Orsetti Et Al. Table S1

Total Page:16

File Type:pdf, Size:1020Kb

Orsetti Et Al. Table S1 Orsetti et al. Table S1 e r c n e s e u n k e c j r o n t u i m a e u t n a i j 2 2 z d m e n s e 0 0 n t e r o e e a n 0 0 z o p r n B e o 2 2 f o e c e o b l r c t n f C M s y e c C G u RP11-61B16 0,49 17p13,3 GEMIN4/FLJ10979/FLJ22282/LOC51031/FLJ20435/NXN RP11-91C8 0,65 17p13,3 GEMIN4/LOC51031/FLJ10581/FLJ20435/NXN RP11-26N16 0,89 17p13,3 TIMM22/ABR RP11-294J5 1,28 17p13,3 CRK/YWHAE RP11-357O7 2,14 17p13,3 DPH2L1/OVCA2/HIC1/c17orf31 RP11-380H7 2,46 17p13,3 MNT RP11-135N5 2,69 17p13,3 PAFAH1B1/D17S2111 RP11-582C6 3,18 17p13,3 RP11-587F22 3,56 17p13,3 RH92507 RP11-545O6 3,82 17p13,3-17p13,2 ITGAE/GSG2/HSA277841/DKFZp761M0423 RP11-459C13 4,08 17p13,2 KIAA0399 RP11-4F24 4,45 17p13 RPA1/ DPH2L1/D17S2106 RP11-457I18 5,47 17p13,2 RAB5EP/NUP88/MGC4189/C1QBP/DDX33 RP11-61B20 7,13 17p13.1 ALOX12/ ASGR1/ ASGR2 RP11-9A21 7,78 17p13.1 EFNB3/ ATP1B2/ SHBG/ FXR2/ SL15/ CD68/SENP3/SSAT2/SOX15/MPDU1/EIF4A1 RP11-89D11 7,81 17p13.1 SOX15/FXR2/SSAT2/SHBG/ATP1B2/EFNB3/FLJ10385/TP53 RP11-89A15 8,54 17p13.1 WI-7901/RPL26/NUDEL RP11-383G9 8,67 17p13,1 RP11-55C13 8,67 17p13,1 RP11-385G5 11,46 17p12 RP11-746E8 12,76 17p12 sts-H97559 RP11-89K6 13,36 17p12 RP11-42F12 14,48 17p12 D17S921 RP11-89F21 15,35 17p12 RP11-90G21 15,65 17p12 LOC201158/LOC51030/C17orf1A/TRIM16 RP11-273K13 15,83 17p12 C17ORF1A/ EBBP/ E2-EFP/ D17S1281 RP11-459E6 16,09 17p12-17p11,2 ADORA2B/FLJ20343/NCOR1 RP11-404D6 16,53 17p11,2 UBB/TRPV2 RP11-525O11 17,75 17p11,2 SMCR5/RAI1/SREBF1 RP11-160E2 19,20 17p11,2 GRAP/D17S1286/EPN2 RP11-79O4 19,87 17p11,2 SHMT1/ULK2/AKAP10 RP11-363P3 20,14 17p11,2 ALDH3A1/ULK2/AKAP10/FLJ11800/DKFZp434F1819/PMI/DKFZp5660O84 RP11-405P10 20,68 17p11,2 PMI/DKFZp5660O84 RP11-88B16 27,80 17q11,2 RP11-100L12 28,16 17q11,2 SLC6A4/ BLMH RP11-73F15 28,91 17q11,2 CREME9/SHGC-3743 RP11-398A1 29,17 17q11,2 MGC11316 RP11-451O6 29,36 17q11,2 P1 .9 29,61 17q11,2 NF1 RP11-525H19 29,81 17q11,2 MGC13061/CENTA2/FLJ22729 RP11-79O9 29,92 17q11,2 RP11-451O17 30,36 17q11,2 ZNF207 RP11-90A23 31,44 17q11,2 ACCN1 RP11-490L18 31,55 17q11,2 RP11-521P1 32,31 17q11,2 SCYA6/SCYA13/SCYA1 RP11-294G4 33,00 17q12 LIG3/LOC117584/RAD51L3/DKFZp434H2215/FLJ10458/ RP11-252N11 33,09 17q12 LIG3/LOC117584/RAD51L3/DKFZp434H2215/FLJ10458 RP11-58O8 33,55 17q12 PEX12/D17S1669/APPB1 RP11-81D5 34,48 17q12 LHX1/DED RP11-19G24 34,74 17q12 ACACA 56K13 36,48 17q12 LASP1 201L4 36,53 17q12 LASP1 19108 37,02 17q12 PPARBP 19107 37,07 17q12 PPARBP D152 37,29 17q12 MLN64 Neu1-béa 37,36 17q12 ERBB2 Neu4-béa 37,36 17q12 ERBB2 CTD-2251j22 37,57 17q12 GRB7 RP11-749I16 37,77 17q21,1 MLN51 59G17 37,82 17q21,1 D17S1979/THRA RP11-87N6 37,83 17q21,1 D17S1984 RP11-38L14 37,87 17q21,2 RNU2 RP11-513C18 37,88 17q21,2 RARA/FLJ14950 265E19 37,98 17q21,2 RARA RP11-58O9 37,98 17q21,2 FLJ14950 P1 610 38,03 17q21,2 TOP2A RP11-241H2 38,04 17q21,2 TOP2A/ ITGBP4 RP11-89A22 38,17 17q21,2 FLJ20261/SMARCE1 RP11-268H17 38,42 17q21,2 HAIK1/KAP3,3/KRTAP3,2/3,1/1,5 RP11-29C11 38,98 17q21,2 KRT19/ KRT14/ KRTHA6/ KRT13/ KRT15/KRTHA6/A5/A2/A8/A7/A1/A4/3B/3A RP11-266I24 40,55 17q21,31 BECN1/MGC2744// RPL27 RP3-452O8 40,66 17q21,31 BECN1 184L7 40,67 17q23,3 BRCA1 97H8 40,68 17q21,31 D17S1323 RP11-436J4 41,36 17q21,31 MEOX1/SOST/DUSP3/MPP3 RP11-9M20 42,67 17q21,31 D17S950 RP11-79O18 44,13 17q21,31 NSF/WNT3 RP11-510P20 44,27 17q21,31-17q21,32 WNT3/WNT15/GOSR2 RP5-890E16 44,60 17q21,32 TCF11, ITGB3 RP11-234J24 44,70 17q21,32 MYL4/ ITGB3/ NPEPPS RP11-423H11 45,60 17q21,32 SP2/FLJ10535/MGC11242/CDK5RAP3/LOC51226/NFE2L1/CBX1/SNX11/SCAP1 RP11-36J16 46,41 17q21,32 RP11-110H20 46,47 17q21,32 IMP1/ GIP/ EAP30/ ATP5G1/NDP52/FLJ13855 RP11-379D19 48,82 17q21,33 NME1/NME2/FLJ20055/LOC51096 110L5 49,53 17q21,33 D17S809 RP11-143M4 49,84 17q22 LOC56934/D17S2122 RP11-131C4 49,90 17q22 LOC56934/D17S788 RP11-42M14 50,23 17q22 D17S2136 RP11-372K20 52,23 17q22 D17S790 110D21 53,01 17q22 HLF RP11-515O17 53,07 17q22 HLF RP11-515E23 53,17 17q22 MMD 215L21 53,44 17q23,1 D17S1607 RP11-524I12 53,48 17q23,1-17q23,2 PCTP RP11-550K23 53,49 17q23,2 FLJ10970/PCTP RP11-670E13 54,63 17q23,2 DGKE/ZNF147 RP5-1107A17 55,11 17q23,2 D17S957 RP11-118E18 55,19 17q23,2 RP11-343K8 55,61 17q23,2 MRPS23/FLJ20739 RP11-506H21 55,80 17q23,2 LPO/FLJ20345/EPX RP5-1171I10 56,08 17q23,2 MPO RP5-1081P3 56,71 17q23,2 WI-6857/MUL RP11-329E11 56,92 17q23,2 stSG39547 RP11-481M4 57,05 17q23,2 FLJ22060 RP11-118K23 57,39 17q23,2 CLTC RP11-521F6 57,55 17q23,2 CA4/APPBP2 92E7 57,73 17q23,2 D17S1604 RP11-178C3 57,82 17q23,2 RP6KB1 23E14 59,20 17q23,2 D17S1855 RP1-210A19 59,23 17q23,2 TXB2 RP11-332H18 59,23 17q23,2 TBX2 RP11-15K2 59,27 17q23,2 TBX4 RP11-180P8 60,34 17q23,2 RP11-156L14 60,37 17q23,2 D17S794 RP11-269G24 61,16 17q23,2 CYB561 RP11-548G14 61,22 17q23,2 RP11-214C8 61,63 17q23,3 GH1/ICAM2 RP11-89H15 61,66 17q23,3 HT008 176P24 61,94 17q23,3 PECAM1 RP11-557B23 62,34 17q23,3 FALZ/DKFZ586L0724/RDGBB RP11-304E2 62,52 17q23,3-17q24,1 RDGBB RP11-299G24 63,11 17q24,1 PRKCA RP11-349A8 63,18 17q24,1 CACNG1/CGCNG4 RP11-52B5 63,29 17q24,1 KIAA0054=HUMORF5/D17S807 208L20 63,46 17q24,1 D17S807 RP11-74H8 63,50 17q24,1 PRKCA RP11-4F22 63,88 17q24,2 PRKCA P0135 64,83 17q24,3 AXIN2 RP11-489G5 65,17 17q24,1 stSG9582 RP11-81D7 65,64 17q24,1 RP11-387O17 66,07 17q24,2 KIAA1001/FLJ10055/PRKAR1A RP11-62F10 66,23 17q24,2 PRKAR1A RP11-79K13 66,61 17q24,2 RP11-293K20 66,78 17q24,2 ABCA6/ABCA10 RP11-300G13 67,68 17q24,3 stSG22227 RP11-90L11 68,13 17q24,3 RP11-84E24 69,66 17q24,3 SOX9 RP11-65C22 70,31 17q24,3 D17S1351/c17orf26 RP11-387C17 70,48 17q24,3-17q25,1 R10736 RP11-319A23 70,99 17q25,1 A004R48/COG1 RP11-41E12 71,00 17q25,1 FLJ14775/CEP4/KIAA1514/FLJ20721 RP11-91O17 72,19 17q25,1 DNAI2 RP11-225G19 72,48 17q25,1 CMRF35 RP11-89J11 72,72 17q25,1 FLJ20255/GRIN2C/FDXR/ATP5H/ICT1 RP11-399J11 72,77 17q25,1 A002D35/GRIN2C/FDXR RP11-145C11 72,99 17q25,1 KIAA0176/SLC16A5 RP11-76G4 73,08 17q25,1 GRB2/D17S820E/FLJ12549/GGA3/MRPS7/AD023/SLC25A19/FLJ20886/ACOX1 RP1-171G12 73,24 17q25,1 GRB2 RP11-379P18 73,66 17q25,1 ITGb4 105A14 73,92 17q25,1 CDK3 RP11-89B11 74,06 17q25,1 PRPSAP1 282L16 74,16 17q25,1 D17S785 RP11-318A15 74,27 17q25,1 AANAT/SFRS2/STHM RP11-526M7 74,32 17q25,1 ST6GaINAcI/SFRS2/ET RP11-141D15 75,85 17q25,3 TK1/SYNGR2/BIRC5 RP11-26B13 76,29 17q25,3 RP11-79L19 76,48 17q25,3 KIAA1453 RP11-537M14 76,61 17q25,3 SHAPY/LGALS3BP RP11-128J1 76,87 17q25,3 RP11-46E14 77,25 17q25,3 CBX4/ RC1/D17S784/MGC10561/CBX8/GAA/FLJ20753 93J11 77,63 17q25,3 D17S784 RP11-160F4 77,81 17q25,3 RP11-561K8 77,96 17q25,3 RP11-455O6 78,38 17q25,3 stSG9053 RP11-467J3 78,99 17q25,3 RH45324 RP11-165M24 79,32 17q25,3 RP1-53N20 17q22 (home FISH) BCL5 RP11-504F22 17q22-17q23,1 RP11-545P13 RP11-847E16 17p13.3 RP11-89P18 17q21 (home FISH) RP11-91M1 17q25,3 RP11-469C13 76,52 17q25,3 Cda13g07 Orsetti et al. Table S2 Bp position : ucsc CytoBand : ucsc Bp position : ucsc CytoBand : ucsc GENE name GENE name freeze june 2002 freezejune 2002 freeze june 2002 freezejune 2002 UBE2G 04493299-04528433 17p13 MKP-L (DUSP14) 35255731-35279323 17q12 NOS2A 25939800-25983524 17q11.2 AP1GBP1 35284735-35375173 17q12 NOS2A 25939800-25983524 17q11.2 ROK1 35378884-35409201 17q12 PYY2 26408807-26410059 17q11.2 TCF2 35452160-35510785 17q12 PPY2 26429437-26430283 17q11.2 MLLT6 36347477-36367443 17q12 MAC 30 26501193-26510213 17q11.2 ZNF144 36376124-36388473 17q12 TNFAIP1 26517814-26529001 17q11.2 PSMB3 36394593-36406070 17q12 DKFZP586F1524 26529174-26539474 17q11.2 PIP5K2B 36409527-36441750 17q12 VTN 26549272-26552272 17q11.2 RPL23 36491941-36495595 17q12 KIAA0524 (SARM) 26554093-26583033 17q11.2 LASP1 36529854-36581558 17q12 UNC 119 26718897-26724802 17q11.2 TEM7 36723090-36811307 17q12 DEEPEST 26749780-26771470 17q11.2 CACNB1 36833240-36857436 17q12 KIAA0100 26786900-26816844 17q11.2 CACNB1 36833240-36857436 17q12 SDF2 26820779-26834106 17q11.2 RPL19 36860105-36864515 17q12 RPL23A 26892705-26896662 17q11.2 TRIP3 37043716-37052820 17q21 FLJ10700 26928858-26996470 17q11.2 PPARBP 37066388-37111066 17q12 FLOT2 27051658-27069945 17q11.2 CrkRS 37121574-37188208 17q12 TIAF1 27420504-27483840 17q11.2 PPP1R1B (DARPP32) 37283120-37289786 17q12 PIPOX 27500144-27500585 17q11.2 MLN64 37292846-37319201 17q12 PIPOX/SCAMP2 27500144-27500585 17q11.2 ERBB2 37355863-37384391 17q12 GIT1 27560454-27576370 17q11.2 PRO2521 37430265-37444416 17q12 SLC6A4 28278382-28302500 17q11.2 GRB7 37569442-37578773 17q12 BLMH 28328675-28372393 17q11.2 KIAA0130 37619792-37624097 17q21.1 CPD 28459155-28546609 17q11.2 CSF3 37625381-37627751 17q21.1 GOSR1 28557596-28602798 17q11.2 MLN51 37765209-37779306 17q21.1 FLJ10120 28971716-29004074 17q11.2 THRA 37816744-37845501 17q21.1 HCA66 29084568-29122520 17q11.2 NR1D1 37844421-37852355 17q21.1 CREME9 29215318-29840209 17q11 CDC6 37939552-37954704 17q21.2 CREME9 29215318-29840209 17q11 CDC6 37939552-37954705 17q21.2 NF1 29610652-29889947 17q11.2 RARA 37961138-38012625 17q21.2 EVI2A 29663407-29667438 17q11.2 TOP2A 38045208-38073667 17q21.2 EVI2B 29671023-29681313 17q11.2 IGFBP4 38099553-38113665 17q21.2 OMG 29687547-29690510 17q11.2 CCR7 38210312-38221982 17q21.2 HSA272195 (CENTA2) 30025756-30063029 17q11.2 CCR7 38210312-38221982 17q21.2 FLJ11040 30275051-30317955 17q11.2 SMARCE1 38285228-38304358 17q21.2 ZNF207 30443855-30464159 17q11.2 KRT10 38474610-38479082 17q21.2 PSMD11 30538221-30574732 17q11.2 KRT20 38532465-38541442 17q21.2 CDK5R1 30581248-30582330 17q11.2 DKFZP434G032 (HAIK1) 38579211-38594096 17q21.2 KIAA0727 (MYO1D) 30586318-30869351 17q11.2 KRT14 38859634-38864236 17q21.2 DKFZP564K1964 31028306-31041796 17q11.2 KRTHA3A 39086879-39091564 17q21.2 NME1 31298019-31312916 17q11.2 KRTHA1 39134483-39138352 17q21.2 SCYA2 32351990-32353909 17q11.2 KRTHA2 39200567-39207982
Recommended publications
  • PEX2 Is the E3 Ubiquitin Ligase Required for Pexophagy During Starvation
    JCB: Article PEX2 is the E3 ubiquitin ligase required for pexophagy during starvation Graeme Sargent,1,6 Tim van Zutphen,7 Tatiana Shatseva,6 Ling Zhang,3 Valeria Di Giovanni,3 Robert Bandsma,2,3,4,5 and Peter Kijun Kim1,6 1Cell Biology Department, 2Department of Paediatric Laboratory Medicine, 3Physiology and Experimental Medicine Program, Research Institute, 4Division of Gastroenterology, Hepatology and Nutrition, and 5Centre for Global Child Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada 6Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada 7Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, 9700 AD Groningen, Netherlands Peroxisomes are metabolic organelles necessary for anabolic and catabolic lipid reactions whose numbers are highly dynamic based on the metabolic need of the cells. One mechanism to regulate peroxisome numbers is through an auto- phagic process called pexophagy. In mammalian cells, ubiquitination of peroxisomal membrane proteins signals pexo- phagy; however, the E3 ligase responsible for mediating ubiquitination is not known. Here, we report that the peroxisomal E3 ubiquitin ligase peroxin 2 (PEX2) is the causative agent for mammalian pexophagy. Expression of PEX2 leads to Downloaded from gross ubiquitination of peroxisomes and degradation of peroxisomes in an NBR1-dependent autophagic process. We identify PEX5 and PMP70 as substrates of PEX2 that are ubiquitinated during amino acid starvation. We also find that PEX2 expression is up-regulated during both amino acid starvation and rapamycin treatment, suggesting that the mTORC1 pathway regulates pexophagy by regulating PEX2 expression levels. Finally, we validate our findings in vivo using an animal model.
    [Show full text]
  • Establishing the Pathogenicity of Novel Mitochondrial DNA Sequence Variations: a Cell and Molecular Biology Approach
    Mafalda Rita Avó Bacalhau Establishing the Pathogenicity of Novel Mitochondrial DNA Sequence Variations: a Cell and Molecular Biology Approach Tese de doutoramento do Programa de Doutoramento em Ciências da Saúde, ramo de Ciências Biomédicas, orientada pela Professora Doutora Maria Manuela Monteiro Grazina e co-orientada pelo Professor Doutor Henrique Manuel Paixão dos Santos Girão e pela Professora Doutora Lee-Jun C. Wong e apresentada à Faculdade de Medicina da Universidade de Coimbra Julho 2017 Faculty of Medicine Establishing the pathogenicity of novel mitochondrial DNA sequence variations: a cell and molecular biology approach Mafalda Rita Avó Bacalhau Tese de doutoramento do programa em Ciências da Saúde, ramo de Ciências Biomédicas, realizada sob a orientação científica da Professora Doutora Maria Manuela Monteiro Grazina; e co-orientação do Professor Doutor Henrique Manuel Paixão dos Santos Girão e da Professora Doutora Lee-Jun C. Wong, apresentada à Faculdade de Medicina da Universidade de Coimbra. Julho, 2017 Copyright© Mafalda Bacalhau e Manuela Grazina, 2017 Esta cópia da tese é fornecida na condição de que quem a consulta reconhece que os direitos de autor são pertença do autor da tese e do orientador científico e que nenhuma citação ou informação obtida a partir dela pode ser publicada sem a referência apropriada e autorização. This copy of the thesis has been supplied on the condition that anyone who consults it recognizes that its copyright belongs to its author and scientific supervisor and that no quotation from the
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Pluripotency Factors Regulate Definitive Endoderm Specification Through Eomesodermin
    Downloaded from genesdev.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Pluripotency factors regulate definitive endoderm specification through eomesodermin Adrian Kee Keong Teo,1,2 Sebastian J. Arnold,3 Matthew W.B. Trotter,1 Stephanie Brown,1 Lay Teng Ang,1 Zhenzhi Chng,1,2 Elizabeth J. Robertson,4 N. Ray Dunn,2,5 and Ludovic Vallier1,5,6 1Laboratory for Regenerative Medicine, University of Cambridge, Cambridge CB2 0SZ, United Kingdom; 2Institute of Medical Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138648; 3Renal Department, Centre for Clinical Research, University Medical Centre, 79106 Freiburg, Germany; 4Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom Understanding the molecular mechanisms controlling early cell fate decisions in mammals is a major objective toward the development of robust methods for the differentiation of human pluripotent stem cells into clinically relevant cell types. Here, we used human embryonic stem cells and mouse epiblast stem cells to study specification of definitive endoderm in vitro. Using a combination of whole-genome expression and chromatin immunoprecipitation (ChIP) deep sequencing (ChIP-seq) analyses, we established an hierarchy of transcription factors regulating endoderm specification. Importantly, the pluripotency factors NANOG, OCT4, and SOX2 have an essential function in this network by actively directing differentiation. Indeed, these transcription factors control the expression of EOMESODERMIN (EOMES), which marks the onset of endoderm specification. In turn, EOMES interacts with SMAD2/3 to initiate the transcriptional network governing endoderm formation. Together, these results provide for the first time a comprehensive molecular model connecting the transition from pluripotency to endoderm specification during mammalian development.
    [Show full text]
  • Watsonjn2018.Pdf (1.780Mb)
    UNIVERSITY OF CENTRAL OKLAHOMA Edmond, Oklahoma Department of Biology Investigating Differential Gene Expression in vivo of Cardiac Birth Defects in an Avian Model of Maternal Phenylketonuria A THESIS SUBMITTED TO THE GRADUATE FACULTY In partial fulfillment of the requirements For the degree of MASTER OF SCIENCE IN BIOLOGY By Jamie N. Watson Edmond, OK June 5, 2018 J. Watson/Dr. Nikki Seagraves ii J. Watson/Dr. Nikki Seagraves Acknowledgements It is difficult to articulate the amount of gratitude I have for the support and encouragement I have received throughout my master’s thesis. Many people have added value and support to my life during this time. I am thankful for the education, experience, and friendships I have gained at the University of Central Oklahoma. First, I would like to thank Dr. Nikki Seagraves for her mentorship and friendship. I lucked out when I met her. I have enjoyed working on this project and I am very thankful for her support. I would like thank Thomas Crane for his support and patience throughout my master’s degree. I would like to thank Dr. Shannon Conley for her continued mentorship and support. I would like to thank Liz Bullen and Dr. Eric Howard for their training and help on this project. I would like to thank Kristy Meyer for her friendship and help throughout graduate school. I would like to thank my committee members Dr. Robert Brennan and Dr. Lilian Chooback for their advisement on this project. Also, I would like to thank the biology faculty and staff. I would like to thank the Seagraves lab members: Jailene Canales, Kayley Pate, Mckayla Muse, Grace Thetford, Kody Harvey, Jordan Guffey, and Kayle Patatanian for their hard work and support.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Mitochondrial Reprogramming Via ATP5H Loss Promotes Multimodal Cancer Therapy Resistance
    Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance Kwon-Ho Song, … , T.C. Wu, Tae Woo Kim J Clin Invest. 2018;128(9):4098-4114. https://doi.org/10.1172/JCI96804. Research Article Immunology Oncology The host immune system plays a pivotal role in the emergence of tumor cells that are refractory to multiple clinical interventions including immunotherapy, chemotherapy, and radiotherapy. Here, we examined the molecular mechanisms by which the immune system triggers cross-resistance to these interventions. By examining the biological changes in murine and tumor cells subjected to sequential rounds of in vitro or in vivo immune selection via cognate cytotoxic T lymphocytes, we found that multimodality resistance arises through a core metabolic reprogramming pathway instigated by epigenetic loss of the ATP synthase subunit ATP5H, which leads to ROS accumulation and HIF-1α stabilization under normoxia. Furthermore, this pathway confers to tumor cells a stem-like and invasive phenotype. In vivo delivery of antioxidants reverses these phenotypic changes and resensitizes tumor cells to therapy. ATP5H loss in the tumor is strongly linked to failure of therapy, disease progression, and poor survival in patients with cancer. Collectively, our results reveal a mechanism underlying immune-driven multimodality resistance to cancer therapy and demonstrate that rational targeting of mitochondrial metabolic reprogramming in tumor cells may overcome this resistance. We believe these results hold important implications for the clinical management of cancer. Find the latest version: https://jci.me/96804/pdf RESEARCH ARTICLE The Journal of Clinical Investigation Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance Kwon-Ho Song,1,2,3 Jae-Hoon Kim,4 Young-Ho Lee,1,2,3 Hyun Cheol Bae,5 Hyo-Jung Lee,1,2,3 Seon Rang Woo,1,2,3 Se Jin Oh,1,2,3 Kyung-Mi Lee,1,2 Cassian Yee,6 Bo Wook Kim,7 Hanbyoul Cho,4 Eun Joo Chung,8 Joon-Yong Chung,9 Stephen M.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Transient Activation of Meox1 Is an Early Component of the Gene
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Access to Research and Communications Annals 1 Transient activation of Meox1 is an early component of the gene 2 regulatory network downstream of Hoxa2. 3 4 Pavel Kirilenko1, Guiyuan He1, Baljinder Mankoo2, Moises Mallo3, Richard Jones4, 5 5 and Nicoletta Bobola1,* 6 7 (1) School of Dentistry, Faculty of Medical and Human Sciences, University of 8 Manchester, Manchester, UK. 9 (2) Randall Division of Cell and Molecular Biophysics, King's College London, UK. 10 (3) Instituto Gulbenkian de Ciência, Oeiras, Portugal. 11 (4) Genetic Medicine, Manchester Academic Health Science Centre, Central 12 Manchester University Hospitals NHS Foundation Trust, Manchester, UK. 13 (5) Present address: Department of Biology, University of York, York, UK. 14 15 Running title: Hoxa2 activates Meox1 expression. 16 Keywords: Meox1, Hoxa2, homeodomain, development, mouse 17 *Words Count: Material and Methods: 344; Introduction, Results and Discussion: 18 3679 19 19 * Author for correspondence at: AV Hill Building The University of Manchester Manchester M13 9PT United Kingdom Phone: (+44) 161 3060642 E-mail: [email protected] 1 Abstract 2 Hox genes encode transcription factors that regulate morphogenesis in all animals 3 with bilateral symmetry. Although Hox genes have been extensively studied, their 4 molecular function is not clear in vertebrates, and only a limited number of genes 5 regulated by Hox transcription factors have been identified. Hoxa2 is required for 6 correct development of the second branchial arch, its major domain of expression. 7 We now show that Meox1 is genetically downstream from Hoxa2 and is a direct 8 target.
    [Show full text]
  • Supplemental Table S1 (A): Microarray Datasets Characteristics
    Supplemental table S1 (A): Microarray datasets characteristics Title Summary Samples Literature ref. GEO ref. Acquisition of granule Gene expression profiling of 27 (1) GSE 11859 neuron precursor identity cerebellar tumors generated and Hedgehog‐induced from various early and late medulloblastoma in mice. stage CNS progenitor cells Medulloblastomas derived Study of mouse 5 (2) GSE 7212 from Cxcr6 mutant mice medulloblastoma in response respond to treatment with to inhibitor of Smoothened a Smoothened inhibitor Expression profiles of Identification of distinct classes 10 (3) GSE 9299 mouse medulloblastoma of up‐regulated or down‐ 339 & 340 regulated genes during Hh dependent tumorigenesis Genetic alterations in Identification of differently 10 (4) GSE 6463 mouse medulloblastomas expressed genes among CGNPs 339 & and generation of tumors and CGNPs transfected with 340 from cerebellar granule retroviruses that express nmyc neuron precursors or cyclin‐d1 Patched heterozygous Analysis of granule cell 14 (5) GSE 2426 model of medulloblastoma precursors, pre‐neoplastic cells, GDS1110 and tumor cells 1. Schuller U, Heine VM, Mao J, Kho AT, Dillon AK, Han YG, et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh‐induced medulloblastoma. Cancer Cell 2008;14:123‐134. 2. Sasai K, Romer JT, Kimura H, Eberhart DE, Rice DS, Curran T. Medulloblastomas derived from Cxcr6 mutant mice respond to treatment with a smoothened inhibitor. Cancer Res 2007;67:3871‐3877. 3. Mao J, Ligon KL, Rakhlin EY, Thayer SP, Bronson RT, Rowitch D, et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res 2006;66:10171‐10178.
    [Show full text]
  • Concomitant DNA Methylation and Transcriptome Signatures Define
    www.nature.com/scientificreports OPEN Concomitant DNA methylation and transcriptome signatures defne epidermal responses to acute solar UV radiation Nicholas Holzscheck 1,2*, Jörn Söhle 1, Torsten Schläger1, Cassandra Falckenhayn 1, Elke Grönniger 1, Ludger Kolbe 1, Horst Wenck 1, Lara Terstegen1, Lars Kaderali 2, Marc Winnefeld 1 & Katharina Gorges1* The simultaneous analysis of diferent regulatory levels of biological phenomena by means of multi-omics data integration has proven an invaluable tool in modern precision medicine, yet many processes ultimately paving the way towards disease manifestation remain elusive and have not been studied in this regard. Here we investigated the early molecular events following repetitive UV irradiation of in vivo healthy human skin in depth on transcriptomic and epigenetic level. Our results provide frst hints towards an immediate acquisition of epigenetic memories related to aging and cancer and demonstrate signifcantly correlated epigenetic and transcriptomic responses to irradiation stress. The data allowed the precise prediction of inter-individual UV sensitivity, and molecular subtyping on the integrated post-irradiation multi-omics data established the existence of three latent molecular phototypes. Importantly, further analysis suggested a form of melanin-independent DNA damage protection in subjects with higher innate UV resilience. This work establishes a high- resolution molecular landscape of the acute epidermal UV response and demonstrates the potential of integrative analyses to untangle complex and heterogeneous biological responses. Solar UV irradiation has complex and ambivalent efects on the human organism. Benefcial efects of sun expo- sure are thought to be mainly mediated by vitamin D, which is synthesized in the skin through a photosynthetic reaction triggered by exposure to UVB.
    [Show full text]