Proquest Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

Proquest Dissertations The ecology and evolution of tachinid-host associations Item Type text; Dissertation-Reproduction (electronic) Authors Stireman, John Oscar Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 03/10/2021 23:55:09 Link to Item http://hdl.handle.net/10150/289745 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. ProQuest Information and Leaming 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0000 NOTE TO USERS This reproduction is the best copy available. UMI' THE ECOLOGY AND EVOLUTION OF TACHINID-HOST ASSOCIATIONS by John Oscar Stireman III A Dissertation Submitted to the Faculty of the DEPARTMENT OF ECOLOGY AND EVOLUTIONARY BIOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 200 1 UMI Number: 3010196 UMI ® UMI Microform 3010196 Copyright 2001 by Bell & Howell Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. Bell & Howell Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Final Examination Conmiittee, we certify that we have read the dissertation prepared by John Oscar Stireman III entitled Thp Frnlngy and F vn 1 r 111 nn nf Tarhirn'rl-Mngt Associations and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy ^ Date BAnviMpjAn. 4-lg-Q/ Date Date , , _^l(S/d ( \ 7 Date Date Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copy of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement. Dissertation Difector Datfe STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under the rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED 4 ACKNOWLEDGEMENTS I am grateful to the many people that contributed to my dissertation work in a wide variety of ways. I thank those who served on my committee over the course of my graduate study: Nancy Moran, Dan Papaj, Judie Bronstein, David Maddison, Molly Hunter, and Bob Smith. All have generously provided expertise in their respective areas that vastly improved the quality of the studies contained in this dissertation. I would like to make special note of the contribution of Dan Papaj to the behavioral studies I conducted and David Maddison to the phylogenetic study. Without their expertise, these projects would not have been possible. I would especially like to thank my advisor Dr. Nancy Moran for serving as my advisor despite our rather divergent interests, generously providing laboratory space and facilities, and critically evaluating my dissertation work. I am also indebted to Dr. Elizabeth Bemays for her encouragement and counseling regarding many of the studies contained herein. Mike Singer has profoundly influenced all the studies in this dissertation due to our extensive discussions of the interactions between parasitoids and their hosts, his collaboration on several of the projects described in this dissertation, and his gracious donations of advice and assistance. He also provided an excellent field companion given his vast knowledge of natural history. Matt Kaplan was also invaluable in generously providing time and expertise in order to teach me how to collect and analyze molecular sequence data. He, along with the other "Varones" (Harold Greeney, Caleb Gordon) made my graduate career one of the most interesting and exhilarating times of my life. I would like to thank many other students and post-docs who contributed to my dissertation and graduate study including: The Moran lab (Patrick Abbot, Dan Funk, Helen Dunbar, Jay Withgott, Alex Mira, Apama Telang, Barry Sullender), EEB graduate students/post-docs (Marshall Hedin, Jen Weeks, Gita Bodner, Eileen Hebets), and Entomology graduate students (Kevin Moulton, Dan Hahn, Matt Johnston, John Hoekstra, Jun Isoe, Barret Klein, Karen Ober). I would also like to thank several professors and University staff that have provided their time and/or expertise including; Yves Carriere, Carl Olson, Reg Chapman, John Jaenicke, and Hayward Spangler. Several students, amateur naturalists, and biologists have helped with field work and/or provided data, information, and identifications concerning Lepidoptera and/or tachinids including: Jim O'Hara, Monty Wood, Bruce Walsh, Ray Nagle, Jim Tuttle, Jim Brock, Nate Hubert, Patrick Phoebus, and Sucheta Katakkar. Finally, I would like to acknowledge my family for their enormous support. My wife. Shannon and my son, Aaron, have graciously put up with me and supported me through this long process, and my mother, Dianne, has always encouraged me to pursue my interests. I am greatly thankful to my father, John Stireman jr., for encouraging my interest in ecology, evolution, and entomology, and for helping me develop the ability to think critically. 5 TABLE OF CONTENTS ABSTRACT 7 1 INTRODUCTION 9 2 PRESENT STUDY 21 REFERENCES 27 A MULTI-SCALE SPATIAL AND TEMPORAL VARIATION IN THE PARASITOID COMMUNITY OF AN EXOPHYTIC POLYPHAGOUS CATERPILLAR 32 B HOST SELECTION CUES IN A GENERALIST TACHINID PARASITOID; THE IMPORTANCE OF HOST MOVEMENT 79 C LEARNING IN A GENERALIST TACHINID PARASITOID 119 D PHYLOGENETIC RELATIONSHIPS OF TACHINID FLIES IN THE SUBFAMILY EXORISTINAE (TACHINIDAE: DIPTERA) BASED ON 28S RDNA AND EFla, AND ANALYSES OF HOST RELATED CHARACTER EVOLUTION 162 TABLE OF CONTENTS - Continued ECOLOGICAL AND EVOLUTIONARY DETERMINANTS OF TACHINID SPECIES RICHNESS AND PARASITISM RATES IN A COMMUNITY OF MACROLEPIDOPTERA 253 DETERMINANTS OF HOST USE BY A TACHINID PARASITOID COMMUNITY 315 7 ABSTRACT The Tachinidae is a taxonomically and ecologically diverse clade of parasitoids for which evolutionary and ecological relationships with hosts are largely unknown. Here, I employed a multidisciplinary approach to evaluate the determinants of patterns of host use in the Tachinidae. First, I examined spatio-temporal variation in the tachinid-dominated parasitoid assemblage of one lepidopteran species Grammia geneura. The parasitoid assemblage and parasitism rates varied dramatically among and within sampling sites, seasons, and years. I show that this variability may be a function of habitat-specific parasitism and indirect interactions between this host and other Macrolepidoptera through shared tachinid parasitoids. I then experimentally examined the host selection process in the tachinid Exorista mella. Host movement was an important elicitor of attack behavior. Flies also responded to odors associated with food plants of their host. Experienced flies attacked hosts more readily than did inexperienced flies. Based on these results, I proposed a host selection scenario for this tachinid species. E. mella also learned to associate colors with hosts and avoided deterrent models that they had experienced. However, I failed to find evidence for odor learning. Learning of host-associated cues by E. mella may allow this parasitoid to take advantage of abundant host populations and maintain host-searching efficiency in an unpredictable environment. To examine how host-associated characteristics evolved in the Tachinidae, I 8 reconstructed the evolutionary
Recommended publications
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • Tachinid Times Issue 29
    Walking in the Footsteps of American Frontiersman Daniel Boone The Tachinid Times Issue 29 Exploring Chile Curious case of Girschneria Kentucky tachinids Progress in Iran Tussling with New Zealand February 2016 Table of Contents ARTICLES Update on New Zealand Tachinidae 4 by F.-R. Schnitzler Teratological specimens and the curious case of Girschneria Townsend 7 by J.E. O’Hara Interim report on the project to study the tachinid fauna of Khuzestan, Iran 11 by E. Gilasian, J. Ziegler and M. Parchami-Araghi Tachinidae of the Red River Gorge area of eastern Kentucky 13 by J.E. O’Hara and J.O. Stireman III Landscape dynamics of tachinid parasitoids 18 by D.J. Inclán Tachinid collecting in temperate South America. 20 Expeditions of the World Tachinidae Project. Part III: Chile by J.O. Stireman III, J.E. O’Hara, P. Cerretti and D.J. Inclán 41 Tachinid Photo 42 Tachinid Bibliography 47 Mailing List 51 Original Cartoon 2 The Tachinid Times Issue 29, 2016 The Tachinid Times February 2016, Issue 29 INSTRUCTIONS TO AUTHORS Chief Editor JAMES E. O’HARA This newsletter accepts submissions on all aspects of tach- InDesign Editor SHANNON J. HENDERSON inid biology and systematics. It is intentionally maintained as a non-peer-reviewed publication so as not to relinquish its status as Staff JUST US a venue for those who wish to share information about tachinids in an informal medium. All submissions are subjected to careful ISSN 1925-3435 (Print) editing and some are (informally) reviewed if the content is thought to need another opinion. Some submissions are rejected because ISSN 1925-3443 (Online) they are poorly prepared, not well illustrated, or excruciatingly bor- ing.
    [Show full text]
  • Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States Author(S): Diego J
    Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States Author(s): Diego J. Inclan and John O. Stireman, III Source: Annals of the Entomological Society of America, 104(2):287-296. Published By: Entomological Society of America https://doi.org/10.1603/AN10047 URL: http://www.bioone.org/doi/full/10.1603/AN10047 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. CONSERVATION BIOLOGY AND BIODIVERSITY Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States 1 DIEGO J. INCLAN AND JOHN O. STIREMAN, III Department of Biological Sciences, 3640 Colonel Glenn Highway, 235A, BH, Wright State University, Dayton, OH 45435 Ann. Entomol. Soc. Am. 104(2): 287Ð296 (2011); DOI: 10.1603/AN10047 ABSTRACT Although tachinids are one of the most diverse families of Diptera and represent the largest group of nonhymenopteran parasitoids, their local diversity and distribution patterns of most species in the family are poorly known.
    [Show full text]
  • Géneros Goniini (Diptera: Tachinidae: Exoristiinae) De Cusco, Perú
    Volumen 36, Nº 1. Páginas 91-104 IDESIA (Chile) Enero, 2018 Géneros Goniini (Diptera: Tachinidae: Exoristiinae) de Cusco, Perú: clave, redescripciones y distribución Goniini genera (Diptera: Tachinidae: Exoristiinae) from Cusco, Perú: key, redescriptions and distribution Lizeth Paucar D.1, Christian R. González2, Erick Yábar L.1* RESUMEN Tachinidae es una de las familias de Diptera más diversificadas, y la más grande de Oestroidea, con más de 8.500 especies descritas en más de 1.500 géneros y distribuidas en todas las regiones zoogeográficas del planeta. Se reportan para Cusco seis géneros de Goniini (Diptera, Tachinidae): Araucosimus Aldrich, Chaetocnephalia Townsend, Chaetocraniopsis Townsend, Dolichocnephalia Townsend, Germariopsis Townsend y Gonia Meigen. Los géneros Chaetocnephalia, Chaetocraniopsis, Dolichocnephalia y Germariopsis se reportan por primera vez para Cusco y Araucosimus por primera vez para Perú. Se incluye una clave para los seis géneros estudiados. Palabras claves: taxonomía, Goniini, claves, Región Neotropical, Perú. ABSTRACT The family Tachinidae is one of the most diverse of all the insect families with more than 8,500 described species classified into more than 1,500 genera. Six genera of Goniini (Diptera, Tachinidae) are reported to Cusco: Araucosimus Aldrich, Chaetocnephalia Townsend, Chaetocraniopsis Townsend, Dolichocnephalia Townsend, Germariopsis Townsend y Gonia Meigen. The genus Araucosimus is cited for the first time to Peru. Genera Chaetocnephalia, Chaetocraniopsis, Dolichocnephalia, and Germariopsis are cited for the first time to Cusco. A key to the six genera is included. Key words: taxonomy, Goniini, keys, Neotropical Region, Perú. Introducción incluyendo desiertos, bosques, pasturas, montañas y tundra (Stireman et al., 2006). Los Tachinidae son un grupo de muscoideos En la Región Neotropical, la subfamilia caliptrados de la superfamilia Oestroidea, con Exoristinae, Goniinae sensu Guimaraes (1971), más de 8.500 especies clasificadas en un número comprende 21 tribus, una de las cuales es Goniini.
    [Show full text]
  • Scientific Notes 365
    Scientific Notes 365 FENNAH, R. G. 1942. The citrus pests investigation in the Windward and Leeward Is- lands, British West Indies 1937-1942. Agr. Advisory Dept., Imp. Coll. Tropical Agr. Trinidad, British West Indies. pp. 1-67. JONES, T. H. 1915. The sugar-cane weevil root-borer (Diaprepes sprengleri Linn.) In- sular Exp. Stn. (Rio Piedras, P. R.) Bull. 14: 1-9, 11. SCHROEDER, W. J. 1981. Attraction, mating, and oviposition behavior in field popula- tions of Diaprepes abbreviatus on citrus. Environ. Entomol. 10: 898-900. WOLCOTT, G. N. 1933. Otiorhynchids oviposit between paper. J. Econ. Entomol. 26: 1172. WOLCOTT, G. N. 1936. The life history of Diaprepes abbreviatus at Rio Piedras, Puerto Rico. J. Agr. Univ. Puerto Rico 20: 883-914. WOODRUFF, R. E. 1964. A Puerto Rican weevil new to the United States (Coleoptera: Curculionidae). Fla. Dept. Agr., Div. Plant Ind., Entomol. Circ. 30: 1-2. WOODRUFF, R. E. 1968. The present status of a West Indian weevil Diaprepes abbre- viatus (L.) in Florida (Coleoptera: Curculionidae). Fla. Dept. Agr., Div. Plant Ind., Entomol. Circ. 77: 1-4. ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ PARASITISM OF EASTERN LUBBER GRASSHOPPER BY ANISIA SEROTINA (DIPTERA: TACHINIDAE) IN FLORIDA MAGGIE A. LAMB, DANIEL J. OTTO AND DOUGLAS W. WHITMAN* Behavior, Ecology, Evolution, and Systematics Section Department of Biological Sciences, Illinois State University Normal, IL 61790-4120 The eastern lubber grasshopper, Romalea microptera Beauvois (= guttata; see Otte 1995) is a large romaleid grasshopper (adults = 2-12 g) that occurs sporadically throughout the southeastern USA, but in relatively high densities in the Everglades- Big Cypress area of south Florida (Rehn & Grant 1959, 1961).
    [Show full text]
  • Ohara\Catalogues\World Genera\Tach
    WORLD GENERA OF THE TACHINIDAE (DIPTERA) AND THEIR REGIONAL OCCURRENCE by James E. O’Hara1 23 February 2005 Version 1.0 ________________________ 1 Invertebrate Biodiversity, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, Canada, K1A 0C6. E-mail: [email protected]. TABLE OF CONTENTS Click on a page number to go to the page indicated Foreword ............................................................................................................................... 2 Biogeographic summary ....................................................................................................... 3 Acknowledgements ............................................................................................................... 3 Table of genera and their regional occurrence ...................................................................... 4 References ........................................................................................................................... 66 Select a letter to go directly to corresponding genus in list of world genera A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z FOREWORD The following table is a listing of the tachinid genera of the world with their regional occurrence. It was compiled from the generic names and distributions given in the most recent regional catalogues, as listed here, and brought up-to-date using information from subsequently published papers. Regional catalogues Nearctic Region O’Hara & Wood (2004) Neotropical
    [Show full text]
  • Phylogenetic Relationships of Tachinid Flies in Subfamily Exoristinae Tachinidae: Diptera) Based on 28S Rdna and Elongation Factor-1A
    Systematic Entomology *2002) 27,409±435 Phylogenetic relationships of tachinid flies in subfamily Exoristinae Tachinidae: Diptera) based on 28S rDNA and elongation factor-1a JOHN O. STIREMAN III Department of Ecology and Evolutionary Biology,University of Arizona,Tucson,U.S.A. Abstract. The phylogenetic relationships within the largest subfamily of Tachi- nidae,Exoristinae,were explored using nucleotide sequences of two genes *EF-1 a and 28S rDNA). A total of fifty-five and forty-three taxa were represented in the analyses for each gene,respectively,representing forty-three genera. Neighbour joining,parsimony and maximum likelihood inference methods were employed to reconstruct phylogenetic relationships in separate analyses of each gene,and parsimony was used to analyse the combined dataset. Although certain taxa were highly mobile,phylogenetic reconstructions generally supported recent clas- sification schemes based on reproductive habits and genitalia. Generally,the monophyly of Tachinidae and Exoristinae was supported. Tribes Winthemiini, Exoristini and Blondeliini were repeatedly constructed as monophyletic groups, with the former two clades often occupying a basal position among Exoristinae. Goniini and Eryciini generally clustered together as a derived clade within Exoristinae; however,they were never reconstructed as two distinct clades. These results suggest that the possession of unembryonated eggs is plesiomorphic within the subfamily and that there may have been multiple transitions between micro- type and macrotype egg forms. Introduction 1987; Williams et al.,1990; Eggleton & Belshaw,1993), and the wide variety of mechanisms by which they attack Tachinidae is generally regarded as a relatively recent, them *O'Hara,1985). These oviposition strategies include actively radiating clade of parasitic flies *Crosskey,1976).
    [Show full text]
  • Natural Distribution of Parasitoids of Larvae of the Fall Armyworm, <I
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2009 Natural distribution of parasitoids of larvae of the fall armyworm, Spodoptera frugiperda, in Argentina M Gabriela Murua Estación Experimental Agroindustrial Obispo Colombres, CONICET Jamie Molina Ochoa Universidad de Colima, University of Nebraska-Lincoln Patricio Fidalgo CRILAR Follow this and additional works at: http://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Murua, M Gabriela; Ochoa, Jamie Molina; and Fidalgo, Patricio, "Natural distribution of parasitoids of larvae of the fall armyworm, Spodoptera frugiperda, in Argentina" (2009). Faculty Publications: Department of Entomology. 384. http://digitalcommons.unl.edu/entomologyfacpub/384 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Journal of Insect Science: Vol. 9 | Article 20 Murúa et al. Natural distribution of parasitoids of larvae of the fall armyworm, Spodoptera frugiperda, in Argentina M. Gabriela Murúaa,b, Jaime Molina-Ochoac,d and Patricio Fidalgoe aEstación Experimental Agroindustrial Obispo Colombres, Sección Zoología Agrícola, CC 9, Las Talitas (T4101XAC), Tucumán, Argentina bCONICET cUniversidad de Colima, Facultad de Ciencias Biológicas y Agropecuarias, Km. 40, autopista Colima-Manzanillo, Tecomán, Colima (28100), México dDepartment of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583-0816, USA eCRILAR (CONICET), entre Ríos y Mendoza s/n, Anillaco (5301), La Rioja, Argentina Abstract To develop a better understanding of the natural distribution of the fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), and to update the knowledge of the incidence of its complex of parasitoids.
    [Show full text]
  • Addenda to the Insect Fauna of Al-Baha Province, Kingdom of Saudi Arabia with Zoogeographical Notes Magdi S
    JOURNAL OF NATURAL HISTORY, 2016 VOL. 50, NOS. 19–20, 1209–1236 http://dx.doi.org/10.1080/00222933.2015.1103913 Addenda to the insect fauna of Al-Baha Province, Kingdom of Saudi Arabia with zoogeographical notes Magdi S. El-Hawagrya,c, Mostafa R. Sharafb, Hathal M. Al Dhaferb, Hassan H. Fadlb and Abdulrahman S. Aldawoodb aEntomology Department, Faculty of Science, Cairo University, Giza, Egypt; bPlant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia; cSurvey and Classification of Agricultural and Medical Insects in Al-Baha Province, Al-Baha University, Al-Baha, Saudi Arabia ABSTRACT ARTICLE HISTORY The first list of insects (Arthropoda: Hexapoda) of Al-Baha Received 1 April 2015 Province, Kingdom of Saudi Arabia (KSA) was published in 2013 Accepted 30 September 2015 and contained a total of 582 species. In the present study, 142 Online 9 December 2015 species belonging to 51 families and representing seven orders KEYWORDS are added to the fauna of Al-Baha Province, bringing the total Palaearctic; Afrotropical; number of species now recorded from the province to 724. The Eremic; insect species; reported species are assigned to recognized regional zoogeogra- Arabian Peninsula; Tihama; phical regions. Seventeen of the species are recorded for the first Al-Sarah; Al-Sarawat time for KSA, namely: Platypleura arabica Myers [Cicadidae, Mountains Hemiptera]; Cletomorpha sp.; Gonocerus juniperi Herrich-Schäffer [Coreidae, Hemiptera]; Coranus lateritius (Stål); Rhynocoris bipus- tulatus (Fieber) [Reduviidae, Hemiptera]; Cantacader iranicus Lis; Dictyla poecilla Drake & Hill [Tingidae, Hemiptera]; Mantispa scab- ricollis McLachlan [Mantispidae, Neuroptera]; Cerocoma schreberi Fabricius [Meloidae, Coleoptera]; Platypus parallelus (Fabricius) [Curculionidae, Coleoptera]; Zodion cinereum (Fabricius) [Conopidae, Diptera]; Ulidia ?ruficeps Becker [Ulidiidae, Diptera]; Atherigona reversura Villeneuve [Muscidae, Diptera]; Aplomya metallica (Wiedemann); Cylindromyia sp.
    [Show full text]
  • No Slide Title
    Tachinidae: The “other” parasitoids Diego Inclán University of Padova Outline • Briefly (re-) introduce parasitoids & the parasitoid lifestyle • Quick survey of dipteran parasitoids • Introduce you to tachinid flies • major groups • oviposition strategies • host associations • host range… • Discuss role of tachinids in biological control Parasite vs. parasitoid Parasite Life cycle of a parasitoid Alien (1979) Life cycle of a parasitoid Parasite vs. parasitoid Parasite Parasitoid does not kill the host kill its host Insects life cycles Life cycle of a parasitoid Some facts about parasitoids • Parasitoids are diverse (15-25% of all insect species) • Hosts of parasitoids = virtually all terrestrial insects • Parasitoids are among the dominant natural enemies of phytophagous insects (e.g., crop pests) • Offer model systems for understanding community structure, coevolution & evolutionary diversification Distribution/frequency of parasitoids among insect orders Primary groups of parasitoids Diptera (flies) ca. 20% of parasitoids Hymenoptera (wasps) ca. 70% of parasitoids Described Family Primary hosts Diptera parasitoid sp Sciomyzidae 200? Gastropods: (snails/slugs) Nemestrinidae 300 Orth.: Acrididae Bombyliidae 5000 primarily Hym., Col., Dip. Pipunculidae 1000 Hom.:Auchenorrycha Conopidae 800 Hym:Aculeata Lep., Orth., Hom., Col., Sarcophagidae 1250? Gastropoda + others Lep., Hym., Col., Hem., Tachinidae > 8500 Dip., + many others Pyrgotidae 350 Col:Scarabaeidae Acroceridae 500 Arach.:Aranea Hym., Dip., Col., Lep., Phoridae 400?? Isop.,Diplopoda
    [Show full text]
  • What Determines Host Range in Parasitoids? an Analysis of a Tachinid Parasitoid Community
    Oecologia (2003) 135:629–638 DOI 10.1007/s00442-003-1235-2 COMMUNITY ECOLOGY John O. Stireman · Michael S. Singer What determines host range in parasitoids? An analysis of a tachinid parasitoid community Received: 21 November 2002 / Accepted: 25 February 2003 / Published online: 9 April 2003 Springer-Verlag 2003 Abstract Despite the vast diversity of parasitic insects study suggest that ecological factors are important and their importance in natural and agricultural commu- determinants of host use in these parasitoids and although nities, our knowledge of what determines their patterns of phylogenetic history may influence the range of hosts association with hosts remains sparse. Unlike most used, its power to explain the ecological or taxonomic parasites that tend to be specialized, parasitoid flies in character of hosts used appears limited. the family Tachinidae exhibit a broad spectrum of host- specificity, with many species attacking a wide range of Keywords Specialization · Polyphagy · Ecological hosts. This variability in host-specificity makes them a determinant · Lepidoptera · Tachinidae useful model for examining the ecological and historical factors that determine host associations. We analyzed data collected from a 5-year rearing program of Lepidoptera in Introduction southern Arizona to investigate the factors that influence tachinid-host associations. After controlling for a strong Patterns of host use in parasitic insects have been the effect of sample size, a significant portion of the focus of an enormous amount of research by behavioral remaining variance in host range was explained by ecologists, evolutionary biologists, and community ecol- differences among phylogenetic groups of tachinids and/ ogists (Price 1980; Futuyma and Moreno 1988; Jaenicke or their correlated reproductive strategies.
    [Show full text]