Arbuscular Mycorrhizal Fungi in a Wetland Constructed for Benzene-, Methyl Tert-Butyl Ether- and Ammonia-Contaminated Groundwater Bioremediation

Total Page:16

File Type:pdf, Size:1020Kb

Arbuscular Mycorrhizal Fungi in a Wetland Constructed for Benzene-, Methyl Tert-Butyl Ether- and Ammonia-Contaminated Groundwater Bioremediation bs_bs_banner Brief report Arbuscular mycorrhizal fungi in a wetland constructed for benzene-, methyl tert-butyl ether- and ammonia-contaminated groundwater bioremediation Thomas Fester* (arbuscular mycorrhizal fungi, AMF; Smith and Read, Helmholtz-Centre for Environmental Research – UFZ, 2008). The association allows the exchange of nutrients Permoserstraße 15, D-04318 Leipzig, Germany. (carbohydrates provided by the plant, mineral nutrients provided by the fungi), and markedly increases the host plant’s tolerance of various biotic and abiotic stress Summary factors. Arbuscular mycorrhizal fungi also influence the Arbuscular mycorrhizal fungi (AMF), which are transport and distribution of organic pollutants in plants present in most natural environments, have demon- (Debiane et al., 2009; Langer et al., 2010), reportedly strated capacity to promote biodegradation of reducing their concentrations in shoots of colonized organic pollutants in the greenhouse. However, it is plants, while increasing their concentrations in roots, par- not certain whether AMF can spontaneously establish ticularly in the rhizodermis (Huang et al., 2007; Wu et al., in phytoremediation systems constructed to decon- 2009). These effects may help to protect plants from taminate groundwater, because of the unusual condi- damage by organic pollutants. Beneficial effects of the tions during the construction and operation of such presence of AMF on soil bacteria (Toljander et al., 2007), systems. To assess this possibility, root samples notably bacteria capable of degrading organic com- from a wetland constructed for the phytoremediation pounds (Corgié et al., 2006; Alarcon et al., 2008), have of groundwater contaminated with benzene, methyl also been reported. By both protecting plants from tert-butyl ether and ammonia were analysed. Sub- adverse effects of organic pollutants and promoting stantial AMF colonization was observed in plant roots associated bacteria, AMF can accelerate the biodegra- sampled close to the inlet of a basin filled with fine dation of organic pollutants. Several studies have gravel and planted with Phragmites australis. In addi- recently demonstrated beneficial effects of AMF on the tion, analysis of a fragment of the nuclear large ribos- biodegradation of organic pollutants, including: the dissi- omal subunit, amplified by nested PCR, revealed the pation of polycyclic aromatic hydrocarbons (PAHs) by presence of AMF molecular operational taxonomic Lolium multiflorum (Yu et al., 2011), dissipation of PAHs units closely related to Funneliformis mosseae and by Medicago sativa under low water and phosphate Rhizophagus irregularis in the samples. These find- availability (Zhou et al., 2009), and phytoremediation of ings demonstrate the capacity of generalist AMF aged petroleum contamination by Triticum aestivum strains to establish spontaneously, rapidly and (Malachowska-Jutsz and Kalka, 2010). Arbuscular myc- extensively in groundwater bioremediation technical orrhizal fungi can therefore be considered ideal inhabit- installations. ants of technical installations for the plant-based bioremediation of groundwater contaminated by organic pollutants. However, such installations are often con- Introduction structed without including a significant source of AMF An arbuscular mycorrhiza is a type of close, mutualistic propagules. Furthermore, the stressful conditions in such association that forms in root systems between diverse installations – such as poor substrates, and potentially plant species and members of a small group of soil fungi toxic concentrations of organic pollutants for the fungi (Verdin et al., 2006; Debiane et al., 2011) – may hinder the successful establishment of AMF. Received 22 February, 2012; revised 28 June, 2012; accepted 6 July, To investigate the ability of AMF to establish under such 2012. *For correspondence. E-mail [email protected]; Tel. conditions, we analysed AMF colonization levels in plant (+49) 341 2351315; Fax (+49) 341 235451315. doi:10.1111/j.1751-7915.2012.00357.x roots sampled from a wetland constructed to decontami- Funding Information No funding information provided. nate groundwater polluted with benzene, methyl tert-butyl © 2012 The Author Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd Mycorrhizal fungi from constructed wetlands 81 ether (MTBE) and ammonia. The wetland was continu- legend for details), clearly showing that these fungi suc- ously streamed (inflow rate 6 l h-1) by water containing 20, cessfully colonized this unusual environment within 4 3.7 and 45 mg l-1 of these compounds respectively. Arbus- years. Thus, establishment of AMF does not appear to cular mycorrhizal fungi present in roots from Phragmites have been profoundly hindered in the inlet part of the australis growing in this wetland were phylogenetically wetland, although it was exposed to the highest concen- analysed by cloning and sequencing a 400 bp fragment of trations of organic pollutants. In contrast, no colonization the nuclear large ribosomal subunit, amplified by nested of roots by AMF was observed in the part of the basin PCR. where the plants were growing in free water with no gravel substrate, suggesting that a solid substrate was required for AMF colonization. The likeliest sources of the coloniz- Results and discussion ing fungi were airborne propagules or mycelia already Spontaneous colonization of constructed wetlands present in the P. australis plantlets when they were trans- ferred to the constructed wetland. The constructed wetland investigated in this study was established in March 2007. It consists of a basin that receives a stream of contaminated groundwater. Phrag- Generalist AMF strains as early and rapid colonizers of mites australis plantlets were planted at the inlet end, the constructed wetland which is filled with light gravel. Close to its outlet area Considerable frequencies of very similar patterns were there is a compartment lacking the gravel substrate where detected in restriction fingerprinting of PCR products P. australis is growing in water, forming a dense root mat cloned from a fragment of the large ribosomal subunit, (Fig. 1). Root samples taken from the part of the con- indicating that the AMF community within the constructed structed wetland with the gravel substrate in 2011 were wetland had low diversity at the sampling time. Fifty-one substantially associated with AMF (colonized proportions clones with identical patterns were removed from the by length, 40%, 25%, 25%, 60% and 80%; see Fig. 1 analysis, leaving 34 unique clones for sequence analy- sis, and only two AMF taxa were detected: Rhizophagus irregularis and Funneliformis mosseae. The restriction endonuclease Taq I was used for restriction fingerprint- ing, partly because it has been recommended for Inlet Outlet T-RFLP analysis of the PCR fragment analysed in this Benzene (mg l-1) 20 3.8 MTBE (mg l-1) 3.7 3.1 study (Mummey and Rillig, 2007), and partly because Ammonia N (mg l-1) 45 21 almost all AMF species in the phylogenetic tree shown in Water flow Fig. 2 could be differentiated using this enzyme in a AMF ++ AMF - virtual digest. In particular, it was possible to differentiate all other species from R. irregularis and F. mosseae, the Fig. 1. In March 2011 five samples of roots (each about 10 g) were taken from the ‘front’ (near the inlet) and five from the ‘rear’ (near two AMF found in the wetland samples, excluding the the outlet; 10 samples in total) of the illustrated constructed wetland possibility that AMF species were missed because of (5 m long, 1.15 m wide, 1.25 m deep; inflow rate 6 l h-1) planted the use of Taq I for restriction fingerprinting prior to with P. australis, which is being used in a compartment transfer experiment close to Leuna, Germany (Seeger et al., 2011). Parts of sequence analysis. As the primer pairs used in our the sampled roots were stained with ink (Sheaffer, Middlesex, UK) analysis are not capable of amplifying sequences of and vinegar according to Vierheilig and colleagues (1998) to high- members from the genus Diversispora or the families light AMF structures, and the degree of colonization by AMF was roughly estimated by inspecting the stained roots under a stereomi- Archaeosporaceae and Paraglomaceae (Gamper et al., croscope and estimating approximate ratios of mycorrhizally colo- 2009), however, the possible presence of additional AMF nized to non-colonized root lengths. Substantial degrees of AMF from these groups cannot be excluded. Phylogenetic colonization were observed in all five root samples from the ‘front’ part of the wetland (40%, 25%, 25%, 60% and 80%). In contrast, analysis using the set of consensus sequences for AMF no colonization of P. australis roots was observed in samples from (see fig. 1 in Krüger et al., 2011) clearly showed that the rear part, where there was no gravel substrate and the roots all sequences analysed in our study clustered with the formed a dense root mat. These microscopic observations are con- sistent with results of nested PCR analysis of a 400 bp fragment of AMF genera Rhizophagus or Funneliformis (data not the nuclear large ribosomal subunit using the primer pairs LR1/ shown). Only four sequences clustered with different FLR2 and FLR3/FLR4 (Gollotte et al., 2004) and Taq PCR Master- fungal groups, one of which proved to be a chimeric mix (Qiagen, Hilden, Germany). DNA extracted (using a DNeasy Plant Mini-Kit, Qiagen) from all samples from the front part of the sequence in later analysis, while the other three
Recommended publications
  • Population Genomics Reveals That Within-Fungus Polymorphism Is Common and Maintained in Populations of the Mycorrhizal Fungus Rhizophagus Irregularis
    The ISME Journal (2016) 10, 2514–2526 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 OPEN www.nature.com/ismej ORIGINAL ARTICLE Population genomics reveals that within-fungus polymorphism is common and maintained in populations of the mycorrhizal fungus Rhizophagus irregularis Tania Wyss1,3, Frédéric G Masclaux1,2,3, Pawel Rosikiewicz1, Marco Pagni2,4 and Ian R Sanders1,4 1Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland and 2Vital-IT, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland Arbuscular mycorrhizal (AM) fungi are symbionts of most plants, increasing plant growth and diversity. The model AM fungus Rhizophagus irregularis (isolate DAOM 197198) exhibits low within- fungus polymorphism. In contrast, another study reported high within-fungus variability. Experiments with other R. irregularis isolates suggest that within-fungus genetic variation can affect the fungal phenotype and plant growth, highlighting the biological importance of such variation. We investigated whether there is evidence of differing levels of within-fungus polymorphism in an R. irregularis population. We genotyped 20 isolates using restriction site-associated DNA sequencing and developed novel approaches for characterizing polymorphism among haploid nuclei. All isolates exhibited higher within-isolate poly-allelic single-nucleotide polymorphism (SNP) densities than DAOM 197198 in repeated and non-repeated sites mapped to the reference genome. Poly-allelic SNPs were independently confirmed. Allele frequencies within isolates deviated from diploids or tetraploids, or that expected for a strict dikaryote. Phylogeny based on poly-allelic sites was robust and mirrored the standard phylogeny. This indicates that within-fungus genetic variation is maintained in AM fungal populations.
    [Show full text]
  • Effect of Fungicides on Association of Arbuscular Mycorrhiza Fungus Rhizophagus Fasciculatus and Growth of Proso Millet (Panicum Miliaceum L.)
    Journal of Soil Science and Plant Nutrition, 2015, 15 (1), 35-45 RESEARCH ARTICLE Effect of fungicides on association of arbuscular mycorrhiza fungus Rhizophagus fasciculatus and growth of Proso millet (Panicum miliaceum L.) Channabasava1*, H.C. Lakshman1 and M.A. Jorquera2 1Microbiology Laboratory, P.G. Department of Studies in Botany, Karnataka University, Pavate Nagar, Dharwad-580 003, India. 2Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile.*Corresponding author: [email protected] Abstract The detrimental effects of fungicides on non-target beneficial microorganisms such as arbuscular mycorrhizal (AM) fungi are of interest to agriculture. Rhizophagus fasciculatus was found to be predominant (21%) AM fungus in studied soil compared to other species (2-9%). Hence, we have conducted a study to evaluate the potential effects of fungicides Benomyl (Methyl [1-[(butylamino) carbonyl]-1H-benzimidazol-2-yl] carbamate), Bavistin (methyl benzimidazol-2-ylcarbamate), Captan ((3aR,7aS)-2-[(trichloromethyl) sulfanyl]-3a,4,7,7a– tetra hydro-1H-isoindole-1,3(2H)-dione and Mancozeb (manganese ethylene-bis(dithiocarbamate) (polymeric) complex with zinc salt) on association of R. fasciculatus with Proso millet (Panicum miliaceum L.), an emerging drought-resistant crop that represent a cheap source of nutrients for human in developing country. The results of this study showed significant (P≤0.05) higher AM colonization (69.7%), spore density (193 spores), plant growth (both lengths and weights of shoots and roots) and grain yield (154 grains per panicle) in mycorrhizal Proso millet plants treated with Captan compared to other fungicides and untreated controls. In contrast, Benomyl had adverse effect in all parameters measured (45.3% AM colonization, 123 spores, 105 grains per panicle, etc.).
    [Show full text]
  • Occurrence of Glomeromycota Species in Aquatic Habitats: a Global Overview
    Occurrence of Glomeromycota species in aquatic habitats: a global overview MARIANA BESSA DE QUEIROZ1, KHADIJA JOBIM1, XOCHITL MARGARITO VISTA1, JULIANA APARECIDA SOUZA LEROY1, STEPHANIA RUTH BASÍLIO SILVA GOMES2, BRUNO TOMIO GOTO3 1 Programa de Pós-Graduação em Sistemática e Evolução, 2 Curso de Ciências Biológicas, and 3 Departamento de Botânica e Zoologia, Universidade Federal do Rio Grande do Norte, Campus Universitário, 59072-970, Natal, RN, Brazil * CORRESPONDENCE TO: [email protected] ABSTRACT — Arbuscular mycorrhizal fungi (AMF) are recognized in terrestrial and aquatic ecosystems. The latter, however, have received little attention from the scientific community and, consequently, are poorly known in terms of occurrence and distribution of this group of fungi. This paper provides a global list on AMF species inhabiting aquatic ecosystems reported so far by scientific community (lotic and lentic freshwater, mangroves, and wetlands). A total of 82 species belonging to 5 orders, 11 families, and 22 genera were reported in 8 countries. Lentic ecosystems have greater species richness. Most studies of the occurrence of AMF in aquatic ecosystems were conducted in the United States and India, which constitute 45% and 78% reports coming from temperate and tropical regions, respectively. KEY WORDS — checklist, flooded areas, mycorrhiza, taxonomy Introduction Aquatic ecosystems comprise about 77% of the planet surface (Rebouças 2006) and encompass a diversity of habitats favorable to many species from marine (ocean), transitional estuaries to continental (wetlands, lentic and lotic) environments (Reddy et al. 2018). Despite this territorial representativeness and biodiversity already recorded, there are gaps when considering certain types of organisms, e.g. fungi. Fungi are considered a common and important component of almost all trophic levels.
    [Show full text]
  • Coordinated Changes in the Accumulation of Metal Ions in Maize (Zea Mays Ssp. Mays L.) in Response to Inoculation with the Arbus
    bioRxiv preprint doi: https://doi.org/10.1101/135459; this version posted June 28, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Coordinated changes in the accumulation of metal ions in maize (Zea mays ssp. mays L.) in response to inoculation with the arbuscular mycorrhizal fungus Funneliformis mosseae Running title: Ionome of mycorrhizal maize Corresponding Author: Dr. R.J.H. Sawers Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y Estudios Avanzados (CINVESTAV-IPN), Irapuato C.P. 36821, Guanajuato, México tel: +52 462 1663012 fax: +52 462 6078246 e-mail: [email protected] Subject areas: 2) environmental and stress responses Figures and Tables: 6 color figures; 2 tables; supplemental PDF containing two figures; supplementary data as csv bioRxiv preprint doi: https://doi.org/10.1101/135459; this version posted June 28, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Coordinated changes in the accumulation of metal ions in maize (Zea mays ssp. mays L.) in response to inoculation with the arbuscular mycorrhizal fungus Funneliformis mosseae Running title: Ionome of mycorrhizal maize M. Rosario Ramirez-Flores1, Ruben Rellan-Alvarez2, Barbara Wozniak3, Mesfin-Nigussie Gebreselassie3, Iver Jakobsen4, Victor Olalde-Portugal1, Ivan Baxter5, Uta Paszkowski3, 6 and Ruairidh J.
    [Show full text]
  • The Genome of Rhizophagus Clarus HR1 Reveals a Common Genetic
    Kobayashi et al. BMC Genomics (2018) 19:465 https://doi.org/10.1186/s12864-018-4853-0 RESEARCHARTICLE Open Access The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi Yuuki Kobayashi1, Taro Maeda1, Katsushi Yamaguchi2, Hiromu Kameoka1, Sachiko Tanaka1, Tatsuhiro Ezawa3, Shuji Shigenobu2,4 and Masayoshi Kawaguchi1,4* Abstract Background: Mycorrhizal symbiosis is one of the most fundamental types of mutualistic plant-microbe interaction. Among the many classes of mycorrhizae, the arbuscular mycorrhizae have the most general symbiotic style and the longest history. However, the genomes of arbuscular mycorrhizal (AM) fungi are not well characterized due to difficulties in cultivation and genetic analysis. In this study, we sequenced the genome of the AM fungus Rhizophagus clarus HR1, compared the sequence with the genome sequence of the model species R. irregularis, and checked for missing genes that encode enzymes in metabolic pathways related to their obligate biotrophy. Results: In the genome of R. clarus, we confirmed the absence of cytosolic fatty acid synthase (FAS), whereas all mitochondrial FAS components were present. A KEGG pathway map identified the absence of genes encoding enzymes for several other metabolic pathways in the two AM fungi, including thiamine biosynthesis and the conversion of vitamin B6 derivatives. We also found that a large proportion of the genes encoding glucose-producing polysaccharide hydrolases, that are present even in ectomycorrhizal fungi, also appear to be absent in AM fungi. Conclusions: In this study, we found several new genes that are absent from the genomes of AM fungi in addition to the genes previously identified as missing.
    [Show full text]
  • Arbuscular Mycorrhizal Fungal Community Assembly in the Brazilian Tropical Seasonal Dry Forest Tancredo Augusto Feitosa De Souza* and Helena Freitas
    de Souza and Freitas Ecological Processes (2017) 6:2 DOI 10.1186/s13717-017-0072-x RESEARCH Open Access Arbuscular mycorrhizal fungal community assembly in the Brazilian tropical seasonal dry forest Tancredo Augusto Feitosa de Souza* and Helena Freitas Abstract Introduction: Here, we compare the arbuscular mycorrhizal fungal (AMF) community composition in soils from the root zone of the exotic invasive species Prosopis juliflora (EXO soils) and soils from the root zone of the native species Mimosa tenuiflora (NAT soils) from five locations in the Brazilian tropical seasonal dry forest, Paraíba, Brazil, using morphological analyses. Results: AMF community composition in EXO and NAT soils were dissimilar. Available phosphorus, diversity index, spore abundance, and species richness were the main factors differing between the EXO and NAT soils. In general, the most dominant order present in the soils were Glomerales (44.8%) and Gigasporales (41.4%). The most abundant AMF genus in all studied soils was Funneliformis. Conclusions: Differences in AMF community composition were associated with (1) differences in the dominant plant species (P. juliflora vs. M. tenuiflora) and (2) changes in soil chemical factors (soil, pH, total organic carbon, total nitrogen, and available P) in EXO soils. These results contribute to a deeper view of the AMF communities in exotic soils and open new perspectives for ecological processes involving AMF species and exotic plant species in the Brazilian tropical seasonal dry forest. Keywords: Glomeromycota, AMF community, AMF diversity, Native plant species, Exotic plant species, Caatinga Introduction diversity (Pegado et al. 2006; Andrade et al. 2008; The Brazilian tropical seasonal dry forest, also referred Andrade et al.
    [Show full text]
  • 1 a Native and an Invasive Dune Grass Share
    A native and an invasive dune grass share similar, patchily distributed, root-associated fungal communities Renee B Johansen1, Peter Johnston2, Piotr Mieczkowski3, George L.W. Perry4, Michael S. Robeson5, 1 6 Bruce R Burns , Rytas Vilgalys 1: School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand 2: Landcare Research, Private Bag 92170, Auckland Mail Centre, Auckland 1142, New Zealand 3: Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, U.S.A. 4: School of Environment, The University of Auckland, Private Bag 92019, Auckland, New Zealand 5: Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, USA 6: Department of Biology, Duke University, Durham, NC 27708, USA Corresponding author: Renee Johansen, Ph: +64 21 0262 9143, Fax: +64 9 574 4101 Email: [email protected] For the published version of this article see here: https://www.sciencedirect.com/science/article/abs/pii/S1754504816300848 1 Abstract Fungi are ubiquitous occupiers of plant roots, yet the impact of host identity on fungal community composition is not well understood. Invasive plants may benefit from reduced pathogen impact when competing with native plants, but suffer if mutualists are unavailable. Root samples of the invasive dune grass Ammophila arenaria and the native dune grass Leymus mollis were collected from a Californian foredune. We utilised the Illumina MiSeq platform to sequence the ITS and LSU gene regions, with the SSU region used to target arbuscular mycorrhizal fungi (AMF). The two plant species largely share a fungal community, which is dominated by widespread generalists.
    [Show full text]
  • A Nuclear‐Targeted Effector of Rhizophagus Irregularis Interferes
    Research A nuclear-targeted effector of Rhizophagus irregularis interferes with histone 2B mono-ubiquitination to promote arbuscular myc- orrhisation Peng Wang1 , Henan Jiang1, Sjef Boeren2, Harm Dings1, Olga Kulikova1, Ton Bisseling1 and Erik Limpens1 1Laboratory of Molecular Biology, Wageningen University & Research, Wageningen 6708 PB, the Netherlands; 2Laboratory of Biochemistry, Wageningen University & Research, Wageningen 6708 WE, the Netherlands Summary Author for correspondence: Arguably, symbiotic arbuscular mycorrhizal (AM) fungi have the broadest host range of all Erik Limpens fungi, being able to intracellularly colonise root cells in the vast majority of all land plants. This Email: [email protected] raises the question how AM fungi effectively deal with the immune systems of such a widely diverse range of plants. Received: 4 September 2020 Here, we studied the role of a nuclear-localisation signal-containing effector from Accepted: 18 January 2021 Rhizophagus irregularis, called Nuclear Localised Effector1 (RiNLE1), that is highly and specifi- cally expressed in arbuscules. New Phytologist (2021) We showed that RiNLE1 is able to translocate to the host nucleus where it interacts with doi: 10.1111/nph.17236 the plant core nucleosome protein histone 2B (H2B). RiNLE1 is able to impair the mono-ubiq- uitination of H2B, which results in the suppression of defence-related gene expression and Key words: arbuscular mycorrhiza (AM), enhanced colonisation levels. effector, H2B mono-ubiquitination, plant This study highlights a novel mechanism by which AM fungi can effectively control plant defence, Rhizophagus irregularis, symbiosis. epigenetic modifications through direct interaction with a core nucleosome component. Homologues of RiNLE1 are found in a range of fungi that establish intimate interactions with plants, suggesting that this type of effector may be more widely recruited to manipulate host defence responses.
    [Show full text]
  • SUGARCANE BAGASSE: a NOVEL SUBSTRATE for MASS MULTIPLICATION of FUNNELIFORMIS MOSSEAE with ONION AS HOST Anju TANWAR 1, Ashok AGGARWAL 2* and Vipin PARKASH 3
    Journal of Central European Agriculture, 2013, 14(4), p.1502-1511 DOI: 10.5513/JCEA01/14.4.1386 SUGARCANE BAGASSE: A NOVEL SUBSTRATE FOR MASS MULTIPLICATION OF FUNNELIFORMIS MOSSEAE WITH ONION AS HOST Anju TANWAR 1, Ashok AGGARWAL 2* and Vipin PARKASH 3 1Mycology and Plant Pathology Laboratory, Department of Botany, Kurukshetra University, Kurukshetra- 136119, Haryana, India, E-mail: [email protected] 2Professor, Department of Botany, Kurukshetra University, Kurukshetra-136119, Haryana, India, E-mail: [email protected] *Correspondence 3Scientist-D, Rain Forest Research Institute (ICFRE), Autonomous council of Ministry of Environment and Forests, Govt. of India, Jorhat-785001, Assam, India, E-mail: [email protected] ABSTRACT A pot experiment was conducted to test the influence of sugarcane bagasse (fibrous waste left over after sugarcane juice) as a substrate for the inoculum production of Funneliformis mosseae in terms of AM root colonization, spore number and AM colonization pattern using onion as host plant. Their effect on growth performance of onion was also recorded in terms of increase in plant height, above ground fresh and dry weight, root length, root fresh and dry weight. The experiment was a 3×4 factorial design employing three forms of bagasse (fresh, dry and compost) and their four different concentrations (without substrate, 25 g/pot, 50 g/pot and 100 g/pot). The results showed that the compost bagasse promoted higher AM root colonization and sporulation, followed by dry and fresh bagasse. Maximum AM spores, vesicles, arbuscules and 100 per cent colonized roots were detected in onion plants supplemented with 25 g compost bagasse. This treatment also influenced significant increase in plant growth.
    [Show full text]
  • Specific Arbuscular Mycorrhizal Fungal– Plant Interactions Determine Radionuclide and Metal Transfer Into Plantago Lanceolata
    Specific arbuscular mycorrhizal fungal– plant interactions determine radionuclide and metal transfer into Plantago lanceolata Item Type article Authors RosasMoreno, Jeanette; Pittman, Jon K.; orcid: 0000-0001-7197-1494; email: [email protected]; Robinson, Clare H. Citation Plants, People, Planet, volume 3, issue 5, page 667-678 Rights Licence for VoR version of this article: http:// creativecommons.org/licenses/by/4.0/ Download date 03/10/2021 00:23:18 Link to Item http://hdl.handle.net/10034/625708 Received: 25 June 2020 | Revised: 10 November 2020 | Accepted: 20 January 2021 DOI: 10.1002/ppp3.10185 RESEARCH ARTICLE Specific arbuscular mycorrhizal fungal–­plant interactions determine radionuclide and metal transfer into Plantago lanceolata Jeanette Rosas-­Moreno | Jon K. Pittman | Clare H. Robinson Department of Earth and Environmental Sciences, School of Natural Sciences, The Societal Impact Statement University of Manchester, Manchester, UK Industrial activity has left a legacy of pollution by radionuclides and heavy metals. Correspondence The exposure of terrestrial environments to increased levels of ionising radiation and Jon K. Pittman, Department of Earth and toxic elements is of concern, not only because of the immediate effects to biota but Environmental Sciences, School of Natural Sciences, The University of Manchester, also because of the potential risk of mobilisation into higher levels of a food chain. Michael Smith Building, Oxford Road, Here, we present a study that extends our knowledge of how arbuscular mycorrhi- Manchester M13 9PT, UK. Email: [email protected] zal fungi contribute to the mobilisation of non-­essential elements in environments such as former mine sites, and provides a perspective that will be of interest for the Funding information CONACyT; NERC, Grant/Award Number: management and remediation of such sites.
    [Show full text]
  • Rhizophagus Irregularis) Inoculation in Cucurbita Maxima Duch
    International Journal of Molecular Biology: Open Access Research Article Open Access Mitigation of salt induced stress via arbuscular mycorrhizal fungi (Rhizophagus irregularis) inoculation in Cucurbita maxima Duch Abstract Volume 4 Issue 1 - 2019 It has been projected that about 7% of the earth’s agricultural land is exposed to extreme Okon Okon G,1 Okon Iniobong E,2 Mbong soil salinity levels. High presence of salts in soil reduces plant water content and nutrient 3 4 uptake thereby disrupting the dissemination of ions at both the cellular and the whole- Emem O, Eneh Grace DO 1Department of Biological Sciences, Ritman University, Nigeria plant levels, ultimately inducing osmotic and ionic disparities. The current research was 2Department of Botany and Ecological Studies, University of carried out to examine the role of arbuscular mycorrhizal fungi (Rhizophagus irregularis) in Uyo, Nigeria alleviating adverse effects of salt stress in Cucurbita maxima. Physicochemical properties 3Science Laboratory Technology Department, Heritage of the experimental soils analysis (saline and garden soils) indicated significant (p=0.05) Polytechnic, Nigeria differences between the two soil types in; pH, total nitrogen, available phosphorus, Ex. Ca, 4Department of Science Technology, Akwa Ibom State Ex. Mg, Ex. K, OC, Ex. Na and EC. Saline soil treatment significantly (p=0.05) reduced Polytechnic, Nigeria photosynthetic pigments contents (chlorophyll a, b and carotenoids), minerals (N, P, K, Mg and Ca), leaf relative water content (LRWC), shoot length, dry weight as well as percentage Correspondence: Okon Okon G, Department of Biological arbuscular mycorrhizal fungi colonization (45.45 to 20.34%) and mycorrhizal dependency Sciences, Faculty of Natural and Applied Sciences, Ritman (100.00% to 13.87%).
    [Show full text]
  • Unraveling Arbuscular Mycorrhiza-Induced Changes in Plant Primary and Secondary Metabolome
    H OH metabolites OH Review Unraveling Arbuscular Mycorrhiza-Induced Changes in Plant Primary and Secondary Metabolome Sukhmanpreet Kaur and Vidya Suseela * Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; [email protected] * Correspondence: [email protected] Received: 18 June 2020; Accepted: 12 August 2020; Published: 18 August 2020 Abstract: Arbuscular mycorrhizal fungi (AMF) is among the most ubiquitous plant mutualists that enhance plant growth and yield by facilitating the uptake of phosphorus and water. The countless interactions that occur in the rhizosphere between plants and its AMF symbionts are mediated through the plant and fungal metabolites that ensure partner recognition, colonization, and establishment of the symbiotic association. The colonization and establishment of AMF reprogram the metabolic pathways of plants, resulting in changes in the primary and secondary metabolites, which is the focus of this review. During initial colonization, plant–AMF interaction is facilitated through the regulation of signaling and carotenoid pathways. After the establishment, the AMF symbiotic association influences the primary metabolism of the plant, thus facilitating the sharing of photosynthates with the AMF. The carbon supply to AMF leads to the transport of a significant amount of sugars to the roots, and also alters the tricarboxylic acid cycle. Apart from the nutrient exchange, the AMF imparts abiotic stress tolerance in host plants by increasing the abundance of several primary metabolites. Although AMF initially suppresses the defense response of the host, it later primes the host for better defense against biotic and abiotic stresses by reprogramming the biosynthesis of secondary metabolites. Additionally, the influence of AMF on signaling pathways translates to enhanced phytochemical content through the upregulation of the phenylpropanoid pathway, which improves the quality of the plant products.
    [Show full text]