Magisterarbeit
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Fact of Modern Mathematics: Geometry, Logic, and Concept Formation in Kant and Cassirer
THE FACT OF MODERN MATHEMATICS: GEOMETRY, LOGIC, AND CONCEPT FORMATION IN KANT AND CASSIRER by Jeremy Heis B.A., Michigan State University, 1999 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2007 UNIVERSITY OF PITTSBURGH COLLEGE OF ARTS AND SCIENCES This dissertation was presented by Jeremy Heis It was defended on September 5, 2007 and approved by Jeremy Avigad, Associate Professor, Philosophy, Carnegie Mellon University Stephen Engstrom, Associate Professor, Philosophy, University of Pittsburgh Anil Gupta, Distinguished Professor, Philosophy, University of Pittsburgh Kenneth Manders, Associate Professor, Philosophy, University of Pittsburgh Thomas Ricketts, Professor, Philosophy, University of Pittsburgh Dissertation Advisor: Mark Wilson, Professor, Philosophy, University of Pittsburgh ii Copyright © by Jeremy Heis 2007 iii THE FACT OF MODERN MATHEMATICS: GEOMETRY, LOGIC, AND CONCEPT FORMATION IN KANT AND CASSIRER Jeremy Heis, PhD University of Pittsburgh, 2007 It is now commonly accepted that any adequate history of late nineteenth and early twentieth century philosophy—and thus of the origins of analytic philosophy—must take seriously the role of Neo-Kantianism and Kant interpretation in the period. This dissertation is a contribution to our understanding of this interesting but poorly understood stage in the history of philosophy. Kant’s theory of the concepts, postulates, and proofs of geometry was informed by philosophical reflection on diagram-based geometry in the Greek synthetic tradition. However, even before the widespread acceptance of non-Euclidean geometry, the projective revolution in nineteenth century geometry eliminated diagrams from proofs and introduced “ideal” elements that could not be given a straightforward interpretation in empirical space. -
An Overview of Definitions and Their Relationships
INTERNATIONAL JOURNAL OF GEOMETRY Vol. 10 (2021), No. 2, 50 - 66 A SURVEY ON CONICS IN HISTORICAL CONTEXT: an overview of definitions and their relationships. DIRK KEPPENS and NELE KEPPENS1 Abstract. Conics are undoubtedly one of the most studied objects in ge- ometry. Throughout history different definitions have been given, depending on the context in which a conic is seen. Indeed, conics can be defined in many ways: as conic sections in three-dimensional space, as loci of points in the euclidean plane, as algebraic curves of the second degree, as geometrical configurations in (desarguesian or non-desarguesian) projective planes, ::: In this paper we give an overview of all these definitions and their interre- lationships (without proofs), starting with conic sections in ancient Greece and ending with ovals in modern times. 1. Introduction There is a vast amount of literature on conic sections, the majority of which is referring to the groundbreaking work of Apollonius. Some influen- tial books were e.g. [49], [13], [51], [6], [55], [59] and [26]. This paper is an attempt to bring together the variety of existing definitions for the notion of a conic and to give a comparative overview of all known results concerning their connections, scattered in the literature. The proofs of the relationships can be found in the references and are not repeated in this article. In the first section we consider the oldest definition for a conic, due to Apollonius, as the section of a plane with a cone. Thereafter we look at conics as loci of points in the euclidean plane and as algebraic curves of the second degree going back to Descartes and some of his contemporaries. -
The Rise of Projective Geometry II
The Rise of Projective Geometry II The Renaissance Artists Although isolated results from earlier periods are now considered as belonging to the subject of projective geometry, the fundamental ideas that form the core of this area stem from the work of artists during the Renaissance. Earlier art appears to us as being very stylized and flat. The Renaissance Artists Towards the end of the 13th century, early Renaissance artists began to attempt to portray situations in a more realistic way. One early technique is known as terraced perspective, where people in a group scene that are further in the back are drawn higher up than those in the front. Simone Martini: Majesty The Renaissance Artists As artists attempted to find better techniques to improve the realism of their work, the idea of vertical perspective was developed by the Italian school of artists (for example Duccio (1255-1318) and Giotto (1266-1337)). To create the sense of depth, parallel lines in the scene are represented by lines that meet in the centerline of the picture. Duccio's Last Supper The Renaissance Artists The modern system of focused perspective was discovered around 1425 by the sculptor and architect Brunelleschi (1377-1446), and formulated in a treatise a few years later by the painter and architect Leone Battista Alberti (1404-1472). The method was perfected by Leonardo da Vinci (1452 – 1519). The German artist Albrecht Dürer (1471 – 1528) introduced the term perspective (from the Latin verb meaning “to see through”) to describe this technique and illustrated it by a series of well- known woodcuts in his book Underweysung der Messung mit dem Zyrkel und Rychtsscheyed [Instruction on measuring with compass and straight edge] in 1525. -
Epipolar Geometry and the Fundamental Matrix
9 Epipolar Geometry and the Fundamental Matrix The epipolar geometry is the intrinsic projective geometry between two views. It is independent of scene structure, and only depends on the cameras’ internal parameters and relative pose. The fundamental matrix F encapsulates this intrinsic geometry. It is a 3 3 matrix ′ × of rank 2. If a point in 3-space X is imaged as x in the first view, and x in the second, then the image points satisfy the relation x′TFx =0. We will first describe epipolar geometry, and derive the fundamental matrix. The properties of the fundamental matrix are then elucidated, both for general motion of the camera between the views, and for several commonly occurring special motions. It is next shown that the cameras can be retrieved from F up to a projective transformation of 3-space. This result is the basis for the projective reconstruction theorem given in chapter 10. Finally, if the camera internal calibration is known, it is shown that the Eu- clidean motion of the cameras between views may be computed from the fundamental matrix up to a finite number of ambiguities. The fundamental matrix is independent of scene structure. However, it can be com- puted from correspondences of imaged scene points alone, without requiring knowl- edge of the cameras’ internal parameters or relative pose. This computation is de- scribed in chapter 11. 9.1 Epipolar geometry The epipolar geometry between two views is essentially the geometry of the inter- section of the image planes with the pencil of planes having the baseline as axis (the baseline is the line joining the camera centres). -
A Quadratic Mapping Related to Frégier's Theorem and Some
Journal for Geometry and Graphics Volume 25 (2021), No. 1, 127–137 A Quadratic Mapping Related to Frégier’s Theorem and Some Generalisations Gunter Weiß1, Pavel Pech2 1Technische Universität Dresden, Dresden, Germany, and Vienna University of Technology, Vienna, Austria [email protected] 2Faculty of Education, University of South Bohemia, Czech Republic [email protected] Abstract. We start with a special Steiner’s generation of a conic section based on a quadratic mapping, which is connected to a well-known theorem of Frégier. The paper generalises this construction of a conic to higher dimensions and to algebraic mappings of higher order. Key Words: conic section, Steiner’s generation, Frégier point, quadratic mapping MSC 2020: 51Mxx (primary), 51N15, 51N20, 51N35 1 Introduction: Frégier’s Involution The Theorem of Frégier (see for example [11]) states that, given a conic c in the Euclidean plane, all right angled triangles inscribed into c such that the vertex G at their right angle is fixed, have hypotenuses passing through one point, the Frégier point F of G with respect to c. With this theorem we connect an involutoric quadratic mapping φ, which is called “Frégier involution”, c.f. [10]. We put F to the origin of a Cartesian frame and G as unit point of the x-axis and use homogeneous coordinates, as ′ φ ′ ′ F = (1, 0, 0)R,G = (1, 1, 0)R,P = (1, p, q)R,P := P = (1, p , q )R. We must intersect line f = FP with a line g′ ⊥ g = GP through G (see Figure 1): q p − 1 p(p − 1) q(p − 1) f . -
Geometry; *Instruction; Junto: High Schools; *Mathematics Education; Reference Books; *Research Reviews (Publications); *Secondary School Mathematics; *Yearbooks
DOCUMENT RESUME ED 096 169 SE 016 469 AUTHOR Reeve, W. D., Fd. TITLE The Teaching of Mathematics in the Secondary School. National Council of Teachers of Mathematics, Yearbook 8 [1933]. INSTITUTION National Council of Teachers of Mathematics, Inc., Washington, D.C. NIB DATE 33 NOTE 271p. AVAILABLE FROU National Council of Teachers of Mathematics, Inc., 1906 Association Drive, Reston, Virginia 22091 ITRS PRICE MF-$0.75 HC Not Available from EDRS. PLUS POSTAGE DESCRIPTORS Articulation (Program) ;Course Content; curriculum; Effective Teaching; Geometry; *Instruction; Junto: High Schools; *Mathematics Education; Reference Books; *Research Reviews (Publications); *Secondary School Mathematics; *Yearbooks ABSTRACT The first of six chapters in this yearbook discusses articulation between junior and senior high school in terms of several specific content and topic areas. The following chapter is a selected review of research in mathematics education for the years 1915-1931. Investigations are categorized into one of nine areas and a 132-entry bibliography is included. The third chapter is devoted to a wide-ranging discussion of intuitive geometry. Chapter 4 suggests curriculum considerations for grades 7-12 with differentiation for varying ability levels. The next chapter presents the mathematics studied in German schools along with the methods, apparatus, and models used. Organization of a unit of instructioa is the topic of the last chapter, and a detailed example is given using direct linear variation as the subject. (LS) I ON %Cs D THE NATIONAL COUNCIL OF cl TEACHERS OF MATHEMATICS THE EIGHTH YEARBOOK THE TEACHING OF MATHEMATICS IN THE SECONDARY SCHOOL U S OE PANTME NT OF HEALTH VI NV `l) 4F PROOL/CttHIS EDUCATION WELFARE (.1 BY MICRO NATIONAL INSTITUTE OF 10. -
An Introduction to Projective Geometry
-Mi -- AN INTRODUCTION r to 2S( PROJECTIVE GEOMETRY BY *> -,c L; N. G. FILON, M.A., D.Sc. FELLOW AND LECTURER OF UNIVERSITY COLLEGE, LONDON EXAMINER IN MATHEMATICS TO THE UNIVERSITY OF LONDON LONDON EDWARD ARNOLD 41 & 43 MADDOX STREET, BOND STREET, W. [All rights reserved] <3A V7J F5V PREFACE object in writing the following pages lias been to supply the MYgrowing need of mathematical students in this country for a compact text-book giving the theory of Conic Sections on modern lines. During recent years increasing space has been allowed, in University syllabuses and courses of instruction, to the more powerful and general projective methods, as opposed to the more special methods of wdiat is still known as Geometrical Conies. The line of cleavage between the two has, however, been sharply maintained, with the result that the already much overworked mathe- matical student has to learn his theory of Conic Sections three times over: (1) analytically; (2) according to Euclidean methods; (3) according to Projective methods. The difficulty has been to reconcile the Euclidean and Projective of in fact to in the focal into definitions the curve ; bring properties Projective Geometry at a sufficiently early stage. The practice has usually been, in order to pass from the projective to the focal definitions, to introduce the theory of involution. But the latter requires for its fullest and clearest treatment the employment of imaginary elements. It seems undesirable that the more fundamental focal properties of the conies, e.g. the sum or difference of the focal distances and the angles made by these with the tangent and normal, should appear to depend upon properties of imaginary points and lines, even though this might introduce greater rapidity of treatment. -
Elements of Projective Geometry. Translated by Charles Leudesdorf
Handle with EXTREME CARE This volume is damaged or brittle and CANNOTbe repaired! • photocopy only if necessary • return to staff • do not put in bookdrop Gerstein Science Information Centre Digitized by tiie'lnternet Arciiive in 2007 witii funding from IVIicrosoft Corporation littp://www.archive.org/details/elementsofprojecOOcremuoft IB ELEMENTS OP PROJECTIVE GEOMETRY CREMONA HENRY FROWDE Oxford University Press Warehouse Amen Corner, E.C. v-^a ELEMENTS OF PROJECTIVE GEOMETRY LUIGI CREMONA LL.D. EDIN., rOE. MEMB. E. S. LOND., HON. F.E.S. EDIN. HON. MEMB. CAMB. PHIL. SOC. PEOFESSOE OF MATHEMATICS IN THE UNIVEESITY OF EOME TBANSLATED BY CHARLES LEUDESDORF, M.A. FELLOW OF PEMBROKE COLLEGE, OXFOED AT THE CLARENDON PRESS 1885 [ All rights reserved ] ^ 0(3 EIKTRONIC VERSION AVAILABLE ^j^ Nd._:i — AUTHOR'S PREFACE TO THE FIRST editio:n^*. Amplissima et pulcherrima scientia figurarum. At quam est inepte sortita nomen Geometrise ! —NicoD. Frischlinus, Dialog. I. Perspectivse methodus, qua nee inter inventas nee inter inventu possibiles ulla compendiosior esse videtur . —B. Pascal, Lit. ad Acad. Paris., 1654. Da veniam scriptis, quorum non gloria nobis Causa, sed utilitas ofiBciumque fuit.—OviD, e.r Pont., iii. 9. 55. This book is not intended for those whose high mission it is to advance the progress of science ; they would find in it nothing new, neither as regards principles, nor as regards methods. The propositions are all old ; in fact, not a few of them owe their origin to mathematicians of the most remote antiquity. They may be traced back to Euclid (285 B.C.), to Apollonius of Perga (247 B.C.), to Pappus of Alexandria (4th century after Christ); to Desargues of Lyons (1593-1662); to Pascal (1623-1662) ; to De la Hire (1640-1718); to Newton (1642-1 727) ; to Maclaurin (1698-1746); to J. -
On the Formal Description of Quadrilateral and Quadrangle Centers
On the formal description of Quadrilateral and Quadrangle Centers. A first start for a Quadri Catalogue. Chris van Tienhoven Abstract. In this paper a formal description is given of points occurring in a construction defined by 4 points and/or 4 lines. The notion of a Quadrigon is introduced. With this notion it is possible to define Centers and related objects depending on 4 points and/or 4 lines in an integrated and differentiated way. Several tools and examples are given. With these tools the road is free for a structured Catalogue of Quadri-Centers and Quadri-Objects. A first start is given. CONTENTS 1. INTRODUCTION 2. PRELIMINARIES 3. DEFINITION OF QUADRI-STRUCTURES Quadrigon Quadrilateral Quadrangle 4. DEFINITION OF QUADRI-CENTERS Levels of construction Determining the type of a Quadri-figure Definition of 3 types of Quadri Centers Algebraic description of Quadri Centers 5. QUADRANGLE OBJECTS 5.1 Quadrangles General Information QA/1: Systematics for describing QA-Points QA/2: List of QA-Lines QA/3: List of Parallel QA-Lines QA/4: List of Perpendicular QA-Lines QA/5: List of QA-Crosspoints QA/6: QA-Conversion CT -> DT-coordinates QA/7: QA-Conversion DT -> CT-coordinates 5.2 Quadrangle Centers QA-P1: QA-Centroid or Quadrangle Centroid QA-P2: Euler-Poncelet Point QA-P3: Gergonne-Steiner Point QA-P4: Isogonal Center QA-P5: Isotomic Center QA-P6: Parabola Axes Crosspoint QA-P7: QA-Nine-point Center Homothetic Center QA-P8: Midray Homothetic Center QA-P9: QA-Miquel Center QA-P10: Centroid of the QA-Diagonal Triangle QA-P11: Circumcenter -
Epipolar Geometry and the Fundamental Matrix
9 Epipolar Geometry and the Fundamental Matrix The epipolar geometry is the intrinsic projective geometry between two views. It is independent of scene structure, and only depends on the cameras’ internal parameters and relative pose. The fundamental matrix F encapsulates this intrinsic geometry. It is a 3 × 3 matrix of rank 2. If a point in 3-space X is imaged as x in the first view, and x in the second, then the image points satisfy the relation xTFx =0. We will first describe epipolar geometry, and derive the fundamental matrix. The properties of the fundamental matrix are then elucidated, both for general motion of the camera between the views, and for several commonly occurring special motions. It is next shown that the cameras can be retrieved from F up to a projective transformation of 3-space. This result is the basis for the projective reconstruction theorem given in chapter 10. Finally, if the camera internal calibration is known, it is shown that the Eu- clidean motion of the cameras between views may be computed from the fundamental matrix up to a finite number of ambiguities. The fundamental matrix is independent of scene structure. However, it can be com- puted from correspondences of imaged scene points alone, without requiring knowl- edge of the cameras’ internal parameters or relative pose. This computation is de- scribed in chapter 11. 9.1 Epipolar geometry The epipolar geometry between two views is essentially the geometry of the inter- section of the image planes with the pencil of planes having the baseline as axis (the baseline is the line joining the camera centres). -
Maria Alessandra Vaccaro Università Degli Studi Di Palermo
HISTORICAL ORIGINS OF THE NINE-POINT CONIC THE CONTRIBUTION OF EUGENIO BELTRAMI Maria Alessandra Vaccaro Università degli Studi di Palermo Abstract In this paper, we examine the evolution of a specific mathematical problem, i.e. the nine-point conic, a generalisation of the nine-point circle due to Steiner. We will follow this evolution from Steiner to the Neapolitan school (Trudi and Battaglini) and finally to the contribution of Beltrami that closed this journey, at least from a mathematical point of view (scholars of elementary geometry, in fact, will continue to resume the problem from the second half of the 19th to the beginning of the 20th century). We believe that such evolution may indicate the steady development of the mathematical methods from Euclidean metric to projective, and finally, with Beltrami, with the use of quadratic transformations. In this sense, the work of Beltrami appears similar to the recent (after the anticipations of Magnus and Steiner) results of Schiaparelli and Cremona. Moreover, Beltrami’s methods are closely related to the study of birational transformations, which in the same period were becoming one of the main topics of algebraic geometry. Finally, our work emphasises the role played by the nine-point conic problem in the studies of young Beltrami who, under Cremona’s guidance, was then developing his mathematical skills. To this end, we make considerable use of the unedited correspondence Beltrami – Cremona, preserved in the Istituto Mazziniano, Genoa. Mathematics Subject Classification 2010: 01A55, 51-03. Keywords: Nine-point conic, Eugenio Beltrami, quadratic transformations. Introduction As is well known, Eugenio Beltrami was appointed in October 1862 to the chair in Complementary Algebra and Analytical Geometry of the University of Bologna even before obtaining his bachelor’s degree.