only or S2- only wavelets as were generated in the experimental data discussed above. Wavelets A, B, C and D are again the responses observed when the receiver is either parallel to or orthogonal to the illuminating source vector. The observed data contain both S1 and S2 arrivals. The length of the propagation path through the sample is such that the difference in S1 and S2 travel times causes the S1 and S2 wavelets to not overlap. In real seismic data, when a fracture interval is thin compared to a seismic wavelength and the difference in S1 and S2 travel times is not too large, the response will be a complicated waveform representing the sum of partially overlapping S1 and S2 wavelets. The wavelets at positions A’, B’, C’ and D’ illustrate important S-wave physics: ● Only a S1 mode propagates parallel to the fracture planes (responses A’ and C’). ● Only a S2 mode propagates perpendicular to the fracture planes (responses B’ and D’). The experiment documented as Figure 5 illustrates the results that should be observed when S-wave data are acquired across a fracture system as a 3-D seismic survey in which there is a full azimuth range between selected pairs of sources and receivers. In this test, the source and receiver are rotated in unison so that the positive-polarity ends of both source and receiver are always pointing in the same azimuth. This source-receiver geometry is what is accomplished during S-wave data processing when field data are converted from inline and crossline data-acquisition space to radial and transverse coordinate space that allows better recognition of S-wave modes. This type of source and receiver rotation is common practice among seismic data processors that have reasonable familiarity with S waves. The test data show convincing proof that only a fast-S mode propagates parallel to fractures, and only a slow-S mode propagates perpendicular to fractures. At all intermediate azimuths between these two directions, S-wave propagation involves a mixture of fast-S and slow-S wavefields. The objective of real-Earth fracture evaluation is to acquire seismic data in a way that allows source and receiver rotations to be done to create data similar to that shown on Figure 5. These rotated data are then searched to find the azimuth direction in which S-wave velocity is a maximum. That maximum-velocity azimuth defines the orientation of the set of vertical fractures that dominate the fracture population. P, S1, S2 Wave Laboratory Behavior: Cracked vs Uncracked Rock Experimental work done by Xu and King (1989) are presented as Figure 6. In this lab experiment, P, S1 (fast-S) and S2 (slow-S) modes propagate through a test sample before and after the sample was cracked to create a series of internal fracture planes. Wave transit times through the sample were measured to determine the effect of cracks on the velocity of each wave mode. For both the cracked and uncracked samples, transit time measurements were made for a series of confining pressure conditions varying from 1.4 MPa to almost 21 MPa. P-wave travel time behavior is described on the top panel of the figure; S1 and S2 travel times are summarized on panels b and c, respectively. On each data panel, the transit time for uncracked rock is marked as A. Point B indicates the travel time through the cracked sample. The travel times for P and S1 modes exhibit little pressure dependence over the applied pressure range for either cracked or uncracked media.
Recommended publications
  • Boxer's Fracture • Knuckle Fracture of the Pinky
    Boxer’s Fracture • Knuckle Fracture of the Pinky Introduction Treatment A Boxer’s fracture occurs when the bone at the knuckle Many Boxer’s fractures can be treated by immobi- of the little finger breaks. It can result from a forceful lizing the joint to promote healing. Immobilization can injury during fist fighting or hitting a solid object, such be achieved with a variety of splints, a cast, or taping as a wall. A Boxer’s fracture causes swelling, pain, and techniques. “Buddy-taping” involves taping the little stiffness. Treatment involves realigning the broken bone, finger to the ring finger. when necessary, and providing stabilization while it heals. Surgery Anatomy Surgery is recommended for Boxer’s fractures if large The “knuckle” of the fifth finger (small finger or “pinky”) degrees of angulation or displacement occur, or if the is comprised of the head of the metacarpal bone from joint surface is misaligned. Displacement and angulation the hand, and the base of the finger, called the proximal means that a piece or pieces of the metacarpal bone phalanx. The main function of your little finger is to that has broken have moved out of position. An open contribute to a tight strong grip. reduction and internal fixation (ORIF) surgery allows surgical hardware, such as wires and screws, to be Causes placed in the bone to align the fracture and allow it to A Boxer’s fracture occurs when the neck of the metacarpal heal in the correct position. bone in the little finger breaks. It is commonly caused by punching an immovable object, such as a wall, or Recovery someone’s jaw or head during a fist fight.
    [Show full text]
  • Activity 21: Cleavage and Fracture Maine Geological Survey
    Activity 21: Cleavage and Fracture Maine Geological Survey Objectives: Students will recognize the difference between cleavage and fracture; they will become familiar with planes of cleavage, and will use a mineral's "habit of breaking" as an aid to identifying common minerals. Time: This activity is intended to take one-half (1/2) period to discuss cleavage planes and types and one (1) class period to do the activity. Background: Cleavage is the property of a mineral that allows it to break smoothly along specific internal planes (called cleavage planes) when the mineral is struck sharply with a hammer. Fracture is the property of a mineral breaking in a more or less random pattern with no smooth planar surfaces. Since nearly all minerals have an orderly atomic structure, individual mineral grains have internal axes of length, width, and depth, related to the consistent arrangement of the atoms. These axes are reflected in the crystalline pattern in which the mineral grows and are present in the mineral regardless of whether or not the sample shows external crystal faces. The axes' arrangement, size, and the angles at which these axes intersect, all help determine, along with the strength of the molecular bonding in the given mineral, the degree of cleavage the mineral will exhibit. Many minerals, when struck sharply with a hammer, will break smoothly along one or more of these planes. The degree of smoothness of the broken surface and the number of planes along which the mineral breaks are used to describe the cleavage. The possibilities include the following. Number of Planes Degree of Smoothness One Two Three Perfect Good Poor Thus a mineral's cleavage may be described as perfect three plane cleavage, in which case the mineral breaks with almost mirror-like surfaces along the three dimensional axes; the mineral calcite exhibits such cleavage.
    [Show full text]
  • Scaling of Critical Velocity for Bubble Raft Fracture Under Tension Chin
    Scaling of critical velocity for bubble raft fracture under tension Chin-Chang Kuo, and Michael Dennin1, a) Department of Physics and Astronomy and Institute for Complex Adaptive Matter, University of California at Irvine, Irvine, CA 92697-4575 (Dated: 9 September 2011) The behavior of materials under tension is a rich area of both fluid and solid mechanics. For simple fluids, the breakup of a liquid as it is pulled apart generally exhibits an instability driven, pinch-off type behavior. In contrast, solid materials typically exhibit various forms of fracture under tension. The interaction of these two distinct failure modes is of particular interest for complex fluids, such as foams, pastes, slurries, etc.. The rheological properties of complex fluids are well-known to combine features of solid and fluid behavior, and it is unclear how this translates to their failure under tension. In this paper, we present experimental results for a model complex fluid, a bubble raft. As expected, the system exhibits both pinch-off and fracture when subjected to elongation under constant velocity. We report on the critical velocity vc below which pinch-off occurs and above which fracture occurs as a function of initial system width W , length L, bubble size R, and fluid viscosity. The fluid viscosity sets the typical time for bubble rearrangements τ. The results for the critical velocity are consistent with a simple scaling law vcτ=L ∼ R=W that is based on the assumption that fracture is nucleated by the failure of local bubble rearrangements to occur rapidly enough. a)Corresponding Author email: [email protected] 1 I.
    [Show full text]
  • Distal Radius Fracture
    Distal Radius Fracture Osteoporosis, a common condition where bones become brittle, increases the risk of a wrist fracture if you fall. How are distal radius fractures diagnosed? Your provider will take a detailed health history and perform a physical evaluation. X-rays will be taken to confirm a fracture and help determine a treatment plan. Sometimes an MRI or CT scan is needed to get better detail of the fracture or to look for associated What is a distal radius fracture? injuries to soft tissues such as ligaments or Distal radius fracture is the medical term for tendons. a “broken wrist.” To fracture a bone means it is broken. A distal radius fracture occurs What is the treatment for distal when a sudden force causes the radius bone, radius fracture? located on the thumb side of the wrist, to break. The wrist joint includes many bones Treatment depends on the severity of your and joints. The most commonly broken bone fracture. Many factors influence treatment in the wrist is the radius bone. – whether the fracture is displaced or non-displaced, stable or unstable. Other Fractures may be closed or open considerations include age, overall health, (compound). An open fracture means a bone hand dominance, work and leisure activities, fragment has broken through the skin. There prior injuries, arthritis, and any other injuries is a risk of infection with an open fracture. associated with the fracture. Your provider will help determine the best treatment plan What causes a distal radius for your specific injury. fracture? Signs and Symptoms The most common cause of distal radius fracture is a fall onto an outstretched hand, • Swelling and/or bruising at the wrist from either slipping or tripping.
    [Show full text]
  • Human Sexual Selection
    Available online at www.sciencedirect.com ScienceDirect Human sexual selection David Puts Sexual selection favors traits that aid in competition over Here, I review evidence, focusing on recent findings, mates. Widespread monogamous mating, biparental care, regarding the strength and forms of sexual selection moderate body size sexual dimorphism, and low canine tooth operating over human evolution and consider how sexual dimorphism suggest modest sexual selection operating over selection has shaped human psychology, including psy- human evolution, but other evidence indicates that sexual chological sex differences. selection has actually been comparatively strong. Ancestral men probably competed for mates mainly by excluding The strength of human sexual selection competitors by force or threat, and women probably competed Some evidence suggests that sexual selection has been primarily by attracting mates. These and other forms of sexual relatively weak in humans. Although sexual dimorphisms selection shaped human anatomy and psychology, including in anatomy and behavior may arise from other selective some psychological sex differences. forces, the presence of sexually dimorphic ornamentation, Address weaponry, courtship displays, or intrasexual competition Department of Anthropology and Center for Brain, Behavior and indicates a history of sexual selection [3]. However, men’s Cognition, Pennsylvania State University, University Park, PA 16802, 15–20% greater body mass than women’s is comparable to USA primate species with a modest degree of mating competi- tion among males, and humans lack the canine tooth Corresponding author: Puts, David ([email protected]) dimorphism characteristic of many primates with intense male competition for mates [4]. Moreover, humans exhibit Current Opinion in Psychology 2015, 7:28–32 biparental care and social monogamy, which tend to occur This review comes from a themed issue on Evolutionary psychology in species with low levels of male mating competition [5].
    [Show full text]
  • Methods Used to Identifying Minerals
    METHODS USED TO IDENTIFYING MINERALS More than 4,000 minerals are known to man, and they are identified by their physical and chemical properties. The physical properties of minerals are determined by the atomic structure and crystal chemistry of the minerals. The most common physical properties are crystal form, color, hardness, cleavage, and specific gravity. CRYSTALS One of the best ways to identify a mineral is by examining its crystal form (external shape). A crystal is defined as a homogenous solid possessing a three-dimensional internal order defined by the lattice structure. Crystals developed under favorable conditions often exhibit characteristic geometric forms (which are outward expressions of the internal arrangements of atoms), crystal class, and cleavage. Large, well- developed crystals are not common because of unfavorable growth conditions, but small crystals recognizable with a hand lens or microscope are common. Minerals that show no external crystal form but possess an internal crystalline structure are said to be massive. A few minerals, such as limonite and opal, have no orderly arrangement of atoms and are said to be amorphous. Crystals are divided into six major classes based on their geometric form: isometric, tetragonal, hexagonal, orthorhombic, monoclinic, and triclinic. The hexagonal system also has a rhombohedral subdivision, which applies mainly to carbonates. CLEAVAGE AND FRACTURE After minerals are formed, they have a tendency to split or break along definite planes of weakness. This property is called cleavage. These planes of weakness are closely related to the internal structure of the mineral, and are usually, but not always, parallel to crystal faces or possible crystal faces.
    [Show full text]
  • Does Human Sexual Dimorphism Influence Fracture Frequency, Types and Distribution?
    AnthropologicAl review • Vol. 74, 13–23 (2011) Does human sexual dimorphism influence fracture frequency, types and distribution? Jonna Nielsen ADBOU, Forensic Institute, University of Southern Denmark, Lucernemarken 20, Dk-5260 Odense, Denmark; E-mail [email protected] ABSTRACT This study explores the hypothesis that the pattern of gender inequality in a community influences the frequency, patterns and distribution of fractures. As it is not possible to read gender relations from skeletons, it is – following several research results – assumed that the level of gender inequality is reflected in sexual dimorphism. Thus the study design consists in correlating a measure of sexual dimorphism with measures of frequencies, patterns and distribution of skeletal trauma between the two sexes. Nearly two hundreds individuals from two medieval Danish cemeteries have been examined (43 females/48 males from Jutland and 46 females/49 males from Funen). Sexual dimorphism was assessed by means of measurements on the pelvis and, in accordance with conventional wisdom, the level of sexual dimorphism was found to be lower in the Funen than in the Jutland sample. The fracture frequencies, patterns and distribution were estimated for the two skeletal samples. No significant difference between the fracture frequencies or types on the two sites was found, but the distribution of fractures between the sexes in Ribe was found to be significantly different. The study indicates a level of relationship between human sexual dimorphism, gender roles, and the distribution of fractures between the sexes. Studies of larger samples will help clarify this. KEY WORDS: interpretation of injuries, gender roles, medieval Denmark Studies of old skeletal remains often in- them having been controlled by beating by dicate a relatively high fracture frequency their men and thus that these women were in ancient communities compared to more socially inferior to men.
    [Show full text]
  • Path-Independent Integral in Fracture Mechanics of Quasicrystals ⇑ J
    Engineering Fracture Mechanics 140 (2015) 61–71 Contents lists available at ScienceDirect Engineering Fracture Mechanics journal homepage: www.elsevier.com/locate/engfracmech Path-independent integral in fracture mechanics of quasicrystals ⇑ J. Sladek a, , V. Sladek a,1, S.N. Atluri b a Institute of Construction and Architecture, Slovak Academy of Sciences, 84503 Bratislava, Slovakia b Center for Aerospace Research & Education, University of California, Irvine, CA, USA article info abstract Article history: Path-independent integrals are successfully utilized for accurate evaluation of fracture Received 6 October 2014 parameters in crystalic materials, where atomic arrangement is periodic. In quasicrystals Received in revised form 16 March 2015 (QC) the atomic arrangement is quasiperiodic in one-, two- or three-directions. The 2-d Accepted 22 March 2015 elastic problem for quasicrystal is described by coupled governing equations for phonon Available online 2 April 2015 and phason displacements. Conservation laws for quasicrystals are utilized to derive path-independent integrals for cracks. The relation between the energy release and stress Keywords: intensity factor for a crack under the mode I is given for decagonal QCs. The path-indepen- Path-independent integral dent integral formulation is valid also for cracks in QCs with continuously varying material Energy balance Elastodynamics properties. Bak’s model Ó 2015 Elsevier Ltd. All rights reserved. Decagonal quasicrystals Phonon Phason Intensity factors 1. Introduction Since the pioneering work of Eshelby [1], and independent discovery of Rice [2], innumerable number of papers have appeared in literature concerning path-independent integrals (familiary so-called J-integral) and their application to mechanics of fracture. Both papers initiated important studies, on conservation laws in finite and infinitesimal elasticity, by Knowles and Sternberg [3], and the interpretation of these in the context of the mechanics of cracks and notches in 2-dimensional bodies by Budiansky and Rice [4].
    [Show full text]
  • Quartz Crystals Subjected to Shear Stress
    minerals Article Fracture Analysis of α-Quartz Crystals Subjected to Shear Stress Giovanni Martinelli 1,2,3,* , Paolo Plescia 4 , Emanuela Tempesta 4, Enrico Paris 5 and Francesco Gallucci 5 1 INGV Istituto Nazionale di Geofisica e Vulcanologia, Via Ugo La Malfa 153, 90146 Palermo, Italy 2 Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China 3 Key Laboratory of Petroleum Resources, Lanzhou 730000, China 4 CNR-IGAG, Institute of Environmental Geology and Geoengineering, Research area of Rome-1, 00015 Monterotondo, Italy; [email protected] (P.P.); [email protected] (E.T.) 5 CREA-ING, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Unità di Ricerca per l’Ingegneria Agraria, 00015 Monterotondo, Italy; [email protected] (E.P.); [email protected] (F.G.) * Correspondence: [email protected] Received: 18 July 2020; Accepted: 29 September 2020; Published: 30 September 2020 Abstract: This study assesses the correlations between the intensity of stress undergone by crystals and the morphological characteristics of particles and fracturing products. The effects of the fractures on the microstructure of quartz are also studied. Alpha quartz, subjected to shear stress, is quickly crushed according to a fracturing sequence, with a total fracture length that is correlated to the stress rate. The shear stress generates a sequence of macro and microstructural events, in particular localized melting phenomena, never highlighted before on quartz and the formation of different polymorphs, such as cristobalite and tridymite together with amorphous silica. Keywords: quartz; shear stress; tribochemistry; fracturing 1.
    [Show full text]
  • Simulating the Pervasive Fracture and Fragmentation of Materials and Structures Using Randomly Close- Packed Voronoi Tessellations
    SANDIA REPORT SAND2008-6089 Unlimited Release September 2008 Simulating the Pervasive Fracture and Fragmentation of Materials and Structures using Randomly Close- Packed Voronoi Tessellations Joseph E. Bishop Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy.
    [Show full text]
  • Allometry and Variation in the Baculum (Os Penis) of the Harp Seal, Pagophilus Groenlandicus (Carnivora: Phocidae)
    Biological Journal of the Linnean Society (2001), 72: 345–355. With 2 figures doi:10.1006/bijl.2000.0509, available online at http://www.idealibrary.com on It’s all relative: allometry and variation in the baculum (os penis) of the harp seal, Pagophilus groenlandicus (Carnivora: Phocidae) EDWARD H. MILLER∗ and LAUREN E. BURTON Department of Biology, Memorial University of Newfoundland, St. John’s NF A1B 3X9, Canada Received 3 March 2000; accepted for publication 3 November 2000 We compared allometry and variation in the baculum (os penis), mandible, and humerus of the harp seal, Pagophilus groenlandicus. This species is presumed to have a promiscuous mating system in which choice of mate by females during intromission with different males is likely. The baculum is large and grows throughout life so may be an honest indicator of males’ quality (size) or viability (age). We predicted that bacular size would exhibit stronger allometry relative to body size than mandibles or humeri. The baculum is less functionally (mechanically) constrained than mandibles or humeri so we also predicted it would be more variable, though less variable than sexually selected traits which do not function as honest indicators. Our sample (N=67 seals) represented broad ranges of size and age (0–35 yr) so we compared variation using residuals from allometric regressions of skeletal measurements on body length. Bacular size was isometric to body length until >137 cm (when some seals enter puberty) in body length then was highly positively allometric; mandibular and humeral size were negatively allometric to body length throughout growth. Bacula were more variable than mandibles or humeri.
    [Show full text]
  • Crack Propagation in Quasicrystals
    Crack propagation in quasicrystals R. Mikulla1, J. Stadler1, F. Krul1, H.-R. Trebin1 and P. Gumbsch2 1 Institut f¨ur Theoretische und Angewandte Physik der Universit¨at Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany 2 Max-Planck-Institut f¨ur Metallforschung, Seestr. 92, 70174 Stuttgart, Germany Crack propagation is studied in a two dimensional decagonal model quasicrystal. The simulations reveal the dominating role of highly coordinated atomic environments as structure intrinsic obstacles for both dislocation motion and crack propagation. For certain overloads, these obstacles and the quasiperiodic nature of the crystal result in a specific crack propagation mechanism: The crack tip emits a dislocation followed by a phason wall, along which the material opens up. Quasicrystals are characterized by an unusual struc- crucial element in the brittle fracture mechanism at low ture: They are orientationally ordered, but with noncrys- temperature. Furthermore, we identify atomic clusters, tallographic, e.g., five- or eightfold symmetry axes [1]. inherent to the quasicrystalline structure, as obstacles Their translational order is not periodic, as in conven- and scattering centers for the brittle crack. tional crystals, but quasiperiodic. In the last few years The study of a strongly nonlinear process like dynam- it has become possible to measure physical properties ical fracture in a complex material requires simplifica- of quasicrystals, such as mass and heat transport, plas- tions. First we consider a two dimensional system (2D) ticity, and fracture, since high–quality, thermodynami- to evade the analysis of a three dimensional crack front. cally stable quasicrystals could be grown in millimeter Secondly we simulate a perfectly ordered quasicystalline sizes [2].
    [Show full text]