Self-Assembly of Graphene Nanoribbons Induced by the Carbon Nanotube

Total Page:16

File Type:pdf, Size:1020Kb

Self-Assembly of Graphene Nanoribbons Induced by the Carbon Nanotube Chapter 10 Self-Assembly of Graphene Nanoribbons Induced by the Carbon Nanotube Hui Li, Yifan Li and Wei Chen Additional information is available at the end of the chapter http://dx.doi.org/10.5772/67413 Abstract In this chapter, a series of molecular dynamics simulations have been carried out to explore the self‐assembly of graphene nanoribbons (GNRs) induced by the single‐walled carbon nanotubes (SWCNTs). Simulation results show that GNRs can insert and wrap SWCNTs spontaneously, forming helical configurations and maximizing the π‐π stacking area between graphene and SWCNT. The helical configuration takes the least amount of energy and achieves the maximum occupancy. The size and function group of GNR and SWCNT should meet the required conditions to guarantee the self‐assembly in insertion and wrapping processes. Several GNRs can spiral in an SWCNT simultaneously, and two formulas have come up in this study to estimate the quantity threshold for multiple GNR spiralling. The rolled GNRs can also spontaneously insert into SWCNTs, forming a DNA‐like double helix, or collapsing to a linked double graphitic nanoribbon and wrap‐ ping in a helical manner around the tube. Keywords: molecular dynamics simulation, graphene nanoribbon, structural evolution, helical configuration, self‐assembly 1. Introduction Carbon materials, especially the carbon nanotube and graphene, have attracted tremendous attention on the theoretical research and the potential applications because of their unique configurations and excellent performances. The cylindrical SWCNT possessing a large spe‐ cific surface area and hollow interior could act as ‘molecular straws’ capable of absorbing dipolar molecules by capillary action [1]. Over the past decade, the self‐assembled systems [2, 3] relied on the special hollow structure of cylindrical SWCNTs, are an attractive class of new bio‐inspired nanomaterial for biologists and material scientists, because the self‐assembled © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 232 Graphene Materials - Structure, Properties and Modifications materials may not only be designed to be highly dynamic, displaying adaptive and self‐heal‐ ing properties, but could also help gain an understanding of the rules that govern biomolecule assembly processes [4]. In the self‐assembly process, the hollow interior of SWCNT can serve as nanometre‐sized moulds and templates [5] to control the configuration of other materi‐ als, or as a protective layer [6] to prevent the filler from oxidation and shape fragmentation. The physical and chemistry properties of the heterostructure are expected to be modified due to the interaction between SWCNT and exotic materials [7]. Thus, filling SWCNTs with chosen fillers can produce one‐dimensional nanostructures with exciting new applications [8]. A wide array of fillers, including various metal atoms 9[ ], halides [10], C60 [11, 12] and polyacetylene [13], were found to be filled into the SWCNT, with novel configurations and properties. Strano et al. [14] found that water molecules displayed different phase transition temperatures when confined in the nanotube. C60 15[ ] or other spherical metallofullerenes [16] were distributed evenly along the axial direction after self‐assembling into the SWCNT just as beans distributed in pod, while those linear fillers such as DNA 17[ ] and polyacetylene [13] were easy to insert into or wrap the SWCNT spontaneously with an interesting helical configuration. Recently, our studies [18, 19] indicated that GNRs, the material with unique optical, mag‐ netic and electrical properties [20–23], have been succeeded in spontaneously and spirally wrapping and inserting into the SWCNT. GNRs possess intriguing electronic structures ranging from semiconducting to half‐metallic, depending on their geometry and dimen‐ sions. Thus, the helical composite structures formed by two novel carbon materials are expected to have excellent properties, such as high carrier mobility and high mechanical strength, to be used in microcircuit interconnectors, nanoelectronic devices and nanosen‐ sors [24–26]. And a convincing model on the interaction between the GNR and SWCNT may inspire great efforts in theoretical studies, synthesis and chemical modifications which focus on their electronic, biological, chemical and even magnetic properties. In this chap‐ ter, the self‐assembly behaviour of GNRs, especially multiple GNRs, induced by SWCNT is studied in detail, while the mechanism and influencing factors of self‐assembly are also described, providing an opportunity for a comprehensive and satisfactory understanding of how to control the composite structure of this SWCNT‐GNR nanomaterial hybrid. This discovery is of great significance in the exploration of the properties of the GNR‐SWCNT system and may expand the applications of GNR and SWCNT in extensive fields involving medicine, chemistry, biology and even fuel cells. The perfect GNR helix in SWCNT may be used to control the band gap of various GNT‐based nanodevices, which will pave the way for the progress of nanoelectronics. 2. Simulation method Molecular dynamics method is used to study the self‐assembly behaviour of GNRs induced by SWCNTs. The force field of condensed‐phase optimized molecular potentials for atomistic simulation studies (COMPASS) [27] is applied to model the atomic interaction. COMPASS is an ab initio force field which has been parameterized and validated using Self-Assembly of Graphene Nanoribbons Induced by the Carbon Nanotube 233 http://dx.doi.org/10.5772/67413 condensed‐phase properties, various ab initio calculations and experimental data, with a functional form that includes covalent terms, van der Waals interactions and electrostatic forces. The aim of the force field is to achieve high accuracy in predicting the properties of complex mixtures [28] and it has been widely used due to its potential to obtain reasonable results in terms of the mechanical properties of CNTs [29, 30]. The van der Waals energy is described by LJ‐96 function [28] in COMPASS force field, the functional forms of which is ​R​ ​ 9 ​R​ ​ 6 _0 _0 listed as: ​E = ​D​ ​ ​2 ​ ​ R ​ ​ ​− 3 ​ ​ R ​ ​ ​ ​, where D = 0.064 Kal/mol and R = 4.01Å [31, 32]. The temperature 0[ ( ) ( ) ] 0 0 in this paper is chosen as 298 K in the NVT canonical ensemble (number of particles, vol‐ ume and temperature are constant). Andersen thermostat [33] is employed to control the thermodynamic temperature and generate the correct statistical ensemble by allowing the simulated system to exchange energy with a ‘heating bath'. The speed of atoms follows the Maxwell‐Boltzmann distribution and the time integration is undertaken using the velocity Verlet algorithm. The simulation time step is 1.0 fs. Each system is simulated for sufficient time to reach equilibrium. Trajectory is recorded every 5.0 ps for further analysis. The GNR with the opening edge is prepared by cutting the parallel sheet of block graphite. 3. Helical insertion of GNRs Direct simulations in Figure 1(a) show the self‐assembly of six GNRs into the fixed SWCNT. The length of SWCNTs is 98.38Å and six GNRs have the same size of 5.681Å in width and 147.600Å in length. When one end of the GNR is captured by the SWCNT, the GNR adheres onto the tube wall parallel and moves towards the tube. At the beginning, six GNRs fill into the cavity of SWCNT synchronously and spontaneously under the action of van der Waals coupling. When the simulation time is up to 2.3 ns, a clear and symmetrical multiple helical configuration with uniform pitch is formed in SWCNT, like an upgrade of the double helix of DNA [34] or the triple helix of collagen [35] in biology, suggesting nature's preference for helical structure. While the processes of encapsulating and spiralling are terminated, no more axial movement of the helical GNRs has been observed due to the van der Waals potential well, but rotation is continued in their circumferential direction, resulting the GNR tails out‐ side SWCNT keeps a new subtle spiral morphology by movement inertia. In addition, for the helical GNRs in SWCNT, the essential corrugation [36] is suppressed by the enhanced interaction between GNRs and SWCNT, inspiring an efficient way to straighten the twisted and corrugated GNRs. The filling snapshots of six GNRs into the unfixed SWCNT are estab‐ lished in Figure 1(b) where a slight deformation of carbon nanotube appears followed by the formation of a perfect single helix of GNRs at 0.95 ns. The unfixed SWCNT‐GNR system takes shorter time to attain equilibrium, demonstrating that the deformation and movement of carbon nanotubes do not hinder the self‐assembly of GNRs, but improve their filling speed. To further research the helical configuration of the multiple GNRs self‐assembled into SWCNT, different numbers of annular and multilayer GNRs filling into SWCNT are shown inFigure 2. For convenience, a new and canonical definition for a( 1, a2…ai…aN) and [a1, a2…ai…aN] is set, where ai means the number of GNRs in i‐layer and parentheses and square brackets refer to the simulated model and result, respectively. Figure 2 illustrates that different numbers of GNRs can 234 Graphene Materials - Structure, Properties and Modifications self‐assemble into SWCNTs to form different layers of helical structures. As shown inFigure 2(a), seven GNRs self‐assemble and form a monolayer helical configuration in SWCNT, while for the system of eight GNRs, a GNR deviates from the first helix into the second one inFigure 2(b), sug‐ gesting that there is a quantity threshold for every GNR helix. The helical angle of inner GNRs is easily affected by the outer one to ensure the maximum overlap between GNRs in different heli‐ ces when few GNRs in the inner helix are located, as the royal blue GNR in Figure 2(b).
Recommended publications
  • Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bondings Arxiv:1702.02031V2 [Physics.Chem-Ph] 13
    Geometric and electronic properties of graphene-related systems: Chemical bondings Ngoc Thanh Thuy Trana, Shih-Yang Lina;∗, Chiun-Yan Lina, Ming-Fa Lina;∗ aDepartment of Physics, National Cheng Kung University, Tainan 701, Taiwan February 14, 2017 Abstract This work presents a systematic review of the feature-rich essential properties in graphene-related systems using the first-principles method. The geometric and electronic properties are greatly diversified by the number of layers, the stacking con- figurations, the sliding-created configuration transformation, the rippled structures, and the distinct adatom adsorptions. The top-site adsorptions can induce the signif- icantly buckled structures, especially for hydrogen and fluorine adatoms. The elec- tronic structures consist of the carbon-, adatom- and (carbon, adatom)-dominated energy bands. There exist the linear, parabolic, partially flat, sombrero-shaped and oscillatory band, accompanied with various kinds of critical points. The semi-metallic or semiconducting behaviors of graphene systems are dramatically changed by the multi- or single-orbital chemical bondings between carbons and adatoms. Graphene oxides and hydrogenated graphenes possess the tunable energy gaps. Fluorinated graphenes might be semiconductors or hole-doped metals, while other halogenated systems belong to the latter. Alkali- and Al-doped graphenes exhibit the high-density free electrons in the preserved Dirac cones. The ferromagnetic spin configuration is revealed in hydrogenated and halogenated graphenes under certain distributions. Specifically, Bi nano-structures are formed by the interactions between monolayer arXiv:1702.02031v2 [physics.chem-ph] 13 Feb 2017 graphene and buffer layer. Structure- and adatom-enriched essential properties are compared with the measured results, and potential applications are also discussed.
    [Show full text]
  • (Title of the Thesis)*
    Rationally Engineering Porous Carbon-Based Metal Nanocomposites for Efficient and Durable Electrocatalysis Applications by Zhen Zhang A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Chemical Engineering Waterloo, Ontario, Canada, 2021 © Zhen Zhang 2021 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote. External Examiner Dr. Feng Jiao Associate Professor Supervisor Dr. Zhongwei Chen Professor Internal Member Dr. Ali Elkamel Professor Internal Member Dr. Jeff Gostick Associate Professor Internal-external Member Dr. Zhongchao (Chao) Tan Professor ii Author’s Declaration This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Statement of Contributions The body of this thesis is based upon a combination of published works. Various chapters are adapted from the following list of publications. Chapter 2 of this thesis consist of a review paper that was co-authored by myself, my supervisor, Dr. Zachary Paul Cano, Dr. Dan Luo, Dr. Haozhen Dou, Dr. Aiping Yu. I am the first author of this paper. I conceptualized study design, and performed data collection and manuscript writing. My coauthors reviewed the manuscript and provided feedback on draft manuscript. “Rational Design of Tailored Porous Carbon-Based Materials for CO2 Capture”, Journal of Materials Chemistry A, 2019, 7 (37), 20985-21003.
    [Show full text]
  • Formation of Carbon Nanoscrolls from Graphene Sheet: a Molecular Dynamics Study
    Journal of Molecular Structure 1125 (2016) 282e287 Contents lists available at ScienceDirect Journal of Molecular Structure journal homepage: http://www.elsevier.com/locate/molstruc Formation of carbon nanoscrolls from graphene sheet: A molecular dynamics study * Danhui Zhang a, b, , Houbo Yang a a College of Mechanical Engineering, Linyi University, Linyi 276005, China b Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China article info abstract Article history: In recent year, carbon nanoscrolls have attracted intensive attention both in theory and experiments for Received 19 May 2016 their unique and excellent fundamental properties and the wide range of potential applications. In this Received in revised form paper, the fabrication of carbon nanoscrolls using graphene and carbon nanotubes has been studied by 26 June 2016 molecular dynamics (MD) method. The formation mechanism of carbon nanoscrolls has been presented Accepted 29 June 2016 convincing explanations. Furthermore, the position and number of carbon nanotubes also influence the Available online 1 July 2016 formation of carbon nanoscrolls. Our theoretical results will provide researchers a powerful guide and helpful assistance in designing better targeted programs in experiments. Keywords: © Graphehe 2016 Elsevier B.V. All rights reserved. Carbon nanoscroll Molecular dynamics Carbon nanotubes 1. Introduction nanopharmacology, nanobiology and nanofluidic manipulation. In order to fabricate the carbon nanostructures, using forced-field- Graphene(GN), a new two-dimensional thin film material and based molecular dynamics simulations, we proposed a feasible firstly exfoliated from the bulk graphite, has received intensive method to obtain the carbon nanostructures through self-scrolling attention due to its unique electrical and mechanical properties [1].
    [Show full text]
  • Nanoparticle Catalytic Enhancement of Carbon Dioxide Reforming of Methane for Hydrogen Production Nicholas Groden
    Louisiana Tech University Louisiana Tech Digital Commons Doctoral Dissertations Graduate School Fall 11-17-2018 Nanoparticle Catalytic Enhancement of Carbon Dioxide Reforming of Methane for Hydrogen Production Nicholas Groden Follow this and additional works at: https://digitalcommons.latech.edu/dissertations Part of the Nanoscience and Nanotechnology Commons, Other Chemical Engineering Commons, and the Other Materials Science and Engineering Commons Recommended Citation Groden, Nicholas, "" (2018). Dissertation. 3. https://digitalcommons.latech.edu/dissertations/3 This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. NANOPARTICLE CATALYTIC ENHANCEMENT OF CARBON DIOXIDE REFORMING OF METHANE FOR HYDROGEN PRODUCTION by Nicholas Groden, M.S., B.S. A Dissertation Presented in Partial Fulfillment of the Requirements of the Degree Doctor of Philosophy COLLEGE OF ENGINEERING AND SCIENCE LOUISIANA TECH UNIVERSITY November 2018 LOUISIANA TECH UNIVERSITY THE GRADUATE SCHOOL JUNE 16, 2018 Date We hereby recommend that the dissertation prepared under our supervision by xxxxxxxxxxxxxxx Nicholas Groden, M.S., B.S. entitled Nanoparticle Catalytic Enhancement of Carbon Dioxide Reforming of Carbon Dioxide Reforming of Methane for Hydrogen Production be accepted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Engineering Micro and Nanoscale Systems Supervisor of Dissertation Research Head of Department Department Recommendation concurred in: _____________________________ _____________________________ Advisory Committee _____________________________ _____________________________ Approved: Approved: __________________________________ ______________________________ Director of Graduate Studies Dean of the Graduate School __________________________________ Dean of the College GS Form 13 (8/10) ABSTRACT The U.S.
    [Show full text]
  • Carbon Nanostructures Produced by Liquid Phase Exfoliation of Graphite in the Presence of Small Organic Molecules
    Mesoporous Biomater. 2016; 3:76–82 Research Article Open Access Jesús I. Tapia and Mildred Quintana* Carbon Nanostructures Produced by Liquid Phase Exfoliation of Graphite in the Presence of Small Organic Molecules DOI 10.1515/mesbi-2016-0010 namely diamond, graphite, amorphous carbon and nanos- Received June 23, 2016; revised October 19, 2016; accepted Novem- tructures such as fullerenes, carbon nanotubes (CNTs) ber 12, 2016 and graphene [1]. During recent years, the production Abstract: We report on the formation of different car- of graphene by micromechanical cleavage [2] has trig- bon nanostructures by ultrasonication of graphite in DMF gered enormous experimental activity demonstrating that upon the addition of 3 different small molecules: fer- graphene monolayers possesses novel structural, [3] elec- rocene carboxylic acid, dimethylamino methyl-ferrocene, trical [4] and mechanical [5] properties. Additionally, and benzyl aldehyde. Our results confirm that acous- graphene is a 2D building material for other carbon tic cavitation in organic solvents generates free radi- nanostructures of all dimensionalities. Graphene can be cals which enable or are involved in secondary reac- wrapped up into 0D buckyballs, rolled into 1D nanotubes tions. During the ultrasonication process, the addition of or stacked into 3D graphite crystals [6]. For example, in small molecules induces the formation of different car- situ transmission electron microscopy (TEM) experiments bon nanostructures mainly depending on the chemical na- demonstrated the direct
    [Show full text]
  • Photocatalytic Properties of Pbs/Graphene Oxide/Polyaniline Electrode for Hydrogen Generation Received: 28 July 2017 Mohamed Shaban1, Mohamed Rabia1,2, Asmaa M
    www.nature.com/scientificreports OPEN Photocatalytic properties of PbS/graphene oxide/polyaniline electrode for hydrogen generation Received: 28 July 2017 Mohamed Shaban1, Mohamed Rabia1,2, Asmaa M. Abd El-Sayed1, Aya Ahmed1 & Somaya Sayed1 Accepted: 12 October 2017 In this work, roll-graphene oxide (Ro-GO), polyaniline (PANI) nano/microparticles, and PbS Published: xx xx xxxx nanoparticles were prepared by modifed Hammer, oxidative polymerization, and chemical bath deposition methods, respectively. These nano/microstructures were characterized, optimized, and designed to form PbS/Ro-GO/PANI nano/microcomposite. Also, the ratios of PbS and Ro-GO were optimized, and the optimized composition of the used composite was 0.4 g PANI, 0.125 g Ro-GO, and 0.075 g PbS. The band gap values for PANI, PbS, Ro-GO, and PbS/Ro-GO/PANI rocomposite were 3, 1.13, 2.86, (1.16, 2) eV, respectively. Two photoelectrode assemblies, Au/PbS/Ro-GO/PANI and PbS/ Ro-GO/PANI/ITO/glass were used for the photoelectrochemical (PEC) hydrogen generation. In the frst assembly 45 nm- Au layer was sputtered on the surface of a disk of PbS/Ro-GO/PANI composite. For the second assembly, a disk of PbS/Ro-GO/PANI composite was glued on ITO glass using Ag-THF paste. The lifetime efciency values were 64.2 and 43.4% for the frst and second electrode for 2 h, respectively. Finally, the incident photon-to-current conversion efciency (IPCE) and photon-to-current efciency (ABPE) were calculated under monochromatic illumination conditions. The optimum IPCE efciency at 390 nm was 9.4% and 16.17%, whereas ABPE % efciency was 1.01% and 1.75% for Au/PbS/Ro-GO/ PANI and PbS/Ro-GO/PANI/ITO/glass, respectively.
    [Show full text]
  • Carbon Nanotube
    Carbon nanotube Carbon nanotubes (CNTs) are allotropes of carbon with a cylindrical nanostructure. These cylindrical carbon molecules have unusual properties, which are valuable for nanotechnology, electronics, optics, and other fields of materials science and technology. Owing to the material's exceptional strength and stiffness, nanotubes have been constructed with a length-to-diameter ratio of up to 132,000,000:1,[1] significantly larger than that for any other material. In addition, owing to their extraordinary thermal conductivity and mechanical and electrical properties, carbon nanotubes find applications as additives to various structural materials. For instance, nanotubes form a tiny portion of the material(s) in some (primarily carbon fiber) baseball bats, golf clubs, car parts, or damascus steel.[2][3] Nanotubes are members of the fullerene structural family. Their name is derived Rotating single-walled zigzag carbon nanotube from their long, hollow structure with the walls formed by one-atom-thick sheets of carbon, called graphene. These sheets are rolled at specific and discrete ("chiral") angles, and the combination of the rolling angle and radius decides the nanotube properties, for example, whether the individual nanotube shell is a metal or semiconductor. Nanotubes are categorized as single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs). Individual nanotubes naturally align themselves into "ropes" held together by van der Waals forces, more specifically, pi-stacking. Applied quantum chemistry, specifically orbital hybridization, best describes the chemical bonding in nanotubes. The chemical bonding of nanotubes involves entirely sp2-hybrid carbon atoms. These bonds, which are similar to those of graphite and stronger than those found in alkanes and diamond (which employ sp3-hybrid carbon atoms), provide nanotubes their unique strength.
    [Show full text]
  • High Yield Solvothermal Synthesis of Hexaniobate Based Nanocomposites Via the Capture of Preformed Nanoparticles in Scrolled Nanosheets
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Fall 12-20-2013 High Yield Solvothermal Synthesis of Hexaniobate Based Nanocomposites via the Capture of Preformed Nanoparticles in Scrolled Nanosheets Shivaprasad Reddy Adireddy University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Inorganic Chemistry Commons, and the Materials Chemistry Commons Recommended Citation Adireddy, Shivaprasad Reddy, "High Yield Solvothermal Synthesis of Hexaniobate Based Nanocomposites via the Capture of Preformed Nanoparticles in Scrolled Nanosheets" (2013). University of New Orleans Theses and Dissertations. 1726. https://scholarworks.uno.edu/td/1726 This Dissertation-Restricted is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Dissertation-Restricted in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. High Yield Solvothermal Synthesis of Hexaniobate Based Nanocomposites via the Capture of Preformed Nanoparticles in Scrolled Nanosheets A Dissertation Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry By Shivaprasad Reddy Adireddy B.S.
    [Show full text]
  • Preparation, Characterization and Applications of Functionalized Carbon Nano-Onions
    University of Kentucky UKnowledge Theses and Dissertations--Chemistry Chemistry 2013 PREPARATION, CHARACTERIZATION AND APPLICATIONS OF FUNCTIONALIZED CARBON NANO-ONIONS Mahendra K. Sreeramoju [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Sreeramoju, Mahendra K., "PREPARATION, CHARACTERIZATION AND APPLICATIONS OF FUNCTIONALIZED CARBON NANO-ONIONS" (2013). Theses and Dissertations--Chemistry. 20. https://uknowledge.uky.edu/chemistry_etds/20 This Doctoral Dissertation is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Chemistry by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained and attached hereto needed written permission statements(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine). I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless a preapproved embargo applies. I retain all other ownership rights to the copyright of my work.
    [Show full text]
  • University of California Riverside
    UNIVERSITY OF CALIFORNIA RIVERSIDE Graphene and its Hybrid Nanostructures for Nanoelectronics and Energy Applications A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering by Jian Lin June 2011 Dissertation Committee: Dr. Cengiz S. Ozkan, Chairperson Dr. Mihrimah Ozkan Dr. Kambiz Vafai Copyright by Jian Lin 2011 The Dissertation of Jian Lin is approved: _____________________________________________________________ _____________________________________________________________ _____________________________________________________________ Committee Chairperson University of California, Riverside Acknowledgements I would like to express my most sincere gratitude to all those who provided me the support during my Ph.D. work. First of all, from the bottom of my heart, I would like to give my sincere appreciation to my research advisor Professor Cengiz Okzan and co-advisor Professor Mihrimah Ozkan for their guidance, encouragement and financial support throughout the whole course of my Ph.D. work. I genuinely appreciate their kindness of giving me the freedom of implementing the research projects that interested me the most. Their amiable personalities, support of cultural diversity, and their encouragement of independent and original ideas and work, have had a compelling influence on me on both academic and personal levels. Also, I would like to thank Professor Kambiz Vafai for serving as my committee member in both the qualify exam and Ph.D. defense. Also, I want to give my deepest thanks to Professor Roger Lake and Professor Guanshui Xu for their kindness to participate in my qualify exam committee, special thanks to Professor Roger Lake for his invaluable advice on my first journal paper. It is my honor to work with such wonderful colleagues under the comfortable and inspiring environment, thus I would like to acknowledge the former and current research members including Dr.
    [Show full text]
  • Electrochemical Interaction Between Graphite and Molten Salts to Produce Nanotubes, Nanoparticles, Graphene and Nanodiamonds
    Electrochemical interaction between graphite and molten salts to produce nanotubes, nanoparticles, graphene and nanodiamonds Ali Kamali and Derek Fray Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road Cambridge CB3 0FS Abstract The electrochemical interaction between graphite and molten salts to produce carbon nanostructures is reviewed. It is demonstrated that, depending on the conditions, it is possible to electrochemically convert graphite in molten salts to either carbon nanoparticles and nanotubes, metal filled carbon nanoparticles and nanotubes, graphene or nanodiamonds. The application of metal filled carbon nanotubes as anodes in lithium ion batteries is reviewed. Surprisingly, this method of preparation is relatively simple and very similar to the mass production of aluminium in molten sodium aluminium fluoride-alumina mixtures, which is performed economically on a tonnage scale, indicating that it may be possible to apply it for the production of novel carbon nanostructures. Introduction Molten salts and carbon have contrasting properties in that the former are liquids which conduct electricity mainly by the migration of ions whilst the latter is a solid and can either be an electronic conductor (carbon) or an insulator (diamond), 2- 2- depending on the phase. Carbon can exist in molten salts such as CO3 or C2 ions or combined with another element to form a gas, CO2 or a hydrocarbon and can also exist as an electrode in aqueous or molten salt electrolytes. In the solid state, the electrical conductivity of salts is low due to the lack of defects and the very low diffusion coefficients. On melting, there is usually a significant volume increase (25%) which indicates significant space in the liquid state and a high diffusion coefficient for the ions leading to a high ionic conductivity coupled with a small electronic conductivity.
    [Show full text]
  • Longitudinal Stiffness and Thermal Conductivity of Twisted Carbon Nanoribbons
    European Journal of Mechanics / A Solids 80 (2020) 103920 Contents lists available at ScienceDirect European Journal of Mechanics / A Solids journal homepage: http://www.elsevier.com/locate/ejmsol Longitudinal stiffness and thermal conductivity of twisted carbon nanoribbons A.V. Savin a, E.A. Korznikova b,c,*, A.M. Krivtsov d,e,**, S.V. Dmitriev b,f a N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Science (FRCCP RAS), Moscow, 119991, Russia b Institute for Metals Superplasticity Problems of RAS, 39 Khalturin St., Ufa 450001, Russia c Ufa State Aviation Technical University, 12 Karl Marx St., Ufa 450008, Russia d Peter the Great Saint Petersburg Polytechnical University, Polytechnicheskaya Street 29, Saint Petersburg, Russia e Institute for Problems in Mechanical Engineering RAS, Bolshoy pr. V.O. 61, Saint Petersburg, Russia f National Research Tomsk State University, 36 Lenin Prospekt, Tomsk 634050, Russia ABSTRACT The effect of graphene nanoribbon twist on its lateral buckling resistance to axial compression and on its thermal conductivity is analyzed with the help of molecular dynamics simulations. It is shown that the nanoribbon twisted by an angle close to π can withstand three times greater compressive force as compared to a flat nanoribbon. The explanation lies in the fact that such twist increases the effective area moment of inertia of the nanoribbon cross section. It is also found that the thermal conductivity coefficient of the nanoribbon increases monotonically up to 10% with increasing twist angle, in the regime of uniform twisting. This effect is due to the introduction of tensile strain in the twisted nanoribbon, which increases the contribution of the acoustic out-of plane (ZA) phonon modes to thermal conductivity.
    [Show full text]