Table 2. Recommendations for Antimicrobial Therapy of Infections Caused by Black Fungi

Total Page:16

File Type:pdf, Size:1020Kb

Table 2. Recommendations for Antimicrobial Therapy of Infections Caused by Black Fungi Reprinted from www.antimicrobe.org Table 2. Recommendations for Antimicrobial Therapy of Infections Caused by Black Fungi Clinical entity First-line therapy Second-line therapy Options for refractory infections Chromoblastomycosis Itraconazole (oral 200-400 Partial surgical resection and/or Repeated surgical resection; mg daily) for 2 - 3 cryotherapy combined with itraconazole and flucytosine; months or longer itraconazole (200 - 600 mg amphotericin B and daily) or voriconazole (400- flucytosine; ketoconazole; 600mg daily) until 2 - 3 months ketoconazole and flucytosine; after apparent mycologic cure itraconazole and terbinafine Mycetoma Itraconazole (200- Partial surgical resection Repeated surgical resection; 400 mg daily) for 2 - 3 combined itraconazole (200 - amphotericin B; ketoconazole months or longer 600 mg daily) or voriconazole and flucytosine; itraconazole (400-600mg daily); until 2 - 3 and flucytosine; amphotericin months after apparent mycologic B and flucytosine; cure itraconazole and terbinafine Subcutaneous Itraconazole (200- Partial surgical resection Repeated surgical resection; phaeohyphomycosis 400 mg daily) for 2 - 3 combined with itraconazole (200 amphotericin B; ketoconazole; months; if organisms are - 600 mg daily) or voriconazole addition of flucytosine or Immunocompetent hosts contained within a cyst, (400-600mg daily) until 2 - 3 terbinafine to medical adjunctive antifungal months after apparent mycologic regimen therapy is not needed cure Immunocompromised Itraconazole (200 - Partial surgical resection Repeated surgical resection; hosts 400mg daily), or combined with itraconazole (200 addition of flucytosine or amphotericin B (1 - 600 mg daily), voriconazole terbinafine to medical mg/kg/day) until 2 - 3 (400-600mg daily), amphotericin regimen months after apparent B (1 mg/kg/day), or mycologic cure ketoconazole (300 - 400 mg daily) until 2 - 3 months after apparent mycologic cure Cutaneous Itraconazole (200 mg Voriconazole (400mg daily) Terbinafine; Ketoconazole phaeohyphomycosis daily) until 2- 3 months Dermatomycosis, after apparent mycologic cure onychomycosis Keratomycosis Natamycin (5% Topical natamycin or Prior therapy with penetrating solution) topically amphotericin B (0.15%) keratoplasty combined with flucytosine (1% aqueous solution); topical itraconazole, ketoconazole, or miconazole; oral itraconazole (400 mg daily); oral voriconazole (400mg daily); oral ketoconazole (400 mg daily) Sinusitis Surgical drainage and Itraconazole (200-400mg daily); Allergen immunotherapy to debridement, combined voriconazole (400mg daily) decrease IgE production Allergic fungal sinusitis with postoperative corticosteroids; postoperative nasal saline irrigations and regular surveillance endoscopy Fungus ball Resection of fungus ball, In cases of local invasion of Voriconazole with aeration of sinuses bone, itraconazole or amphotericin B are indicated as adjunctive therapy Reprinted from www.antimicrobe.org Allergic bronchopulmonary Corticosteroids Corticosteroids with itraconazole mycosis (200-400mg daily) or voriconazole (400mg daily) Pneumonia Itraconazole (400mg Voriconazole (400-600mg daily) Amphotericin B with daily) or amphotericin B flucytosine (1mg/kg daily) for severe disease Central nervous system Surgical resection (brain Repeated surgical resection with infection abscess) with high dose high dose azole + echinocandin itraconazole (400-600mg +/- flucytosine daily) or voriconazole (400-600mg daily) + lipid amphotericin B +/- flucytosine Disseminated infection High dose lipid High dose lipid amphotericin B amphotericin B with azole +/- echinocandin +/- (>5mg/kg daily) with flucytosine; colony stimulating intravenous itraconazole factors if neutropenic (400-600mg daily) or voriconazole (400- 600mg daily) +/- echinocandin; colony stimulating factors if neutropenic .
Recommended publications
  • Next-Generation Sequencing for Hypothesis-Free Genomic Detection
    Frickmann et al. BMC Microbiology (2019) 19:75 https://doi.org/10.1186/s12866-019-1448-0 RESEARCH ARTICLE Open Access Next-generation sequencing for hypothesis- free genomic detection of invasive tropical infections in poly-microbially contaminated, formalin-fixed, paraffin-embedded tissue samples – a proof-of-principle assessment Hagen Frickmann1,2* , Carsten Künne3, Ralf Matthias Hagen4, Andreas Podbielski2, Jana Normann2, Sven Poppert5,6, Mario Looso3 and Bernd Kreikemeyer2 Abstract Background: The potential of next-generation sequencing (NGS) for hypothesis-free pathogen diagnosis from (poly-)microbially contaminated, formalin-fixed, paraffin embedded tissue samples from patients with invasive fungal infections and amebiasis was investigated. Samples from patients with chromoblastomycosis (n = 3), coccidioidomycosis (n = 2), histoplasmosis (n = 4), histoplasmosis or cryptococcosis with poor histological discriminability (n = 1), mucormycosis (n = 2), mycetoma (n = 3), rhinosporidiosis (n = 2), and invasive Entamoeba histolytica infections (n = 6) were analyzed by NGS (each one Illumina v3 run per sample). To discriminate contamination from putative infections in NGS analysis, mean and standard deviation of the number of specific sequence fragments (paired reads) were determined and compared in all samples examined for the pathogens in question. Results: For matches between NGS results and histological diagnoses, a percentage of species-specific reads greater than the 4th standard deviation above the mean value of all 23 assessed sample materials was required. Potentially etiologically relevant pathogens could be identified by NGS in 5 out of 17 samples of patients with invasive mycoses and in 1 out of 6 samples of patients with amebiasis. Conclusions: The use of NGS for hypothesis-free pathogen diagnosis from contamination-prone formalin- fixed, paraffin-embedded tissue requires further standardization.
    [Show full text]
  • 012402 Voriconazole Compared with Liposomal Amphotericin B
    The New England Journal of Medicine Copyright © 2002 by the Massachusetts Medical Society VOLUME 346 J ANUARY 24, 2002 NUMBER 4 VORICONAZOLE COMPARED WITH LIPOSOMAL AMPHOTERICIN B FOR EMPIRICAL ANTIFUNGAL THERAPY IN PATIENTS WITH NEUTROPENIA AND PERSISTENT FEVER THOMAS J. WALSH, M.D., PETER PAPPAS, M.D., DREW J. WINSTON, M.D., HILLARD M. LAZARUS, M.D., FINN PETERSEN, M.D., JOHN RAFFALLI, M.D., SAUL YANOVICH, M.D., PATRICK STIFF, M.D., RICHARD GREENBERG, M.D., GERALD DONOWITZ, M.D., AND JEANETTE LEE, PH.D., FOR THE NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES MYCOSES STUDY GROUP* ABSTRACT NVASIVE fungal infections are important caus- Background Patients with neutropenia and per- es of morbidity and mortality among patients sistent fever are often treated empirically with am- receiving cancer chemotherapy or undergoing photericin B or liposomal amphotericin B to prevent bone marrow or stem-cell transplantation.1-3 invasive fungal infections. Antifungal triazoles offer IOver the past two decades, empirical antifungal ther- a potentially safer and effective alternative. apy with conventional amphotericin B or liposomal Methods In a randomized, international, multi- amphotericin B has become the standard of care in center trial, we compared voriconazole, a new sec- reducing invasive fungal infections in patients with ond-generation triazole, with liposomal amphoteri- neutropenia and persistent fever.4-9 Amphotericin B, cin B for empirical antifungal therapy. however, is associated with significant dose-limiting Results A total of
    [Show full text]
  • Terbinafine-Induced Taste Impairment - Report of Two Cases Rajesh Sinha, Pallavi Sharma, Pramod Kumar, Vaibhav Kuchhal*
    Journal of Pakistan Association of Dermatologists 2012; 22 (4):363-365. Case Report Terbinafine-induced taste impairment - report of two cases Rajesh Sinha, Pallavi Sharma, Pramod Kumar, Vaibhav Kuchhal* Department of Skin &V.D., Government Medical College, Haldwani 263139, Uttarakhand, India *Department of E.N.T., Government Medical College, Haldwani 263139, Uttarakhand, India Abstract Terbinafine is an oral antimycotic agent that belongs to the allylamine class. It was introduced in 1991 and is being widely used, both topically and systemically, to treat fungal infections. Nowadays oral terbinafine has become a commonly prescribed drug to treat finger- and toenail fungal infections because of relatively short duration of treatment compared to other oral antifungals like griseofulvin and fluconazole. The common side effects of this drug include nausea, abdominal pain, elevated transaminases and allergic reactions. Loss of taste sensation is a rare side effect occurring in patient taking oral form of this drug. PubMed search showed that very few cases of terbinafine- induced taste loss have been reported worldwide. We report a case series of two patients who complained of taste loss after taking terbinafine. Key words Terbinafine, ageusia. Introduction terbinafine that occurs in 0.6% to 2.8% of patients taking the drug. A low BMI, ageing Terbinafine is a widely prescribed oral and history of taste loss are considered risk antifungal agent. Its mode of action is by factors for developing taste loss due to inhibiting squalene epoxidase which converts terbinafine. squalene to lanosterol. With a decrease in lanosterol production, ergosterol production is Case report 1 also diminished, affecting fungal cell membrane synthesis and function.
    [Show full text]
  • Voriconazole
    Drug and Biologic Coverage Policy Effective Date ............................................ 6/1/2020 Next Review Date… ..................................... 6/1/2021 Coverage Policy Number .................................. 4004 Voriconazole Table of Contents Related Coverage Resources Coverage Policy ................................................... 1 FDA Approved Indications ................................... 2 Recommended Dosing ........................................ 2 General Background ............................................ 2 Coding/Billing Information .................................... 4 References .......................................................... 4 INSTRUCTIONS FOR USE The following Coverage Policy applies to health benefit plans administered by Cigna Companies. Certain Cigna Companies and/or lines of business only provide utilization review services to clients and do not make coverage determinations. References to standard benefit plan language and coverage determinations do not apply to those clients. Coverage Policies are intended to provide guidance in interpreting certain standard benefit plans administered by Cigna Companies. Please note, the terms of a customer’s particular benefit plan document [Group Service Agreement, Evidence of Coverage, Certificate of Coverage, Summary Plan Description (SPD) or similar plan document] may differ significantly from the standard benefit plans upon which these Coverage Policies are based. For example, a customer’s benefit plan document may contain a specific exclusion
    [Show full text]
  • Long-Term Effectiveness of Treatment with Terbinafine Vs Itraconazole in Onychomycosis a 5-Year Blinded Prospective Follow-Up Study
    STUDY Long-term Effectiveness of Treatment With Terbinafine vs Itraconazole in Onychomycosis A 5-Year Blinded Prospective Follow-up Study Ba´rður Sigurgeirsson, MD, PhD; Jo´n H. O´ lafsson, MD, PhD; Jo´n þ. Steinsson, MD Carle Paul, MD; Stephan Billstein, MD; E. Glyn V. Evans, PhD Objective: To examine long-term cure and relapse rates microscopy and culture at the end of follow-up and no re- after treatment with continuous terbinafine and inter- quirement of second intervention treatment. Secondary ef- mittent itraconazole in onychomycosis. ficacy criteria included clinical cure without second inter- vention treatment and mycological and clinical relapse rates. Design: Long-term prospective follow-up study. Results: Median duration of follow-up was 54 months. Setting: Three centers in Iceland. At the end of the study, mycological cure without second intervention treatment was found in 34 (46%) of the 74 Subjects: The study population comprised 151 pa- terbinafine-treated subjects and 10 (13%) of the 77 itra- tients aged 18 to 75 years with a clinical and mycologi- conazole-treated subjects (PϽ.001). Mycological and clini- cal diagnosis of dermatophyte toenail onychomycosis. cal relapse rates were significantly higher in itraconazole- vs terbinafine-treated patients (53% vs 23% and 48% vs Interventions: In a double-blind, double-dummy study, 21%, respectively). Of the 72 patients who received sub- patients were randomized to receive either terbinafine (250 sequent terbinafine treatment, 63 (88%) achieved myco- mg/d) for 12 or 16 weeks or itraconazole (400 mg/d) for logical cure and 55 (76%) achieved clinical cure. 1 week in every 4 for 12 or 16 weeks (first intervention).
    [Show full text]
  • Susceptibility of Filamentous Fungi to Voriconazole in Malaysia Tested by Sensititre Yeastone and CLSI Microdilution Methods
    Susceptibility of Filamentous Fungi to Voriconazole in Malaysia Tested by Sensititre YeastOne and CLSI Microdilution Methods Xue Ting Tan ( [email protected] ) National Institute of Health, Malaysia Stephanie Jane Ginsapu National Institute of Health, Malaysia Fairuz binti Amran National Institute of Health, Malaysia Salina binti Mohamed Sukur National Institute of Health, Malaysia Surianti binti Shukor National Institute of Health, Malaysia Research Article Keywords: Voriconazole, Sensititre, CLSI, Mould Posted Date: February 12th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-199013/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/15 Abstract Background: Voriconazole is a trizaole antifungal to treat fungal infection. In this study, the susceptibility pattern of voriconazole against lamentous fungi was studied using Sensititre® YeastOne and Clinical & Laboratory Standards Institute (CLSI) M38 broth microdilution method. Methods: The suspected cultures of Aspergillus niger, A. avus, A. fumigatus, A. versicolor, A. sydowii, A. calidoutus, A. creber, A. ochraceopetaliformis, A. tamarii, Fusarium solani, F. longipes, F. falciferus, F. keratoplasticum, Rhizopus oryzae, R. delemar, R. arrhizus, Mucor sp., Poitrasia circinans, Syncephalastrum racemosum and Sporothrix schenckii were received from hospitals. Their identication had been conrmed in our lab and susceptibility tests were performed using Sensititre® YeastOne and CLSI M38 broth microdilution method. The signicant differences between two methods were calculated using Wilcoxon Sign Rank test. Results: Mean of the minimum inhibitory concentrations (MIC) for Aspergillus spp. and Fusarium were within 0.25 μg/mL-2.00 μg/mL by two methods except A. calidoutus, F. solani and F. keratoplasticum.
    [Show full text]
  • Diagnosis and Treatment of Tinea Versicolor Ronald Savin, MD New Haven, Connecticut
    ■ CLINICAL REVIEW Diagnosis and Treatment of Tinea Versicolor Ronald Savin, MD New Haven, Connecticut Tinea versicolor (pityriasis versicolor) is a common imidazole, has been used for years both orally and top­ superficial fungal infection of the stratum corneum. ically with great success, although it has not been Caused by the fungus Malassezia furfur, this chronical­ approved by the Food and Drug Administration for the ly recurring disease is most prevalent in the tropics but indication of tinea versicolor. Newer derivatives, such is also common in temperate climates. Treatments are as fluconazole and itraconazole, have recently been available and cure rates are high, although recurrences introduced. Side effects associated with these triazoles are common. Traditional topical agents such as seleni­ tend to be minor and low in incidence. Except for keto­ um sulfide are effective, but recurrence following treat­ conazole, oral antifungals carry a low risk of hepato- ment with these agents is likely and often rapid. toxicity. Currently, therapeutic interest is focused on synthetic Key Words: Tinea versicolor; pityriasis versicolor; anti­ “-azole” antifungal drugs, which interfere with the sterol fungal agents. metabolism of the infectious agent. Ketoconazole, an (J Fam Pract 1996; 43:127-132) ormal skin flora includes two morpho­ than formerly thought. In one study, children under logically discrete lipophilic yeasts: a age 14 represented nearly 5% of confirmed cases spherical form, Pityrosporum orbicu- of the disease.3 In many of these cases, the face lare, and an ovoid form, Pityrosporum was involved, a rare manifestation of the disease in ovale. Whether these are separate enti­ adults.1 The condition is most prevalent in tropical tiesN or different morphologic forms in the cell and semitropical areas, where up to 40% of some cycle of the same organism remains unclear.: In the populations are affected.
    [Show full text]
  • Itraconazole (Sporonox ) & Voriconazole (Vfend )
    Itraconazole (Sporonox) & Voriconazole (Vfend) These are broad spectrum, anti-fungal agents that can be taken orally. They are very expensive approx $800- $1100/month). Although both these prescription medications are FDA approved for the treatment of mold or fungal infections, they do not have a specific indication for the treatment of fungal rhinosinusitis. Molds appear to be present in everyone's nasal and sinus passageways but in some individuals, the molds appear to cause disease. The explanation for this is unknown (See What is Rhinosinusitis?). As such, Insurers resist covering them for treatment of rhinosinusitis associated with the presence of molds. Itraconazole • Your liver enzymes will be monitored by periodically by blood tests. • Take your Itraconazole dose at the same time everyday. • Take your medication after a full meal. • Antacids can reduce absorption of this medication and if need be they should be taken at least 1 hour before or 2 hours after taking Itraconazole. • If you are taking stomach medication, make sure you drink cola beverage with the Itraconazole to help it become absorbed. • Report any signs or symptoms of unusual fatigue, anorexia, nausea and/or vomiting, jaundice (yellowing skin), dark urine, or pale stools. • Other potential side effects include elevated liver enzymes, gastrointestinal disorders, rash, hypertension, orthostatic hypertension, headache, malaise, myalgia, vasculitis, edema, and vertigo. • Contact your practitioner BEFORE beginning any new medications while taking Itraconazole. • Women should use effective measures to PREVENT pregnancy during and up to 2 months after finishing itraconazole. • Itraconazole should not be taken with a class of cholesterol-lowering drugs known as statins, unless your physicians has specifically told you to do so.
    [Show full text]
  • Severe Chromoblastomycosis-Like Cutaneous Infection Caused by Chrysosporium Keratinophilum
    fmicb-08-00083 January 25, 2017 Time: 11:0 # 1 CASE REPORT published: 25 January 2017 doi: 10.3389/fmicb.2017.00083 Severe Chromoblastomycosis-Like Cutaneous Infection Caused by Chrysosporium keratinophilum Juhaer Mijiti1†, Bo Pan2,3†, Sybren de Hoog4, Yoshikazu Horie5, Tetsuhiro Matsuzawa6, Yilixiati Yilifan1, Yong Liu1, Parida Abliz7, Weihua Pan2,3, Danqi Deng8, Yun Guo8, Peiliang Zhang8, Wanqing Liao2,3* and Shuwen Deng2,3,7* 1 Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China, 2 Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China, 3 Key Laboratory of Molecular Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China, 4 CBS-KNAW Fungal Biodiversity Centre, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands, 5 Medical Mycology Research Center, Chiba University, Chiba, Japan, 6 Department of Nutrition Science, University of Nagasaki, Nagasaki, Japan, 7 Department of Dermatology, First Hospital of Xinjiang Medical University, Urumqi, China, 8 Department of Dermatology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China Chrysosporium species are saprophytic filamentous fungi commonly found in the Edited by: soil, dung, and animal fur. Subcutaneous infection caused by this organism is Leonard Peruski, rare in humans. We report a case of subcutaneous fungal infection caused by US Centers for Disease Control and Prevention, USA Chrysosporium keratinophilum in a 38-year-old woman. The patient presented with Reviewed by: severe chromoblastomycosis-like lesions on the left side of the jaw and neck for 6 years. Nasib Singh, She also got tinea corporis on her trunk since she was 10 years old.
    [Show full text]
  • Lactoferrin, Chitosan and Melaleuca Alternifolia—Natural Products That
    b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 9 (2 0 1 8) 212–219 ht tp://www.bjmicrobiol.com.br/ Review Lactoferrin, chitosan and Melaleuca alternifolia—natural products that show promise in candidiasis treatment ∗ Lorena de Oliveira Felipe , Willer Ferreira da Silva Júnior, Katialaine Corrêa de Araújo, Daniela Leite Fabrino Universidade Federal de São João del-Rei/Campus Alto Paraopeba, Minas Gerais, MG, Brazil a r t i c l e i n f o a b s t r a c t Article history: The evolution of microorganisms resistant to many medicines has become a major chal- Received 18 August 2016 lenge for the scientific community around the world. Motivated by the gravity of such a Accepted 26 May 2017 situation, the World Health Organization released a report in 2014 with the aim of providing Available online 11 November 2017 updated information on this critical scenario. Among the most worrying microorganisms, Associate Editor: Luis Henrique species from the genus Candida have exhibited a high rate of resistance to antifungal drugs. Guimarães Therefore, the objective of this review is to show that the use of natural products (extracts or isolated biomolecules), along with conventional antifungal therapy, can be a very promising Keywords: strategy to overcome microbial multiresistance. Some promising alternatives are essential Candida oils of Melaleuca alternifolia (mainly composed of terpinen-4-ol, a type of monoterpene), lacto- Lactoferrin ferrin (a peptide isolated from milk) and chitosan (a copolymer from chitin).
    [Show full text]
  • Fungal Infections in HIV-Positive Peruvian Patients: Could the Venezuelan Migration Cause a Health Warning Related-Infectious Diseases?
    Moya-Salazar J, Salazar-Hernández R, Rojas-Zumaran V, Quispe WC. Fungal Infections in HIV-positive Peruvian Patients: Could the Venezuelan Migration Cause a Health Warning Related-infectious Diseases?. J Infectiology. 2019; 2(2): 3-10 Journal of Infectiology Journal of Infectiology Research Article Open Access Fungal Infections in HIV-positive Peruvian Patients: Could the Venezuelan Migration Cause a Health Warning Related-infectious Diseases? Jeel Moya-Salazar1,2*, Richard Salazar-Hernández3, Victor Rojas-Zumaran2, Wanda C. Quispe3 1School of Medicine, Faculties of Health Science, Universidad Privada Norbert Wiener, Lima, Peru 2Pathology Department, Hospital Nacional Docente Madre Niño San Bartolomé, Lima, Peru 3Cytopathology and Genetics Service, Department of Pathology, Hospital Nacional Guillermo Almenara Irigoyen, Lima, Peru Article Info Abstract Article Notes In patients with human immunodeficiency virus (HIV), opportunistic Received: December 22, 2018 infections occur that could compromise the health of patients. In order to Accepted: March 7, 2019 determine the frequency of fungal opportunistic and superficial infections *Correspondence: in HIV-positive men-who-have-sex-with-men (MSM) patients at the Hospital Jeel Moya-Salazar, M.T, M.Sc., 957 Pacific Street, Urb. Sn Nacional Guillermo Almenara, we conducted a cross-sectional retrospective Felipe, 07 Lima, Lima 51001, Peru; Telephone No: +51 986- study. We include Peruvian patients >18 years-old, derived from infectious or 014-954; Email: [email protected]. gynecological offices, with or without antiretroviral treatment. © 2019 Moya-Salazar J. This article is distributed under the One hundred thirteen patients were enrolled (36.7±10, range: 21 to terms of the Creative Commons Attribution 4.0 International 68 years), which 46 (40.7%) has an opportunistic fungal infection, mainly License.
    [Show full text]
  • The Epidemiology and Clinical Features of Balamuthia Mandrillaris Disease in the United States, 1974 – 2016
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Clin Infect Manuscript Author Dis. Author manuscript; Manuscript Author available in PMC 2020 August 28. Published in final edited form as: Clin Infect Dis. 2019 May 17; 68(11): 1815–1822. doi:10.1093/cid/ciy813. The Epidemiology and Clinical Features of Balamuthia mandrillaris Disease in the United States, 1974 – 2016 Jennifer R. Cope1, Janet Landa1,2, Hannah Nethercut1,3, Sarah A. Collier1, Carol Glaser4, Melanie Moser5, Raghuveer Puttagunta1, Jonathan S. Yoder1, Ibne K. Ali1, Sharon L. Roy6 1Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA 2James A. Ferguson Emerging Infectious Diseases Fellowship Program, Baltimore, MD, USA 3Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA 4Kaiser Permanente, San Francisco, CA, USA 5Office of Financial Resources, Centers for Disease Control and Prevention Atlanta, GA, USA 6Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA Abstract Background—Balamuthia mandrillaris is a free-living ameba that causes rare, nearly always fatal disease in humans and animals worldwide. B. mandrillaris has been isolated from soil, dust, and water. Initial entry of Balamuthia into the body is likely via the skin or lungs. To date, only individual case reports and small case series have been published. Methods—The Centers for Disease Control and Prevention (CDC) maintains a free-living ameba (FLA) registry and laboratory. To be entered into the registry, a Balamuthia case must be laboratory-confirmed.
    [Show full text]