Impact of HVT Vaccination on Splenic Mirna Expression in Marek's
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. -
Regulation of Transcription and Regulatory Networks for Muscle Growth * * * * A
Regulation Of Transcription And Regulatory Networks For Muscle Growth * * * * A. Reverter , N.J. Hudson , Q. Gu and B.P. Dalrymple Introduction The advent of microarray gene expression technology has provided animal scientists with an unprecedented ability to profile the transcriptional changes during skeletal muscle growth. With respect to meat quality, most of the effort has concentrated on the understanding of fat and energy metabolism (reviewed by Hausman et al . (2009)). Graugnard et al . (2009) explored the network among 31 genes associated with aspects of adipogenesis and energy metabolism in bovine skeletal muscle and in response to two distinct diets. Also, Freyssenet (2007) reviewed the roles that energy-sensing molecules and mitochondria have in the regulation of gene expression in muscle. However, other mechanisms such as cell cycle, glycolysis, extra-cellular matrix, ribosomal proteins and the immune system play a significant role in development, and this role can work in a tissue-specific manner. Hudson et al . (2009a) reported various functional modules underpinning the transcriptional regulation of bovine skeletal muscle. The authors integrated a total of six gene co-expression networks, each developed using the PCIT algorithm (Reverter and Chan (2008)), and proposed a Module-to-Regulator heuristic by which those transcription factors (TF) with the highest average absolute correlation co-expression with the genes present in each module are deemed to be the relevant regulators. However, this Module-to-Regulator approach failed to capture some well-known regulators of muscle fibre type composition, and the use of more sophisticated methods such as the differential wiring approach of Hudson et al . -
Watsonjn2018.Pdf (1.780Mb)
UNIVERSITY OF CENTRAL OKLAHOMA Edmond, Oklahoma Department of Biology Investigating Differential Gene Expression in vivo of Cardiac Birth Defects in an Avian Model of Maternal Phenylketonuria A THESIS SUBMITTED TO THE GRADUATE FACULTY In partial fulfillment of the requirements For the degree of MASTER OF SCIENCE IN BIOLOGY By Jamie N. Watson Edmond, OK June 5, 2018 J. Watson/Dr. Nikki Seagraves ii J. Watson/Dr. Nikki Seagraves Acknowledgements It is difficult to articulate the amount of gratitude I have for the support and encouragement I have received throughout my master’s thesis. Many people have added value and support to my life during this time. I am thankful for the education, experience, and friendships I have gained at the University of Central Oklahoma. First, I would like to thank Dr. Nikki Seagraves for her mentorship and friendship. I lucked out when I met her. I have enjoyed working on this project and I am very thankful for her support. I would like thank Thomas Crane for his support and patience throughout my master’s degree. I would like to thank Dr. Shannon Conley for her continued mentorship and support. I would like to thank Liz Bullen and Dr. Eric Howard for their training and help on this project. I would like to thank Kristy Meyer for her friendship and help throughout graduate school. I would like to thank my committee members Dr. Robert Brennan and Dr. Lilian Chooback for their advisement on this project. Also, I would like to thank the biology faculty and staff. I would like to thank the Seagraves lab members: Jailene Canales, Kayley Pate, Mckayla Muse, Grace Thetford, Kody Harvey, Jordan Guffey, and Kayle Patatanian for their hard work and support. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
The Role of at Rich Interactive Domain 3A in the Tumorigenesis of Colorectal Carcinomas
The role of AT rich interactive domain 3A in the tumorigenesis of colorectal carcinomas Meiying Song Department of Medical Science The Graduate School, Yonsei University The role of AT rich interactive domain 3A in the tumorigenesis of colorectal carcinomas Directed by Professor Hoguen Kim The Doctoral Dissertation submitted to the Department of Medicine, the Graduate School of Yonsei University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Meiying Song December 2012 ACKNOWLEDGEMENTS I would like to express my sincere gratitude to all those who made invaluable contributions to my research directly or indirectly. Without their invaluable helps and generous encouragements, this thesis could not have reached its present form. I am deeply indebted to my supervisor Professor Hoguen Kim, and Dr. Hyunki Kim working in Department of Pathology, Yonsei University. Their invaluable help, stimulating suggestion, constant encouragement, and patient guidance helped me in all the time of my research. My colleagues from Department of Pathology, Yonsei University also gave me lots of valuable advice when I was faced with problems during the process of my research and writing this thesis. I want to thank them for all their helps. Especially, I should give my thanks to my parents. It was their patient love and encouragement that enabled me to finish my doctorate in education at medical college of Yonsei University. TABLE OF CONTENTS ABSTRACT…….…………………………………………………………....1 I. INTRODUCTION.……………………………………………………….…..3 II. MATERIALS AND METHODS....……………………………….………...8 1. Patients and samples……………….………………………….…………...8 2. Tissue microarray and immunohistochemistry…………………….……...8 3. Evaluation of staining……………………………………………….……..9 4. Cell lines and cultures……………………………………………………..9 5. -
4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4). -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association Between BMI and Adult-Onset Non- Atopic
Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non- Atopic Asthma Ayoung Jeong 1,2, Medea Imboden 1,2, Akram Ghantous 3, Alexei Novoloaca 3, Anne-Elie Carsin 4,5,6, Manolis Kogevinas 4,5,6, Christian Schindler 1,2, Gianfranco Lovison 7, Zdenko Herceg 3, Cyrille Cuenin 3, Roel Vermeulen 8, Deborah Jarvis 9, André F. S. Amaral 9, Florian Kronenberg 10, Paolo Vineis 11,12 and Nicole Probst-Hensch 1,2,* 1 Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; [email protected] (A.J.); [email protected] (M.I.); [email protected] (C.S.) 2 Department of Public Health, University of Basel, 4001 Basel, Switzerland 3 International Agency for Research on Cancer, 69372 Lyon, France; [email protected] (A.G.); [email protected] (A.N.); [email protected] (Z.H.); [email protected] (C.C.) 4 ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain; [email protected] (A.-E.C.); [email protected] (M.K.) 5 Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain 6 CIBER Epidemiología y Salud Pública (CIBERESP), 08005 Barcelona, Spain 7 Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy; [email protected] 8 Environmental Epidemiology Division, Utrecht University, Institute for Risk Assessment Sciences, 3584CM Utrecht, Netherlands; [email protected] 9 Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College, SW3 6LR London, UK; [email protected] (D.J.); [email protected] (A.F.S.A.) 10 Division of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 11 MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, W2 1PG London, UK; [email protected] 12 Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy * Correspondence: [email protected]; Tel.: +41-61-284-8378 Int. -
The Conserved Ancient Role of Chordate PIAS As a Multilevel
www.nature.com/scientificreports OPEN The conserved ancient role of chordate PIAS as a multilevel repressor of the NF-κB pathway Received: 14 March 2017 Ruihua Wang1,2, Shengfeng Huang1, Xianan Fu1, Guangrui Huang3, Xinyu Yan1, Zirui Yue1, Accepted: 15 November 2017 Shangwu Chen1, Yingqiu Li1 & Anlong Xu1,3 Published: xx xx xxxx In vertebrates, PIAS genes encode versatile cellular regulators, with functions extremely complex and redundant. Here we try to understand their functions from an evolutionary perspective. we evaluate the sequences, expression and molecular functions of amphioxus PIAS genes and compare them with their vertebrate counterparts. Phylogenetic analysis suggests a single PIAS gene in ancestral chordates, which has been duplicated into four families (PIAS1-4) in vertebrates by 2R-WGD but remained single in a basal chordate (amphioxus). Amphioxus PIAS encodes two variants with and without a Serine/ Threonine-rich tail, which are retained in human PIAS1-3 but lost in PIAS4. We show that amphioxus PIAS binds C-terminus of NF-κB Rel and blocks the DNA binding activity. In humans, such function is retained in PIAS1, altered in PIAS4, and lost in PIAS2-3. Instead, PIAS3 has evolved new ability to inhibit Rel by binding RHD and promoting SUMOylation. We show that amphioxus PIAS also inhibits NF-κB by binding with upstream signalling adaptor TICAM-like and MyD88. Finally, we verify that human PIAS1, 3 and 4, but not 2, were capable of these newly-discovered functions. Our study ofers insight into the sub- and neo-functionalization of PIAS genes and suggests a conserved ancient role for chordate PIAS in NF-κB signalling. -
The Role of Components of the Chromatin Modification Machinery in Carcinogenesis of Clear Cell Carcinoma of the Ovary (Review)
ONCOLOGY LETTERS 2: 591-597, 2011 The role of components of the chromatin modification machinery in carcinogenesis of clear cell carcinoma of the ovary (Review) HIROSHI SHIGETOMI, AKIRA OONOGI, TAIHEI TSUNEMI, YASUHITO TANASE, YOSHIHIKO YAMADA, HIROTAKA KAJIHARA, YORIKO YOSHIZAWA, NAOTO FURUKAWA, SHOJI HARUTA, SHOZO YOSHIDA, TOSHIYUKI SADO, HIDEKAZU OI and HIROSHI KOBAYASHI Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan Received January 21, 2011; Accepted April 27, 2011 DOI: 10.3892/ol.2011.316 Abstract. Recent data have provided information regarding 6. A marked resemblance between CCC and ccRCC the profiles of clear cell carcinoma of the ovary (CCC) with 7. Conclusions adenine-thymine rich interactive domain 1A (ARID1A) muta- tions. The purpose of this review was to summarize current 1. Introduction knowledge regarding the molecular mechanisms involved in CCC tumorigenesis and to describe the central role played Epithelial ovarian cancer (EOC) is the most lethal gyne- by the aberrant chromatin remodeling. The present article cologic malignancy worldwide. Epidemiology calculations reviews the English-language literature for biochemical of lifetime risk for EOC are that 1 in 55 women is likely to studies on the ARID1A mutation and chromatin remodeling develop EOC during their lifetime (1). Since EOC is more in CCC. ARID1A is responsible for directing the SWI/SNF likely to be advanced stage with unfavorable tumor biology, complex to target promoters and regulates the transcription of there are serious limitations to the surgical and oncological certain genes by altering the chromatin structure around those treatment available. Therefore, it is crucial to determine the genes. The mutation spectrum of ARID1A was enriched for earliest possible diagnosis. -
What Your Genome Doesn't Tell
UC San Diego UC San Diego Electronic Theses and Dissertations Title Multi-layered epigenetic control of T cell fate decisions Permalink https://escholarship.org/uc/item/8rs7c7b3 Author Yu, Bingfei Publication Date 2018 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA SAN DIEGO Multi-layered epigenetic control of T cell fate decisions A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biology by Bingfei Yu Committee in charge: Professor Ananda Goldrath, Chair Professor John Chang Professor Stephen Hedrick Professor Cornelis Murre Professor Wei Wang 2018 Copyright Bingfei Yu, 2018 All rights reserved. The dissertation of Bingfei Yu is approved, and it is ac- ceptable in quality and form for publication on microfilm and electronically: Chair University of California San Diego 2018 iii DEDICATION To my parents who have been giving me countless love, trust and support to make me who I am. iv EPIGRAPH Stay hungary. Stay foolish. | Steve Jobs quoted from the back cover of the 1974 edition of the Whole Earth Catalog v TABLE OF CONTENTS Signature Page.................................. iii Dedication..................................... iv Epigraph.....................................v Table of Contents................................. vi List of Figures.................................. ix Acknowledgements................................x Vita........................................ xii Abstract of -
Identification of Transcriptional Mechanisms Downstream of Nf1 Gene Defeciency in Malignant Peripheral Nerve Sheath Tumors Daochun Sun Wayne State University
Wayne State University DigitalCommons@WayneState Wayne State University Dissertations 1-1-2012 Identification of transcriptional mechanisms downstream of nf1 gene defeciency in malignant peripheral nerve sheath tumors Daochun Sun Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Recommended Citation Sun, Daochun, "Identification of transcriptional mechanisms downstream of nf1 gene defeciency in malignant peripheral nerve sheath tumors" (2012). Wayne State University Dissertations. Paper 558. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. IDENTIFICATION OF TRANSCRIPTIONAL MECHANISMS DOWNSTREAM OF NF1 GENE DEFECIENCY IN MALIGNANT PERIPHERAL NERVE SHEATH TUMORS by DAOCHUN SUN DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2012 MAJOR: MOLECULAR BIOLOGY AND GENETICS Approved by: _______________________________________ Advisor Date _______________________________________ _______________________________________ _______________________________________ © COPYRIGHT BY DAOCHUN SUN 2012 All Rights Reserved DEDICATION This work is dedicated to my parents and my wife Ze Zheng for their continuous support and understanding during the years of my education. I could not achieve my goal without them. ii ACKNOWLEDGMENTS I would like to express tremendous appreciation to my mentor, Dr. Michael Tainsky. His guidance and encouragement throughout this project made this dissertation come true. I would also like to thank my committee members, Dr. Raymond Mattingly and Dr. John Reiners Jr. for their sustained attention to this project during the monthly NF1 group meetings and committee meetings, Dr.