Penrose M. Random Geometric Graphs (OUP, 2003)(ISBN 0198506260)(345S) Mac .Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Penrose M. Random Geometric Graphs (OUP, 2003)(ISBN 0198506260)(345S) Mac .Pdf OXFORD STUDIES IN PROBABILITYManaging Editor L. C. G. ROGERS Editorial Board P. BAXENDALE P. GREENWOOD F. P. KELLY J.-F. LE GALL E. PARDOUX D. WILLIAMS OXFORD STUDIES IN PROBABILITY 1. F. B. Knight: Foundations of the prediction process 2. A. D. Barbour, L. Holst, and S. Janson: Poisson approximation 3. J. F. C. Kingman: Poisson processes 4. V. V. Petrov: Limit theorems of probability theory 5. M. Penrose: Random geometric graphs Random Geometric Graphs MATHEW PENROSE University of Bath Great Clarendon Street, Oxford OX26DP Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Bangkok Buenos Aires Cape Town Chennai Dar es Salaam Delhi Hong Kong Istanbul Kaarachi Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi São Paulo Shanghai Taipei Tokyo Toronto Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York © Mathew Penrose, 2003 The moral rights of the author have been asserted Database right Oxford University Press (maker) First published 2003 Reprinted 2004 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organisation. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above. You must not circulate this book in any other binding or cover and you must impose this same condition on any acquirer. A catalogue record for this title is available from the British Library (Data available) ISBN 0 19 850626 0 1098765432 PREFACE Random geometric graphs are easily described. A set of points is randomly scattered over a region of space according to some probability distribution, and any two points separated by a distance less than a certain specified value are connected by an edge. This book is an attempt to describe the mathematical theory of the resulting graphs and to give a flavour of some of the applications. I started to contemplate writing this book in the summer of 1998, when it occurred to me, firstly, that random geometric graphs are a natural alternative to the classical Erdös-Rényi random graph schemes, and secondly, that an account of them in monograph form could provide a useful collection of techniques in geometric probability. Although the project has taken longer than expected, I hope these assumptions retain their force, and that resulting book can be useful both to mathematicians with an interest in geometrical probability, and to practitioners in various subjects including communications engineering, classification, and computer science, wishing to see how far the mathematical theory has progressed. This monograph is self-contained, and could be used as the basis of a graduatelevel course (or courses). An overview of the topics covered appears in Section 1.4. The reader will find proofs in the text, and will find prior knowledge of the probabilistic concepts briefly reviewed in Section 1.6 to be useful. Other preliminaries are minimal; a small number of results in adjacent subjects such as measure theory, topology, and graph theory are used and are stated without proof in the text. With regard to citations, I have tried to provide the most useful references for the reader, without always giving full historical details. Thus, there may be some results for which the reader is referred to some standard text, rather than to the original work containing those results. Likewise, any claims made regarding the novelty of work in this book are necessarily subject to the limits of my own knowledge, and I apologize in advance to the authors of any relevant works which I have failed to mention through ignorance. References to related work are generally given in the notes the end of each chapter, along with relevant open problems. It is a pleasure to thank the following people and institutions for their assistance. The Fields Institute in Toronto provided hospitality for ten weeks in the spring of 1999. Jordi Petit provided the software used to produce diagrams of random geometric graphs in this book. Pauline Coolen-Schrner, Joseph Yukich, and Andrew Wade read and commented on earlier drafts of some of the chapters; vi PREFACE however, I wish to take full credit myself for any remaining errors, which I intend to monitor on a web page if and when they come to light. Durham, UK M.P. September 2002 CONTENTS Notation xi 1 Introduction 1 1.1 Motivation and history 1 1.2Statistical background 4 1.3 Computer science background 7 1.4 Outline of results 9 1.5 Some basic definitions 11 1.6 Elements of probability 14 1.7 Poissonization 18 1.8 Notes and open problems 21 2 Probabilistic ingredients 22 2.1 Dependency graphs and Poisson approximation 22 2.2 Multivariate Poisson approximation 25 2.3 Normal approximation 27 2.4 Martingale theory 33 2.5 De-Poissonization 37 2.6 Notes 46 3 Subgraph and component counts 47 3.1 Expectations 48 3.2Poisson approximation 52 3.3 Second moments in a Poisson process 55 3.4 Normal approximation for Poisson processes 60 3.5 Normal approximation: de-Poissonization 65 3.6 Strong laws of large numbers 69 3.7 Notes 73 4 Typical vertex degrees 74 4.1 The setup 75 4.2Laws of large numbers 76 4.3 Asymptotic covariances 78 4.4 Moments for de-Poissonization 82 4.5 Finite-dimensional central limit theorems 87 4.6 Convergence in Skorohod space 91 4.7 Notes and open problems 93 5 Geometrical ingredients 95 5.1 Consequences of the Lebesgue density theorem 95 5.2Covering, packing, and slicing 97 viii CONTENTS 5.3 The Brunn–Minkowski inequality 102 5.4 Expanding sets in the orthant 104 6 Maximum degree, cliques, and colourings 109 6.1 Focusing 110 6.2Subconnective laws of large numbers 118 6.3 More laws of large numbers for maximum degree 120 6.4 Laws of large numbers for clique number 126 6.5 The chromatic number 130 6.6 Notes and open problems 134 7 Minimum degree: laws of large numbers 136 7.1 Thresholds in smoothly bounded regions 136 7.2Strong laws for thresholds in the cube 145 7.3 Strong laws for the minimum degree 151 7.4 Notes 154 8 Minimum degree: convergence in distribution 155 8.1 Uniformly distributed points I 156 8.2Uniformly distributed points II 160 8.3 Normally distributed points I 167 8.4 Normally distributed points II 173 8.5 Notes and open problems 176 9 Percolative ingredients 177 9.1 Unicoherence 177 9.2Connectivity and Peierls arguments 177 9.3 Bernoulli percolation 180 9.4 k-Dependent percolation 186 9.5 Ergodic theory 187 9.6 Continuum percolation: fundamentals 188 10 Percolation and the largest component 194 10.1 The subcritical regime 195 10.2Existence of a crossing component 200 10.3 Uniqueness of the giant component 205 10.4 Sub-exponential decay for supercritical percolation 210 10.5 The second-largest component 216 10.6 Large deviations in the supercritical regime 220 10.7 Fluctuations of the giant component 224 10.8 Notes and open problems 230 11 The largest component for a binomial process 231 11.1 The subcritical case 231 11.2The supercritical case on the cube 234 11.3 Fractional consistency of single-linkage clustering 240 11.4 Consistency of the RUNT test for unimodality 247 CONTENTS ix 11.5 Fluctuations of the giant component 252 11.6 Notes and open problems 257 12 Ordering and partitioning problems 259 12.1 Background on layout problems 259 12.2 The subcritical case 262 12.3 The supercritical case 268 12.4 The superconnectivity regime 275 12.5 Notes and open problems 279 13 Connectivity and the number of components 281 13.1 Multiple connectivity 282 13.2Strong laws for points in the cube or torus 283 13.3 SLLN in smoothly bounded regions 289 13.4 Convergence in distribution 295 13.5 Further results on points in the cube 302 13.6 Normally distributed points 306 13.7 The component count in the thermodynamic limit 309 13.8 Notes and open problems 316 References 318 Index 328 This page intentionally left blank NOTATION In this list, section numbers refer to the places where the notation is defined. If only a chapter number is given, the notation is introduced at the start of that chapter. Some items of notation whose use is localized are omitted from this list. xii NOTATION Symbol Usage Section 0 The origin of Rd 1.5 1 Indicator random variable or indicator function of A 1.6 A B(x;r ) Ball of radius r centred at x 1.5 B*(x;r , η, e) Segment of the ball of radius r centred at x 5.2 B (x;r ) Segment of ball of radius r centred at x 8.3 ▵ B(s) The box [-s/2, s/2]d 9.6 B (m) Lattice box of side m 9.2 z B′ (n) Lattice box of side n centred at the origin 10.5 z C Bernoulli process (random subset of Zd) induced by Zp 9.3 p Bi(n, p) Binomial random variable 1.6 C 13.4 The unit cube C(G), C ,C′ Clique numbers of G,G(X ; r ), and G(P ; r ), respectively 6 n n n n n n c.c.
Recommended publications
  • Representing Graphs by Polygons with Edge Contacts in 3D
    Representing Graphs by Polygons with Side Contacts in 3D∗ Elena Arseneva1, Linda Kleist2, Boris Klemz3, Maarten Löffler4, André Schulz5, Birgit Vogtenhuber6, and Alexander Wolff7 1 Saint Petersburg State University, Russia [email protected] 2 Technische Universität Braunschweig, Germany [email protected] 3 Freie Universität Berlin, Germany [email protected] 4 Utrecht University, the Netherlands [email protected] 5 FernUniversität in Hagen, Germany [email protected] 6 Technische Universität Graz, Austria [email protected] 7 Universität Würzburg, Germany orcid.org/0000-0001-5872-718X Abstract A graph has a side-contact representation with polygons if its vertices can be represented by interior-disjoint polygons such that two polygons share a common side if and only if the cor- responding vertices are adjacent. In this work we study representations in 3D. We show that every graph has a side-contact representation with polygons in 3D, while this is not the case if we additionally require that the polygons are convex: we show that every supergraph of K5 and every nonplanar 3-tree does not admit a representation with convex polygons. On the other hand, K4,4 admits such a representation, and so does every graph obtained from a complete graph by subdividing each edge once. Finally, we construct an unbounded family of graphs with average vertex degree 12 − o(1) that admit side-contact representations with convex polygons in 3D. Hence, such graphs can be considerably denser than planar graphs. 1 Introduction A graph has a contact representation if its vertices can be represented by interior-disjoint geometric objects1 such that two objects touch exactly if the corresponding vertices are adjacent.
    [Show full text]
  • Analytical Framework for Recurrence-Network Analysis of Time Series
    Analytical framework for recurrence-network analysis of time series Jonathan F. Donges,1, 2, ∗ Jobst Heitzig,1 Reik V. Donner,1 and J¨urgenKurths1, 2, 3 1Potsdam Institute for Climate Impact Research, P.O. Box 601203, 14412 Potsdam, Germany 2Department of Physics, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany 3Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB24 3FX, United Kingdom (Dated: August 13, 2018) Recurrence networks are a powerful nonlinear tool for time series analysis of complex dynamical systems. While there are already many successful applications ranging from medicine to paleoclima- tology, a solid theoretical foundation of the method has still been missing so far. Here, we interpret an "-recurrence network as a discrete subnetwork of a \continuous" graph with uncountably many vertices and edges corresponding to the system's attractor. This step allows us to show that various statistical measures commonly used in complex network analysis can be seen as discrete estimators of newly defined continuous measures of certain complex geometric properties of the attractor on the scale given by ". In particular, we introduce local measures such as the "-clustering coefficient, mesoscopic measures such as "-motif density, path-based measures such as "-betweennesses, and global measures such as "-efficiency. This new analytical basis for the so far heuristically motivated network measures also provides an objective criterion for the choice of " via a percolation threshold, and it shows that estimation can be improved by so-called node splitting invariant versions of the measures. We finally illustrate the framework for a number of archetypical chaotic attractors such as those of the Bernoulli and logistic maps, periodic and two-dimensional quasi-periodic motions, and for hyperballs and hypercubes, by deriving analytical expressions for the novel measures and com- paring them with data from numerical experiments.
    [Show full text]
  • Geometric Biplane Graphs I: Maximal Graphs ∗
    Geometric Biplane Graphs I: Maximal Graphs ∗ Alfredo Garc´ıa1 Ferran Hurtado2 Matias Korman3;4 In^esMatos5 Maria Saumell6 Rodrigo I. Silveira5;2 Javier Tejel1 Csaba D. T´oth7 Abstract We study biplane graphs drawn on a finite planar point set S in general position. This is the family of geometric graphs whose vertex set is S and can be decomposed into two plane graphs. We show that two maximal biplane graphs|in the sense that no edge can be added while staying biplane|may differ in the number of edges, and we provide an efficient algorithm for adding edges to a biplane graph to make it maximal. We also study extremal properties of maximal biplane graphs such as the maximum number of edges and the largest maximum connectivity over n-element point sets. 1 Introduction In a geometric graph G = (V; E), the vertices are distinct points in the plane in general position, and the edges are straight line segments between pairs of vertices. A plane graph is a geometric graph in which no two edges cross. Every (abstract) graph has a realization as a geometric graph (by simply mapping the vertices into distinct points in the plane, no three of which are collinear), and every planar graph can be realized as a plane graph by F´ary'stheorem [13]. The number of n-vertex labeled planar graphs is at least 27:22n n! [15]. · However, there are only 2O(n) plane graphs on any given set of n points in the plane [2, 22]. We consider a generalization of plane graphs.
    [Show full text]
  • COLORING GRAPHS USING TOPOLOGY 11 Realized by Tutte Who Called an Example of a Disc G for Which the Boundary Has Chromatic Number 4 a Chromatic Obstacle
    COLORING GRAPHS USING TOPOLOGY OLIVER KNILL Abstract. Higher dimensional graphs can be used to color 2- dimensional geometric graphs G. If G the boundary of a three dimensional graph H for example, we can refine the interior until it is colorable with 4 colors. The later goal is achieved if all inte- rior edge degrees are even. Using a refinement process which cuts the interior along surfaces S we can adapt the degrees along the boundary S. More efficient is a self-cobordism of G with itself with a host graph discretizing the product of G with an interval. It fol- lows from the fact that Euler curvature is zero everywhere for three dimensional geometric graphs, that the odd degree edge set O is a cycle and so a boundary if H is simply connected. A reduction to minimal coloring would imply the four color theorem. The method is expected to give a reason \why 4 colors suffice” and suggests that every two dimensional geometric graph of arbitrary degree and ori- entation can be colored by 5 colors: since the projective plane can not be a boundary of a 3-dimensional graph and because for higher genus surfaces, the interior H is not simply connected, we need in general to embed a surface into a 4-dimensional simply connected graph in order to color it. This explains the appearance of the chromatic number 5 for higher degree or non-orientable situations, a number we believe to be the upper limit. For every surface type, we construct examples with chromatic number 3; 4 or 5, where the construction of surfaces with chromatic number 5 is based on a method of Fisk.
    [Show full text]
  • Geometric Intersection Patterns and the Theory of Topological Graphs
    Geometric Intersection Patterns and the Theory of Topological Graphs J´anosPach∗ Abstract. The intersection graph of a set system S is a graph on the vertex set S, in which two vertices are connected by an edge if and only if the corresponding sets have nonempty intersection. It was shown by Tietze (1905) that every finite graph is the intersection graph of 3-dimensional convex polytopes. The analogous statement is false in any fixed dimension if the polytopes are allowed to have only a bounded number of faces or are replaced by simple geometric objects that can be described in terms of a bounded number of real parameters. Intersection graphs of various classes of geometric objects, even in the plane, have interesting structural and extremal properties. We survey problems and results on geometric intersection graphs and, more gener- ally, intersection patterns. Many of the questions discussed were originally raised by Berge, Erd}os,Gr¨unbaum, Hadwiger, Tur´an,and others in the context of classical topol- ogy, graph theory, and combinatorics (related, e.g., to Helly's theorem, Ramsey theory, perfect graphs). The rapid development of computational geometry and graph drawing algorithms in the last couple of decades gave further impetus to research in this field. A topological graph is a graph drawn in the plane so that its vertices are represented by points and its edges by possibly intersecting simple continuous curves connecting the corresponding point pairs. We give applications of the results concerning intersection patterns in the theory of topological graphs. Mathematics Subject Classification (2010). Primary 05C35; Secondary 05C62, 52C10.
    [Show full text]
  • Compatible Geometric Matchings$
    Compatible Geometric MatchingsI Oswin Aichholzera,1, Sergey Beregb, Adrian Dumitrescuc,2, Alfredo Garc´ıad,3, Clemens Huemere,4, Ferran Hurtadoe,4, Mikio Kanof, Alberto M´arquezg, David Rappaporth,5, Shakhar Smorodinskyi, Diane Souvainej, Jorge Urrutiak,6, David R. Woodl,∗,4,7 aInstitute for Software Technology, Graz University of Technology, Austria bDepartment of Computer Science, University of Texas at Dallas, U.S.A. cDepartment of Computer Science, University of Wisconsin-Milwaukee, U.S.A. dDepartamento de M´etodos Estad´ısticos, Universidad de Zaragoza, Spain eDepartament de Matem`atica Aplicada II, Universitat Polit`ecnica de Catalunya, Spain fDepartment of Computer and Information Sciences, Ibaraki University, Japan gDepartamento de Matem´atica Aplicada I, Universidad de Sevilla, Spain hSchool of Computing, Queen's University, Canada iDepartment of Mathematics, Ben-Gurion University, Israel jDepartment of Computer Science, Tufts University, U.S.A. kInstituto de Matem´aticas, Universidad Nacional Aut´onomade M´exico, M´exico lDepartment of Mathematics and Statistics, The University of Melbourne, Australia Abstract This paper studies non-crossing geometric perfect matchings. Two such per- fect matchings are compatible if they have the same vertex set and their union is also non-crossing. Our first result states that for any two perfect match- ings M and M 0 of the same set of n points, for some k 2 O(log n), there 0 is a sequence of perfect matchings M = M0;M1;:::;Mk = M , such that each Mi is compatible with Mi+1. This improves the previous best bound of k ≤ n − 2. We then study the conjecture: every perfect matching with an even number of edges has an edge-disjoint compatible perfect matching.
    [Show full text]
  • A Note on Light Geometric Graphs
    A note on light geometric graphs Eyal Ackerman∗ Jacob Foxy Rom Pinchasiz March 19, 2012 Abstract Let G be a geometric graph on n vertices in general position in the plane. We say that G is k-light if no edge e of G has the property that each of the two open half-planes bounded by the line through e contains more than k edges of G. We extend the previous result in [1] and withp a shorter argument show that every k-light geometric graph on n vertices has at most O(n k) edges. This bound is best possible. Keywords: Geometric graphs, k-near bipartite. 1 Introduction Let G be an n-vertex geometric graph. That is, G is a graph drawn in the plane such that its vertices are distinct points and its edges are straight-line segments connecting corresponding vertices. It is usually assumed, as we will assume in this paper, that the set of vertices of G is in general position in the sense that no three of them lie on a line. A typical question in geometric graph theory asks for the maximum number of edges that a geometric graph on n vertices can have assuming a forbidden configuration in that graph. This is a popular area of study extending classical extremal graph theory, utilizing diverse tools from both geometry and combinatorics. For example, an old result of Hopf and Pannwitz [3] and independently Sutherland [7] states that any geometric graph on n vertices with no pair of disjoint edges has at most n edges.
    [Show full text]
  • 55 GRAPH DRAWING Emilio Di Giacomo, Giuseppe Liotta, Roberto Tamassia
    55 GRAPH DRAWING Emilio Di Giacomo, Giuseppe Liotta, Roberto Tamassia INTRODUCTION Graph drawing addresses the problem of constructing geometric representations of graphs, and has important applications to key computer technologies such as soft- ware engineering, database systems, visual interfaces, and computer-aided design. Research on graph drawing has been conducted within several diverse areas, includ- ing discrete mathematics (topological graph theory, geometric graph theory, order theory), algorithmics (graph algorithms, data structures, computational geometry, vlsi), and human-computer interaction (visual languages, graphical user interfaces, information visualization). This chapter overviews aspects of graph drawing that are especially relevant to computational geometry. Basic definitions on drawings and their properties are given in Section 55.1. Bounds on geometric and topological properties of drawings (e.g., area and crossings) are presented in Section 55.2. Sec- tion 55.3 deals with the time complexity of fundamental graph drawing problems. An example of a drawing algorithm is given in Section 55.4. Techniques for drawing general graphs are surveyed in Section 55.5. 55.1 DRAWINGS AND THEIR PROPERTIES TYPES OF GRAPHS First, we define some terminology on graphs pertinent to graph drawing. Through- out this chapter let n and m be the number of graph vertices and edges respectively, and d the maximum vertex degree (i.e., number of edges incident to a vertex). GLOSSARY Degree-k graph: Graph with maximum degree d k. ≤ Digraph: Directed graph, i.e., graph with directed edges. Acyclic digraph: Digraph without directed cycles. Transitive edge: Edge (u, v) of a digraph is transitive if there is a directed path from u to v not containing edge (u, v).
    [Show full text]
  • Coloring Decompositions of Complete Geometric Graphs
    COLORING DECOMPOSITIONS OF COMPLETE GEOMETRIC GRAPHS Clemens Huemer1 Dolores Lara2 Christian Rubio-Montiel3;4;5 1Departament de Matem`atiques, Universitat Polit`ecnicade Catalunya, Spain. e-mail: [email protected] 2Departamento de Computaci´on,Centro de Investigaci´ony de Estudios Avanzados del Instituto Polit´ecnicoNacional, Mexico. e-mail: [email protected] 3 Divisi´onde Matem´aticase Ingenier´ıa,FES Acatl´an,Universidad Nacional Aut´onomade M´exico.e-mail: [email protected] 4UMI LAFMIA 3175 CNRS at CINVESTAV-IPN, Mexico. 5Department of Algebra, Comenius University, Slovakia. April 24, 2019 Abstract A decomposition of a non-empty simple graph G is a pair [G; P ], such that P is a set of non-empty induced subgraphs of G, and every edge of G belongs to exactly one subgraph in P . The chromatic index χ0([G; P ]) of a decomposition [G; P ] is the smallest number k for which there exists a k-coloring of the elements of P in such a way that: for every element of P all of its edges have the same color, and if two members of P share at least one vertex, then they have different colors. A long standing conjecture of Erd}os-Faber-Lov´asz states that every decomposition [Kn;P ] 0 of the complete graph Kn satisfies χ ([Kn;P ]) ≤ n. In this paper we work with geometric graphs, and inspired by this formulation of the conjecture, we introduce the concept of chromatic index of a decomposition of the complete geometric graph. We present bounds for the chromatic index of several types of decompositions when the vertices of the graph are in This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No 734922.
    [Show full text]
  • 10 GEOMETRIC GRAPH THEORY J´Anos Pach
    10 GEOMETRIC GRAPH THEORY J´anos Pach INTRODUCTION In the traditional areas of graph theory (Ramsey theory, extremal graph theory, random graphs, etc.), graphs are regarded as abstract binary relations. The relevant methods are often incapable of providing satisfactory answers to questions arising in geometric applications. Geometric graph theory focuses on combinatorial and geometric properties of graphs drawn in the plane by straight-line edges (or, more generally, by edges represented by simple Jordan arcs). It is a fairly new discipline abounding in open problems, but it has already yielded some striking results that have proved instrumental in the solution of several basic problems in combinatorial and computational geometry (including the k-set problem and metric questions discussed in Sections 1.1 and 1.2, respectively, of this Handbook). This chapter is partitioned into extremal problems (Section 10.1), crossing numbers (Section 10.2), and generalizations (Section 10.3). 10.1 EXTREMAL PROBLEMS Tur´an’s classical theorem [Tur54] determines the maximum number of edges that an abstract graph with n vertices can have without containing, as a subgraph, a complete graph with k vertices. In the spirit of this result, one can raise the follow- ing general question. Given a class of so-called forbidden geometric subgraphs, what is the maximum number of edgesH that a geometric graph of n vertices can have without containing a geometric subgraph belonging to ? Similarly, Ramsey’s the- orem [Ram30] for abstract graphs has some natural analoguesH for geometric graphs. In this section we will be concerned mainly with problems of these two types.
    [Show full text]
  • Spatial Distribution of Wireless Sensor Nodes in the Urban Environment
    Spatial Distribution of Wireless Sensor Nodes in the Urban Environment Vendula Hejlová Department of Geoinformatics, Palacký University Olomouc, 17. listopadu 50, Olomouc, Czech Republic Keywords: Wireless Sensor Node, Distribution of Nodes, Graph Theory. Abstract: Wireless sensor nodes are an important part of every wireless sensor network. If wireless sensor nodes have implemented or connected sensors, then they can be used for different types of measurements. These measurements can be carried out either in internal or external environment. Spatial distribution of sensor nodes in the urban environment is a crucial decision because on its basis the selected elements will be measured in the suggested places. It is necessary to choose localities where these measurements have the long term significance. Distribution of sensor nodes in the urban environment is determined by a lot of factors. These factors are related to technical parameters of nodes, terrain characteristics and parameters of measured elements. Distribution of sensor nodes is made on the basis of distribution algorithms or the sensor nodes are randomly spread to the area of interest. The graph theory is usually the background of distribution algorithms. This theory primarily does not take into account the characteristics of terrain and measured elements. This paper describes factors that influence the distribution of sensor nodes. The graphs that are used in the wireless sensor networks are described and the most suitable solution for implementing terrain characteristics is selected. 1 INTRODUCTION The author solves the problem of distribution of wireless sensor nodes in the urban environment on Spatial distribution of wireless sensor nodes in the the basis of suggested factors.
    [Show full text]
  • Local Structure Theorems for Erdos Renyi Graphs and Their Algorithmic Application
    Local Structure Theorems for Erd}os{R´enyi Graphs and their Algorithmic Applications Jan Dreier1, Philipp Kuinke1, Ba Le Xuan2, and Peter Rossmanith1 1 Theoretical Computer Science, Dept. of Computer Science, RWTH Aachen University, Aachen, Germany fdreier,kuinke,[email protected] 2 The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut's University of Technology North Bangkok, Thailand [email protected] Abstract. We analyze local properties of sparse Erd}os{R´enyi graphs, where d(n)=n is the edge probability. In particular we study the behav- ior of very short paths. For d(n) = no(1) we show that G(n; d(n)=n) has asymptotically almost surely (a.a.s.) bounded local treewidth and there- fore is a.a.s. nowhere dense. We also discover a new and simpler proof that G(n; d=n) has a.a.s. bounded expansion for constant d. The local struc- ture of sparse Erd}os{R´enyi graphs is very special: The r-neighborhood of a vertex is a tree with some additional edges, where the probabil- ity that there are m additional edges decreases with m. This implies efficient algorithms for subgraph isomorphism, in particular for finding subgraphs with small diameter. Finally, experiments suggest that pref- erential attachment graphs might have similar properties after deleting a small number of vertices. Keywords: graph theory, random graphs, sparse graphs, graph algo- rithms 1 Introduction One of the earliest and most intensively studied random graph models is the Erd}os{R´enyi model [1,2]. Graphs from this class are usually depicted as a random variable G(n; p), which is a graph consisting of n vertices where each pair of vertices is connected independently uniformly at random with probability p.
    [Show full text]