Geometric Constraints on the Dynamics of Networks with Refractory Node States Gabriel a Silva

Total Page:16

File Type:pdf, Size:1020Kb

Geometric Constraints on the Dynamics of Networks with Refractory Node States Gabriel a Silva Silva RESEARCH Geometric constraints on the dynamics of networks with refractory node states Gabriel A Silva Correspondence: [email protected] Department of Bioengineering, Abstract Department of Neurosciences, and Center for Engineered Natural Understanding how local interactions among connected nodes in a network result Intelligence, University of in global network dynamics and behaviors remains a critical open problem in California, San Diego, 9500 Gilman Drive, La Jolla, California network theory. This is important both for understanding complex networks, 92037-0412, United States including the brain, and for the controlled design of networks intended to achieve Full list of author information is a specific function. Here, we describe the construction and theoretical analysis of available at the end of the article a framework derived from canonical neurophysiological principles that models the competing dynamics of incident signals into nodes along directed edges in a network. The framework describes the dynamics between the offset in the latencies of propagating signals, which reflect the geometry of the edges and conduction velocities, and the internal refractory dynamics and processing times of the downstream node. One of the main theoretical results is the definition of a ratio between the speed of signaling or information flow, which is bounded by the spatial geometry, and the internal time it takes for individual nodes to process incoming signals. We show that an optimal ratio is one where the speed of information propagation between connected nodes does not exceed the internal dynamic time scale of the nodes. A mismatch of this ratio leads to sub-optimal signaling and information flows in a network, and even a breakdown in signaling all together. Keywords: Geometric networks; Spatial networks; Temporal networks; Neural signaling; Neural dynamics; Arfificial neural networks 1 Introduction There is significant value in understanding how local interactions among connected nodes in a network result in global network dynamics and behaviors. This is impor- tant both for understanding complex networks, including the brain, and for the con- arXiv:1510.08729v4 [q-bio.MN] 12 May 2017 trolled design of networks intended to achieve a specific function or computational task. Here, we describe the construction and theoretical analysis of a framework that models the competing dynamics of incident signals into nodes along directed edges in a network. As a model this work draws on and extends classical approaches dating back to the original work of McCulloch and Pitts' abstraction of a neuron, Rosenblat's notion of a perceptron, and much of the work by others that has fol- lowed. From a neurobiological perspective we are abstractly modeling the interplay of postsynaptic spatial and temporal summation. The framework is constructed in order to explicitly analyze the dynamics between the offset in the latencies of prop- agating signals, which are the result of the geometry (morphology) of the edges and conduction velocities, and the internal refractory dynamics and processing times of the downstream node. Silva Page 2 of 30 Our main interest in this work was the construction of a framework that supports a formal theoretical analysis of this dynamics in order to allow us to make predic- tions and arrive at a deep understanding. This is in contrast to the construction of models that primarily only support computational experimental investigation through numerical simulations. Despite the significant literature on the types of models related to the framework we developed here, a theoretical analysis of this kind has not been previously investigated. This analysis produced a number of interesting results, most significantly the definition of a ratio between the speed of signaling or information flow, which is bounded by the spatial geometry, and the internal time it takes for individual nodes to process incoming signals. We show that an optimal ratio is one where the speed of information propagation between connected nodes does not exceed the internal dynamic time scale of the nodes. In other words, it represents a balance between how fast signals propagate through the network relative to the time needed for each node to process incoming signals. An optimal ratio serves to maximize the amount of information individual edges between node pairs can support. A mismatch of this ratio leads to sub-optimal signaling and information flows in a network, and even a breakdown in signaling all together. 2 Theoretical development We define a network as a physically constructible object consisting of nodes with unique internal dynamics and a physical connectivity in space between specific pairs of nodes. We assume there exists a finite signaling speed associated with the propagation of information between nodes and as a result a finite temporal delay or latency. Formally, we consider graph models of such physical networks. In general we will explicitly refer to the graph model of a network, and therefore refer to the vertices and edges of the graphs, but it should be understood that they model the nodes and connections of physical networks of interest. We consider the flow of information, or signaling, along the path lengths of di- rected edges that have a physical representation in space (or the plane) that connect two vertices of the graph in space (or the plane; Fig.1). In this sense edges are rep- resented by smooth and continuous Jordan arcs. The term 'geometric graph' is often used in a somewhat ambiguous way depending on the author or context. Topolog- ical graph theory typically refers to the embedding and study of graphs in some topological space, including three dimensional Euclidean spaces and surfaces [2,3]. However, other authors for example have distinguished geometric graphs from topo- logical graphs as graphs in the plane with distinct points connected by straight line edges in the former case versus graphs in the plane with distinct points connected by Jordan arcs in the latter case, i.e. both in R2 [18]. In this paper we only need to consider graphs with a physical representation in the Euclidean plane R2 or three dimensional space R3, and not in any other topological space. As such, we will use the term 'geometric graph' to refer to any graph in R2 or R3. Some authors use the term spatial graph instead. We formalize these notions below. 2.1 Preliminaries and definitions Definition 2.1 A graph is an ordered pair of finite disjoint sets G = (V; E) such that V is the set of vertices in the graph and E is the set of edges joining the vertices. Silva Page 3 of 30 Definition 2.2 A geometric graph G = (V;E¯ ) is a graph who's vertices have a physical position in R2 or R3 in an Euclidean coordinate system. Physical coordi- nates v¯i :=x ¯ for an ordered triplet x¯ = (x1; x2; x3) are assigned to each vertex vi for all vertices i = 1 :::N in the graph, with the set of all vertices given by V¯ = fvig [6]. Definition 2.3 A complete geometric graph G = (V;¯ E¯) is a geometric graph with directed edges that also have a physical representation in space: An edge eij 2 E is defined as a directed connection from vertex i to vertex j, i.e. from vi to vj. Let 3 an edge between vi and vj be defined geometrically for some function f(·) in R , restricted to simple non-intersecting Jordan arcs. The physical distance of the edge between any two vertices is determined by the path integral taken by the edge in space where for some scalar field f : U ⊆ Rn ! R. Following standard notation, the path integral dij from v¯i to v¯j formed by a piecewise smooth curve C ⊂ U is defined as Z Z v¯j 0 jeijj = dij := f ds = f (¯r(t)) jr¯ (t)j dt v¯i C where r : [¯vi; v¯j] ! C is an arbitrary bijective parametrization of the curve C such that r(¯vi) and r(¯vj) give the endpoints of C for v¯i < v¯j. As a technical comment, it should be noted that our use of the term `complete geometric graph' here differs from the use of the term 'complete graph' referring to a simple undirected graph in which every pair of distinct vertices is connected by a unique edge, or that of a complete digraph which is a directed graph in which every pair of distinct vertices is connected by a pair of unique edges. In addition, we do not notationally distinguish between 'geometric graph' and 'complete geometric graph', i.e. between definitions 2.2 and 2.3 in the rest of this paper in order to avoid introducing additional (unnecessary) notation. This distinction is not necessary because we strictly deal with complete geometric graphs in the work that follows, and the notation G = (V;¯ E¯) should be assumed to refer accordingly. Definition 2.4 The set of all geometric edges in the geometric graph G = (V;¯ E¯) is given by E¯ = feijg. Definition 2.5 We distinguish a non-minimal complete geometric graph, denoted by G, from the 'minimal' complete geometric graph representation Gmin, in the sense that the edges of Gmin are all (geodesic) straight line edges. For E¯min with [eij]min < eij for all edges eij 2 E¯ in G. We define dij as the length of the edge eij: dij = jeijj. The graphs Gmin and G share the same vertex set V¯ and structural connectivity adjacency matrix, but the edge set of Gmin given by E¯min are straight lines while the edge set of of G given by E¯ follow longer convoluted path integrals in space determined by the actual physical nature of the network under consideration, c.f. Silva Page 4 of 30 definition 2.3 above.
Recommended publications
  • Representing Graphs by Polygons with Edge Contacts in 3D
    Representing Graphs by Polygons with Side Contacts in 3D∗ Elena Arseneva1, Linda Kleist2, Boris Klemz3, Maarten Löffler4, André Schulz5, Birgit Vogtenhuber6, and Alexander Wolff7 1 Saint Petersburg State University, Russia [email protected] 2 Technische Universität Braunschweig, Germany [email protected] 3 Freie Universität Berlin, Germany [email protected] 4 Utrecht University, the Netherlands [email protected] 5 FernUniversität in Hagen, Germany [email protected] 6 Technische Universität Graz, Austria [email protected] 7 Universität Würzburg, Germany orcid.org/0000-0001-5872-718X Abstract A graph has a side-contact representation with polygons if its vertices can be represented by interior-disjoint polygons such that two polygons share a common side if and only if the cor- responding vertices are adjacent. In this work we study representations in 3D. We show that every graph has a side-contact representation with polygons in 3D, while this is not the case if we additionally require that the polygons are convex: we show that every supergraph of K5 and every nonplanar 3-tree does not admit a representation with convex polygons. On the other hand, K4,4 admits such a representation, and so does every graph obtained from a complete graph by subdividing each edge once. Finally, we construct an unbounded family of graphs with average vertex degree 12 − o(1) that admit side-contact representations with convex polygons in 3D. Hence, such graphs can be considerably denser than planar graphs. 1 Introduction A graph has a contact representation if its vertices can be represented by interior-disjoint geometric objects1 such that two objects touch exactly if the corresponding vertices are adjacent.
    [Show full text]
  • Analytical Framework for Recurrence-Network Analysis of Time Series
    Analytical framework for recurrence-network analysis of time series Jonathan F. Donges,1, 2, ∗ Jobst Heitzig,1 Reik V. Donner,1 and J¨urgenKurths1, 2, 3 1Potsdam Institute for Climate Impact Research, P.O. Box 601203, 14412 Potsdam, Germany 2Department of Physics, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany 3Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB24 3FX, United Kingdom (Dated: August 13, 2018) Recurrence networks are a powerful nonlinear tool for time series analysis of complex dynamical systems. While there are already many successful applications ranging from medicine to paleoclima- tology, a solid theoretical foundation of the method has still been missing so far. Here, we interpret an "-recurrence network as a discrete subnetwork of a \continuous" graph with uncountably many vertices and edges corresponding to the system's attractor. This step allows us to show that various statistical measures commonly used in complex network analysis can be seen as discrete estimators of newly defined continuous measures of certain complex geometric properties of the attractor on the scale given by ". In particular, we introduce local measures such as the "-clustering coefficient, mesoscopic measures such as "-motif density, path-based measures such as "-betweennesses, and global measures such as "-efficiency. This new analytical basis for the so far heuristically motivated network measures also provides an objective criterion for the choice of " via a percolation threshold, and it shows that estimation can be improved by so-called node splitting invariant versions of the measures. We finally illustrate the framework for a number of archetypical chaotic attractors such as those of the Bernoulli and logistic maps, periodic and two-dimensional quasi-periodic motions, and for hyperballs and hypercubes, by deriving analytical expressions for the novel measures and com- paring them with data from numerical experiments.
    [Show full text]
  • Geometric Biplane Graphs I: Maximal Graphs ∗
    Geometric Biplane Graphs I: Maximal Graphs ∗ Alfredo Garc´ıa1 Ferran Hurtado2 Matias Korman3;4 In^esMatos5 Maria Saumell6 Rodrigo I. Silveira5;2 Javier Tejel1 Csaba D. T´oth7 Abstract We study biplane graphs drawn on a finite planar point set S in general position. This is the family of geometric graphs whose vertex set is S and can be decomposed into two plane graphs. We show that two maximal biplane graphs|in the sense that no edge can be added while staying biplane|may differ in the number of edges, and we provide an efficient algorithm for adding edges to a biplane graph to make it maximal. We also study extremal properties of maximal biplane graphs such as the maximum number of edges and the largest maximum connectivity over n-element point sets. 1 Introduction In a geometric graph G = (V; E), the vertices are distinct points in the plane in general position, and the edges are straight line segments between pairs of vertices. A plane graph is a geometric graph in which no two edges cross. Every (abstract) graph has a realization as a geometric graph (by simply mapping the vertices into distinct points in the plane, no three of which are collinear), and every planar graph can be realized as a plane graph by F´ary'stheorem [13]. The number of n-vertex labeled planar graphs is at least 27:22n n! [15]. · However, there are only 2O(n) plane graphs on any given set of n points in the plane [2, 22]. We consider a generalization of plane graphs.
    [Show full text]
  • Penrose M. Random Geometric Graphs (OUP, 2003)(ISBN 0198506260)(345S) Mac .Pdf
    OXFORD STUDIES IN PROBABILITYManaging Editor L. C. G. ROGERS Editorial Board P. BAXENDALE P. GREENWOOD F. P. KELLY J.-F. LE GALL E. PARDOUX D. WILLIAMS OXFORD STUDIES IN PROBABILITY 1. F. B. Knight: Foundations of the prediction process 2. A. D. Barbour, L. Holst, and S. Janson: Poisson approximation 3. J. F. C. Kingman: Poisson processes 4. V. V. Petrov: Limit theorems of probability theory 5. M. Penrose: Random geometric graphs Random Geometric Graphs MATHEW PENROSE University of Bath Great Clarendon Street, Oxford OX26DP Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Bangkok Buenos Aires Cape Town Chennai Dar es Salaam Delhi Hong Kong Istanbul Kaarachi Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi São Paulo Shanghai Taipei Tokyo Toronto Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York © Mathew Penrose, 2003 The moral rights of the author have been asserted Database right Oxford University Press (maker) First published 2003 Reprinted 2004 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organisation. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above.
    [Show full text]
  • COLORING GRAPHS USING TOPOLOGY 11 Realized by Tutte Who Called an Example of a Disc G for Which the Boundary Has Chromatic Number 4 a Chromatic Obstacle
    COLORING GRAPHS USING TOPOLOGY OLIVER KNILL Abstract. Higher dimensional graphs can be used to color 2- dimensional geometric graphs G. If G the boundary of a three dimensional graph H for example, we can refine the interior until it is colorable with 4 colors. The later goal is achieved if all inte- rior edge degrees are even. Using a refinement process which cuts the interior along surfaces S we can adapt the degrees along the boundary S. More efficient is a self-cobordism of G with itself with a host graph discretizing the product of G with an interval. It fol- lows from the fact that Euler curvature is zero everywhere for three dimensional geometric graphs, that the odd degree edge set O is a cycle and so a boundary if H is simply connected. A reduction to minimal coloring would imply the four color theorem. The method is expected to give a reason \why 4 colors suffice” and suggests that every two dimensional geometric graph of arbitrary degree and ori- entation can be colored by 5 colors: since the projective plane can not be a boundary of a 3-dimensional graph and because for higher genus surfaces, the interior H is not simply connected, we need in general to embed a surface into a 4-dimensional simply connected graph in order to color it. This explains the appearance of the chromatic number 5 for higher degree or non-orientable situations, a number we believe to be the upper limit. For every surface type, we construct examples with chromatic number 3; 4 or 5, where the construction of surfaces with chromatic number 5 is based on a method of Fisk.
    [Show full text]
  • Geometric Intersection Patterns and the Theory of Topological Graphs
    Geometric Intersection Patterns and the Theory of Topological Graphs J´anosPach∗ Abstract. The intersection graph of a set system S is a graph on the vertex set S, in which two vertices are connected by an edge if and only if the corresponding sets have nonempty intersection. It was shown by Tietze (1905) that every finite graph is the intersection graph of 3-dimensional convex polytopes. The analogous statement is false in any fixed dimension if the polytopes are allowed to have only a bounded number of faces or are replaced by simple geometric objects that can be described in terms of a bounded number of real parameters. Intersection graphs of various classes of geometric objects, even in the plane, have interesting structural and extremal properties. We survey problems and results on geometric intersection graphs and, more gener- ally, intersection patterns. Many of the questions discussed were originally raised by Berge, Erd}os,Gr¨unbaum, Hadwiger, Tur´an,and others in the context of classical topol- ogy, graph theory, and combinatorics (related, e.g., to Helly's theorem, Ramsey theory, perfect graphs). The rapid development of computational geometry and graph drawing algorithms in the last couple of decades gave further impetus to research in this field. A topological graph is a graph drawn in the plane so that its vertices are represented by points and its edges by possibly intersecting simple continuous curves connecting the corresponding point pairs. We give applications of the results concerning intersection patterns in the theory of topological graphs. Mathematics Subject Classification (2010). Primary 05C35; Secondary 05C62, 52C10.
    [Show full text]
  • Compatible Geometric Matchings$
    Compatible Geometric MatchingsI Oswin Aichholzera,1, Sergey Beregb, Adrian Dumitrescuc,2, Alfredo Garc´ıad,3, Clemens Huemere,4, Ferran Hurtadoe,4, Mikio Kanof, Alberto M´arquezg, David Rappaporth,5, Shakhar Smorodinskyi, Diane Souvainej, Jorge Urrutiak,6, David R. Woodl,∗,4,7 aInstitute for Software Technology, Graz University of Technology, Austria bDepartment of Computer Science, University of Texas at Dallas, U.S.A. cDepartment of Computer Science, University of Wisconsin-Milwaukee, U.S.A. dDepartamento de M´etodos Estad´ısticos, Universidad de Zaragoza, Spain eDepartament de Matem`atica Aplicada II, Universitat Polit`ecnica de Catalunya, Spain fDepartment of Computer and Information Sciences, Ibaraki University, Japan gDepartamento de Matem´atica Aplicada I, Universidad de Sevilla, Spain hSchool of Computing, Queen's University, Canada iDepartment of Mathematics, Ben-Gurion University, Israel jDepartment of Computer Science, Tufts University, U.S.A. kInstituto de Matem´aticas, Universidad Nacional Aut´onomade M´exico, M´exico lDepartment of Mathematics and Statistics, The University of Melbourne, Australia Abstract This paper studies non-crossing geometric perfect matchings. Two such per- fect matchings are compatible if they have the same vertex set and their union is also non-crossing. Our first result states that for any two perfect match- ings M and M 0 of the same set of n points, for some k 2 O(log n), there 0 is a sequence of perfect matchings M = M0;M1;:::;Mk = M , such that each Mi is compatible with Mi+1. This improves the previous best bound of k ≤ n − 2. We then study the conjecture: every perfect matching with an even number of edges has an edge-disjoint compatible perfect matching.
    [Show full text]
  • A Note on Light Geometric Graphs
    A note on light geometric graphs Eyal Ackerman∗ Jacob Foxy Rom Pinchasiz March 19, 2012 Abstract Let G be a geometric graph on n vertices in general position in the plane. We say that G is k-light if no edge e of G has the property that each of the two open half-planes bounded by the line through e contains more than k edges of G. We extend the previous result in [1] and withp a shorter argument show that every k-light geometric graph on n vertices has at most O(n k) edges. This bound is best possible. Keywords: Geometric graphs, k-near bipartite. 1 Introduction Let G be an n-vertex geometric graph. That is, G is a graph drawn in the plane such that its vertices are distinct points and its edges are straight-line segments connecting corresponding vertices. It is usually assumed, as we will assume in this paper, that the set of vertices of G is in general position in the sense that no three of them lie on a line. A typical question in geometric graph theory asks for the maximum number of edges that a geometric graph on n vertices can have assuming a forbidden configuration in that graph. This is a popular area of study extending classical extremal graph theory, utilizing diverse tools from both geometry and combinatorics. For example, an old result of Hopf and Pannwitz [3] and independently Sutherland [7] states that any geometric graph on n vertices with no pair of disjoint edges has at most n edges.
    [Show full text]
  • 55 GRAPH DRAWING Emilio Di Giacomo, Giuseppe Liotta, Roberto Tamassia
    55 GRAPH DRAWING Emilio Di Giacomo, Giuseppe Liotta, Roberto Tamassia INTRODUCTION Graph drawing addresses the problem of constructing geometric representations of graphs, and has important applications to key computer technologies such as soft- ware engineering, database systems, visual interfaces, and computer-aided design. Research on graph drawing has been conducted within several diverse areas, includ- ing discrete mathematics (topological graph theory, geometric graph theory, order theory), algorithmics (graph algorithms, data structures, computational geometry, vlsi), and human-computer interaction (visual languages, graphical user interfaces, information visualization). This chapter overviews aspects of graph drawing that are especially relevant to computational geometry. Basic definitions on drawings and their properties are given in Section 55.1. Bounds on geometric and topological properties of drawings (e.g., area and crossings) are presented in Section 55.2. Sec- tion 55.3 deals with the time complexity of fundamental graph drawing problems. An example of a drawing algorithm is given in Section 55.4. Techniques for drawing general graphs are surveyed in Section 55.5. 55.1 DRAWINGS AND THEIR PROPERTIES TYPES OF GRAPHS First, we define some terminology on graphs pertinent to graph drawing. Through- out this chapter let n and m be the number of graph vertices and edges respectively, and d the maximum vertex degree (i.e., number of edges incident to a vertex). GLOSSARY Degree-k graph: Graph with maximum degree d k. ≤ Digraph: Directed graph, i.e., graph with directed edges. Acyclic digraph: Digraph without directed cycles. Transitive edge: Edge (u, v) of a digraph is transitive if there is a directed path from u to v not containing edge (u, v).
    [Show full text]
  • Coloring Decompositions of Complete Geometric Graphs
    COLORING DECOMPOSITIONS OF COMPLETE GEOMETRIC GRAPHS Clemens Huemer1 Dolores Lara2 Christian Rubio-Montiel3;4;5 1Departament de Matem`atiques, Universitat Polit`ecnicade Catalunya, Spain. e-mail: [email protected] 2Departamento de Computaci´on,Centro de Investigaci´ony de Estudios Avanzados del Instituto Polit´ecnicoNacional, Mexico. e-mail: [email protected] 3 Divisi´onde Matem´aticase Ingenier´ıa,FES Acatl´an,Universidad Nacional Aut´onomade M´exico.e-mail: [email protected] 4UMI LAFMIA 3175 CNRS at CINVESTAV-IPN, Mexico. 5Department of Algebra, Comenius University, Slovakia. April 24, 2019 Abstract A decomposition of a non-empty simple graph G is a pair [G; P ], such that P is a set of non-empty induced subgraphs of G, and every edge of G belongs to exactly one subgraph in P . The chromatic index χ0([G; P ]) of a decomposition [G; P ] is the smallest number k for which there exists a k-coloring of the elements of P in such a way that: for every element of P all of its edges have the same color, and if two members of P share at least one vertex, then they have different colors. A long standing conjecture of Erd}os-Faber-Lov´asz states that every decomposition [Kn;P ] 0 of the complete graph Kn satisfies χ ([Kn;P ]) ≤ n. In this paper we work with geometric graphs, and inspired by this formulation of the conjecture, we introduce the concept of chromatic index of a decomposition of the complete geometric graph. We present bounds for the chromatic index of several types of decompositions when the vertices of the graph are in This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No 734922.
    [Show full text]
  • 10 GEOMETRIC GRAPH THEORY J´Anos Pach
    10 GEOMETRIC GRAPH THEORY J´anos Pach INTRODUCTION In the traditional areas of graph theory (Ramsey theory, extremal graph theory, random graphs, etc.), graphs are regarded as abstract binary relations. The relevant methods are often incapable of providing satisfactory answers to questions arising in geometric applications. Geometric graph theory focuses on combinatorial and geometric properties of graphs drawn in the plane by straight-line edges (or, more generally, by edges represented by simple Jordan arcs). It is a fairly new discipline abounding in open problems, but it has already yielded some striking results that have proved instrumental in the solution of several basic problems in combinatorial and computational geometry (including the k-set problem and metric questions discussed in Sections 1.1 and 1.2, respectively, of this Handbook). This chapter is partitioned into extremal problems (Section 10.1), crossing numbers (Section 10.2), and generalizations (Section 10.3). 10.1 EXTREMAL PROBLEMS Tur´an’s classical theorem [Tur54] determines the maximum number of edges that an abstract graph with n vertices can have without containing, as a subgraph, a complete graph with k vertices. In the spirit of this result, one can raise the follow- ing general question. Given a class of so-called forbidden geometric subgraphs, what is the maximum number of edgesH that a geometric graph of n vertices can have without containing a geometric subgraph belonging to ? Similarly, Ramsey’s the- orem [Ram30] for abstract graphs has some natural analoguesH for geometric graphs. In this section we will be concerned mainly with problems of these two types.
    [Show full text]
  • Spatial Distribution of Wireless Sensor Nodes in the Urban Environment
    Spatial Distribution of Wireless Sensor Nodes in the Urban Environment Vendula Hejlová Department of Geoinformatics, Palacký University Olomouc, 17. listopadu 50, Olomouc, Czech Republic Keywords: Wireless Sensor Node, Distribution of Nodes, Graph Theory. Abstract: Wireless sensor nodes are an important part of every wireless sensor network. If wireless sensor nodes have implemented or connected sensors, then they can be used for different types of measurements. These measurements can be carried out either in internal or external environment. Spatial distribution of sensor nodes in the urban environment is a crucial decision because on its basis the selected elements will be measured in the suggested places. It is necessary to choose localities where these measurements have the long term significance. Distribution of sensor nodes in the urban environment is determined by a lot of factors. These factors are related to technical parameters of nodes, terrain characteristics and parameters of measured elements. Distribution of sensor nodes is made on the basis of distribution algorithms or the sensor nodes are randomly spread to the area of interest. The graph theory is usually the background of distribution algorithms. This theory primarily does not take into account the characteristics of terrain and measured elements. This paper describes factors that influence the distribution of sensor nodes. The graphs that are used in the wireless sensor networks are described and the most suitable solution for implementing terrain characteristics is selected. 1 INTRODUCTION The author solves the problem of distribution of wireless sensor nodes in the urban environment on Spatial distribution of wireless sensor nodes in the the basis of suggested factors.
    [Show full text]