Albert L. Tester Memorial Symposium 22-23 April 1976 the Social Use of Space in the Hawaiian Ghost Crab, Ocypode Ceratophthalmus

Total Page:16

File Type:pdf, Size:1020Kb

Albert L. Tester Memorial Symposium 22-23 April 1976 the Social Use of Space in the Hawaiian Ghost Crab, Ocypode Ceratophthalmus ABST RA CT S OF P AP ER S Albert L. Tester Memorial Symposium 22-23 April 1976 A symposium, intended to be an annual event, was held in honor of Albert L. Tester, who, at the time of his death, was Senior Professor of Zoology at the University of Hawaii and an active participant in th e affairs of the D epartment of Zoology in teaching formal courses, directing graduate stu dent research, and serving on committees of the D epartment. The faculty and students of the D epart­ ment of Zoology proposed an annual symposium of student research papers as a means of ho noring, in a continuing and active way, Tester's lively enco uragement of student research in a broad range of fields within marine biology. Papers reporting original research on any aspect of marine biology were solicited fro m students of the University of Hawaii.Income from contributions to the Albert L. Tester Memorial Fun d of the University of Hawaii Foun dation was used to pro­ vide two prizes, one for the best paper on fish or fisherie s biology, Tester's own field of special interest, and one for the best paper in any other area. Papers were jud ged by National Science Foundation Distinguished Visiting Scholar Arthur M. Myrberg, Professor, Rosensteil School of Marine and Atmospheric Science, Uni­ versity of Miami, and by D rs. Julie Brock, James Shaklee, and John Stimson from the D epartment of Zoology, Uni versity of Hawaii. Papers were judged on quality, originality, importance of the research reported, and on the quality of the public pres entation . Presentations honored with prizes were those of Paul At kins with D ennis Gorlick, in fish biology, and of Tina Weatherby. The Social Use of Space in the Hawaiian Ghost Crab, Ocypode ceratophthalmus FREDERICK J. L IGHTER I stud ied the spatial pattern and related social thespati al pattern of the population was rand om. behavior of the Hawaiian ghost crab, Oiypode Of the remaining threepopulations, two showed ceratophtha/mus, using nearest-neighb or and a pattern of agg regation and one showed a " mean crowding" techniques. Ana lyses were pattern of uniformity. made of 13 different natu ral populations, repre­ Both sex and age differences were present in senting a total of 901 individuals. D ensity burrowing behavior and burrow structure. measurements for these populations range from Juveniles of both sexes constructed two basic 0.48 to 1.01 crabs jrn-; " mean cro wding " esti­ patterns of burrow structu re: mature females mates range from 0.58 to 1.78 other indivi­ and mature nonreproductively active males duals/quadrat/individual. In 10 of the samples, constructed a similar structure and repro­ ductively active males constructed another. Behavioral differences in burrow defense and Abstracts presented in this symposium were written by social interactions were also observed. All crabs graduate students in the University of Hawaii Depart­ ment of Zoology, 2538 The Mall, Honolulu, Hawaii defended their burrows by using one or two 96822. defensive behaviors; a burrow inhabitant either 211 212 PACIFI C SCIENCE, Volume 30, July 1976 assumed a threat posture toward the intruder indicates that one male will prevent another and/or chased the intruder. However, repro­ from constructing a burrow within a radius of ductively active males utilized two additional 71 cm from his own burrow. When total popu­ defensive behaviors. Physical interactions with lation density rose above 0.6 crabs jm-, the male intruders took the form either of pushing with pattern of uniformity was lost, and the pattern folded chelae or of actual combat. became random. Behavioral evidence also Field measurements have demonstrated that indicated that, at population densities above reproductively active male O. ceratophthalmus this level, territorial defense ofa burrow is lost, show a uniform pattern ofspacing among them­ and agonistic behavior occurs in contexts selves when total population density is below which are not relate d to habitation and defense approximately 0.6 crabs jrn-, Behavioral eviden ce ofa burrow. Light Adaptation Strategies of Hermatypic Corals R AN D! R EDALJ E Hermatypic corals growing at low light in­ tionjcm- coral tissue increased with a decrease in tensities generally show flattened growth for ms, light. Cyphastrea showed a decrease in chloro­ low calcification rates, and deep pigmentation. phyll-e/cm'' at the lowest light level; L eptoseris These characteristics can be attributed to the did not show this decrease. There was no change physiologica l adaptations of their symbiotic in the numbers of zooxanthellae with light. zooxanthellae. The responses of zooxanthellae Chlorophyll-a/alga l cell increased with a de­ to a range of light intensities can be compared crease in light for both species except at the to the light responses of " sun-" and"shade-" lowest light level, where Cyphastrea showed a adapted phytoplankton, where a decrease in decline. These preliminary results indicate that lightintensity generally causes an increase in cell the zooxanthellae of Cyphastrea are adapted to chlorophyll-a content. T wo species of coral, higher light levels than are those of L eptoseris Cypbastrea ocellina, a shallow reef species, and and are unable to increase further their cell Leptoseris incrustans, a deeper reef species, were chlorophyll content at light levels lower than placed in four light treatments (10-, 20-, 40-, 20-percent surfa ce light. L eptoseris zooxan­ 6O-percent surface illumination) to investigate thellae wo uld be expected to . show a similar changes in pigment concentration and in decrease in cell chlorophyll content but at a numbers ofzooxanthellae with changes in light. lower light level than was used in thi s experi ­ For both species, chlorophyll-a concentra- ment. The Role of Relative Size in Competition for Shelter by Macrobrachium rosenbergii (Decapoda) JOHN B RAD PEEBLES Relative size has been reported to be an were made on the day of simultaneous intro­ important behavioral factor influencing dis­ duction, two, three, and six days after intro­ persal in a number of crustaceans. This factor duction. Behavioral interactions were recorded was studied by pairing two adult anima ls in only on the day of simultaneous introduction. elliptical tanks (diameter 1 = 137 cm, dia­ Position in space was recorded on all four meter 2 = 75 cm, water depth = 34 em). These observation periods. A total of 360 minutes of tanks offered no avenues ofemigration. A series observation was made for the 15 male pairs. of 15 male pairs was studied. Observations The results ofa partial correlation ofshelter use ·Abstracts of Papers 213 on relative differences in body length, body important roles in determining the outcome of weight, length of right chela, length of left competition for shelter in Macrobrachium rosen­ chela, and carap ace length, indicate tha t relative bergii. differences in chela length and body weig ht play Anatomy and Functional Morphology of Dermal Collagen Fibers in Sharks PHILIP J. M OTTA The dermis of sharks consists in part of a the majority of the angles lying from 50° to 70°. highly ordered array of collagen fibers . These Fibers lying within the latter range are believed fibers form layers of alternately oriented sheets to undergo minimum change in length during that runin helical paths aro und the shark's body. contraction and resultant thickening of the The fiber paths are oriented from dorsocranial lateral muscles that accompanies swimming; to ventrocaudal and from ventrocranial to therefore, the fibers imp ose minimum restric­ dorsocaudal. tion on the swimming shark . As many as 46 layers of thes e strong, only The fiber layers are believed to serve at least partly extensible collagen fibers are found in in part a mechanically protecti ve function and as adult Ging(ymostoma cirratum. In all sharks a firm and evenly dist ributed anchorage for the examined, these layers were closely and firmly body musculature. bound together by cross-over collagen fibrils Single layers of the more superficial collagen that joined alternate layers. fibers overlie the ceratotrichia of the caudal fin, The angle that the fibers make to the longi­ lending support to the flexible ceratotrichia and tudinal axis of the shark varies from 90° in the probably giving the fins additional support and occipital region to almost 0° in the caudal fin, rigidity. Fecundity as a Measure of Reproductive Investment in Marine Fishes S TEPHEN R AL STO N Fish fecundity data are most frequently fitted widely between species and may reflect dif­ to a power function where fecundity = a size fl. feren ces in the adaptation of species to their Given some information about total energy environment. intake, we see that estimates of the exponent(fl) Estimates offl allow us to infer that allocation can provide insights into th e manner in which of energy toward reproduction may increase available energy is allocated to growth, repro­ geo metrically with the size and weight of the ductive, and maintenance processes. individual. A simple model is presented that Fecundity exponents and their 9S-percent explores alternative ways in which these confidence intervals have been determined for a increases may arise in Chaetodon miliaris, a variety of H awaiian fishes. Estimates vary Hawaiian endemic butterflyfish. Comparative Ultrastructure of Intestinal Epithelia from a Freshwater Prawn and a Desert Scorpion W ILLIAM]. C OOKE The intestinal epithelia. of th e freshwater the ultrastructural level. The midg ut cells of the prawn Macrobracbito» rosenbergii and the desert prawnare similar in their shape and organization scorpion Hadrnrus arizonensis are compared on to generalized transporting epithelia. They are 214 PA CIFIC SCIENCE, Volume 30, July 1976 long columnarcells having manylong microvilli in some states of dehydration, the intestine is projecting into the lumen, a central or basal filled with precipitated guanine crystals.
Recommended publications
  • Who Are the Important Predators of Sea Turtle Nests at Wreck Rock Beach?
    Who are the important predators of sea turtle nests at Wreck Rock beach? Juan Lei and David T. Booth School of Biological Sciences, The University of Queensland, Brisbane, St. Lucia, Australia ABSTRACT Excessive sea turtle nest predation is a problem for conservation management of sea turtle populations. This study assessed predation on nests of the endangered loggerhead sea turtle (Caretta caretta) at Wreck Rock beach adjacent to Deepwater National Park in Southeast Queensland, Australia after a control program for feral foxes was instigated. The presence of predators on the nesting dune was evaluated by tracking plots (2 × 1 m) every 100 m along the dune front. There were 21 (2014–2015) and 41 (2015–2016) plots established along the dune, and these were monitored for predator tracks daily over three consecutive months in both nesting seasons. Predator activities at nests were also recorded by the presence of tracks on top of nests until hatchlings emerged. In addition, camera traps were set to record the predator activity around selected nests. The tracks of the fox (Vulpes vulpes) and goanna (Varanus spp) were found on tracking plots. Tracking plots, nest tracks and camera traps indicated goanna abundance varied strongly between years. Goannas were widely distributed along the beach and had a Passive Activity Index (PAI) (0.31 in 2014–2015 and 0.16 in 2015–2016) approximately seven times higher than that of foxes (PAI 0.04 in 2014–2015 and 0.02 in 2015–2016). Five hundred and twenty goanna nest visitation events were recorded by tracks but no fox tracks were found at turtle nests.
    [Show full text]
  • 17 the Crabs Belonging to the Grapsoidea Include a Lot Of
    17 SUPERFAMILY GRAPSOIDEA The crabs belonging to the Grapsoidea include a lot of ubiquitous species collected in the mangrove and/or along the coastline. As a result, most of the species listed here under the ‘Coastal Rock-rubble’ biotope of table 2b could be reasonably listed also with marine species. This is particularly true for the Grapsidae: Grapsus, Pachygrapsus, Pseudograpsus, and Thalassograpsus. FAMILY GECARCINIDAE Cardisoma carnifex (Herbst, 1796). Figure 12. – Cardisoma carnifex - Guinot, 1967: 289 (Checklist of WIO species, with mention of Grande Comore and Mayotte). - Bouchard, 2009: 6, 8, Mayotte, Malamani mangrove, 16 April 2008, St. 1, 12°55.337 S, 44°09.263 E, upper mangrove in shaded area, burrow, about 1.5 m depth, 1 male 61×74 mm (MNHN B32409). - KUW fieldwork November 2009, St. 6, Petite Terre, Badamiers spillway, upper littoral, 1 female 53×64 mm (MNHN B32410), 1 male 65×75.5 mm (MNHN B32411); St. 29, Ngouja hotel, Mboianatsa beach, in situ photographs only. Distribution. – Widespread in the IWP. Red Sea, Somalia, Kenya, Tanzania, Mozambique, South Africa, Europa, Madagascar, Comoros, Seychelles, Réunion, Mauritius, India, Taiwan, Japan, Australia, New Caledonia, Fiji, Wallis & Futuna, French Polynesia. Comment. – Gecarcinid land crabs are of large size and eaten in some places (West Indies, Wallis & Futuna, and French Polynesia). In Mayotte, however, they are not much prized for food and are not eaten. Figure 12. Cardisoma carnifex. Mayotte, KUW 2009 fieldwork: A) aspect of station 29, upper littoral Ngouja hotel, Mboianatsa beach; B) same, detail of a crab at the entrance of its burrow; C) St. 6, 1 female 53×64 mm (MNHN B32410); D) probably the same specimen, in situ at St.
    [Show full text]
  • Burrow Architectural Types of the Atlantic Ghost Crab, Ocypode Quadrata (Fabricius
    bioRxiv preprint doi: https://doi.org/10.1101/006098; this version posted July 25, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Burrow architectural types of the Atlantic ghost crab, Ocypode quadrata (Fabricius, 2 1787) (Brachyura: Ocypodidae), in Brazil 3 4 WILLIAN T. A. F. SILVA1,2, TEREZA C. S. CALADO1 5 6 1Integrated Laboratories of Marine and Natural Sciences (LabMar), Federal University of 7 Alagoas (UFAL), Avenida Aristeu de Andrade, 452, Farol, CEP 57051-090, Maceió, 8 Alagoas, Brazil. 9 2Current affiliation: Department of Evolutionary Biology (Ecology and Genetics), 10 Evolutionary Biology Center (EBC), Uppsala University, Uppsala, Sweden. 11 Corresponding author: WTAFS, [email protected] 12 13 Running title: Shapes of ghost crab burrows 14 15 Abstract: A broad range of aspects from paleontology to physiology of the ghost crabs 16 Ocypode quadrata have been studied worldwide. These crabs have been used as ecological 17 indicators of the levels of anthropogenic impacts on sandy beaches. Our aim is to report the 18 variety of burrow architecture types constructed by ghost crabs Ocypode quadrata on 19 beaches of Maceió, Brazil. We found 20 types of burrows that differ in shape (number of 20 axes, number of openings, orientation of blind end, number of branches). The slash-shaped 21 burrows (type C) were the most frequent shape, followed by types K (spiral) and E (Y- 22 shaped).
    [Show full text]
  • How Do Goannas Find Sea Turtle Nests?
    1 How do goannas find sea turtle nests? 2 Juan Lei 1,* and David T. Booth1 3 1 School of Biological Science, The University of Queensland, Brisbane, St. Lucia, QLD 4072, 4 Australia 5 * Corresponding author. Email: [email protected] 6 Phone: 0411565518 7 Address: School of Biological Science, The University of Queensland, Brisbane, St. Lucia, 8 QLD 4072, Australia 9 10 Acknowledgements 11 This work was supported by a grant from the Nest to Oceans Turtle Protection Program, a 12 program jointly funded by the Australian and Queensland Governments and would not have 13 been possible without the help of Nev and Bev McLachlan’s Turtle Care Volunteers 14 organization, the Burnett Mary Regional Group and WWF Australia. All work was approved 15 by a University of Queensland Animal Ethics Committee (permit #SBS/352/EHP/URG) and 16 conducted under Queensland Government scientific permit # WITK15315614. Author Manuscript This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/AEC.12568 This article is protected by copyright. All rights reserved 1 2 MR. JUAN LEI (Orcid ID : 0000-0002-4324-7500) 3 4 5 Article type : Original Article 6 7 8 How do goannas find sea turtle nests? 9 10 Abstract 11 Squamate reptiles rely heavily on visual and chemical cues to detect their prey, so we 12 expected yellow spotted goannas (Varanus panoptes) which are predators of sea turtle nests 13 on mainland beaches in northern Australia would use these cues to find sea turtle nests.
    [Show full text]
  • Population Structure of the Grapsid Crab, Helice Tridens Latimera (PARISI) in the Taiho Mangrove, Okinawa, Japan
    Bangladesh]. Fish. Res., 5(2), 2001: 201-204 Short Note Population structure of the grapsid crab, Helice tridens latimera (PARISI) in the Taiho mangrove, Okinawa, Japan M.Y. Mia*, S. Shokita and N. Shikatani Department of Chemistry, Biology and Marine Science, University of the Ryukyus, I Senbaru, Nishihara-cho, Okinawa 903-0129, Japan *Corresponding and present address: Bangladesh Fisheries Research Institute, Mymensingh 2201, Bangladesh Abstract Grapsid crab Helice tridens latimera inhabiting mangroves, seashores as well as muddy and rocky areas. Ovigerous females were observed from December to May. Juveniles appeared in July and from December to April. In the laboratory they reached 9.50 mm in carapace width 4 months after hatching. It is likely that spawning of this crab occurs throughout the year. Key words: Helice tridens latimera, Spawning, Juvenile Helice tridens latimera PARISI, 1918 has so far been found in eastern Asia along the coasts of Japan, Taiwan and China (Miyake 1983, Dai and Yang 1991). This crab is common and dominant in Okinawan mangals. So far, no study has been carried out on this crab's population structure and reproductive cycle, but information exists on its larval development (Mia and Shokita 1997). The present study is a part of experiment aimed to assess the population structure of H. t. latimera including its breeding season, natural growth rates, abundance, and functional role in the shallow water community of the estuary of the Taiho River on Okinawa Island. A population census of Helice tridens latimera was carried out monthly from May 1995 to April 1996 in the estuary of the Taiho River.
    [Show full text]
  • Human Threats to Sandy Beaches – a Meta-Analysis of Ghost Crabs
    Estuarine, Coastal and Shelf Science 169 (2016) 56e73 Contents lists available at ScienceDirect Estuarine, Coastal and Shelf Science journal homepage: www.elsevier.com/locate/ecss Human threats to sandy beaches: A meta-analysis of ghost crabs illustrates global anthropogenic impacts. * Thomas A. Schlacher a, , Serena Lucrezi b, Rod M. Connolly c, Charles H. Peterson d, Ben L. Gilby a, Brooke Maslo e, Andrew D. Olds a, Simon J. Walker a, Javier X. Leon a, Chantal M. Huijbers a, Michael A. Weston f, Alexander Turra g, Glenn A. Hyndes h, Rebecca A. Holt c, David S. Schoeman a a School of Science and Engineering, The University of the Sunshine Coast, Q-4558, Maroochydore, Australia b TREESdTourism Research in Economic Environs and Society, North-West University, Potchefstroom, South Africa c Australian Rivers Institute e Coast & Estuaries, and School of Environment, Gold Coast Campus, Griffith University, Queensland, 4222, Australia d Institute of Marine Sciences, University of North Carolina, Chapel Hill, Morehead City, NC, 28557, USA e Department of Ecology, Evolution and Natural Resources Rutgers, The State University of New Jersey, USA f Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia g Departamento de Oceanografia Biologica, Instituto Oceanografico, Universidade de Sao~ Paulo, Praça do Oceanografico, 191, CEP 05508-120, Sao~ Paulo, SP, Brazil h Centre for Marine Ecosystems Research, Edith Cowan University, WA, Australia article info abstract Article history: Beach and coastal dune systems are increasingly subjected to a broad range of anthropogenic pressures Received 23 October 2015 that on many shorelines require significant conservation and mitigation interventions.
    [Show full text]
  • Coastal Crabs from Devbagh, Karwar
    Karthikeyan S. COASTAL CRABS FROM DEVBAGH, KARWAR blog : www.wildwanderer.com email : [email protected] COASTAL CRABS A walk along the beach is something most people would enjoy. When we see crabs trying to run away from our path, often the child in us comes to the fore and we run about chasing them! It was during my first visit to Devbagh, Karwar that I was taken by surprise by the beauty of the few crabs that I saw. Even as I arrived at the jetty, I saw a large crab moving about on the rocks. It had stunning red legs. As I approached it, it disappeared under the rocks. On the same trip I also chanced upon my first fiddler crabs. Thus began my tryst with crabs. Over the years, during the many visits to Devbagh, I have spent considerable amount of time looking for crabs both on the shore and also in the mangroves around Devbagh. I have thoroughly enjoyed waiting for them to come out of their burrows, watching them at work, and in the process I have also managed to photograph a good number of them. Crabs are a very important and easily noticeable component of the coastal and mangrove ecosystems. They have adapted to the tidal actions and also the varying salinity that is so typical of delta areas. They are considered to be the most predominant species particularly in the mangrove forests. This also could be because many crabs use the mangroves for their very survival. They feed on the leaf litter and other organic matter.
    [Show full text]
  • Marine Biological Resources Within the Guam Seashore Study Area .,., and the ;:.. ' War in the Pacific National Historical Park
    MARINE BIOLOGICAL RESOURCES WITHIN THE GUAM SEASHORE STUDY AREA ., ., AND THE ;:.. ' WAR IN THE PACIFIC NATIONAL HISTORICAL PARK L. G . Eldredge I UNIVERSITY OF GUAM MARINE LABORATORY Technical Report No. 57 November 1979 • Cover PhotogTaph--Ma~aon Channel along Me~i~o . hor ~ 11ne .. MARINE BIOLOGICAL RESOURCES WITHIN THE GUAM SEASHORE STUDY AREA AND THE WAR IN THE PACIFIC NATIONAL HISTORICAL PARK by L. G. ELDREDGE Submitted to National Park Service U. S. Department of Interior University of Guam The Marine Laboratory Technical Report No. 57 November 1979 • TABLE OF CONTENTS INTRODUCTION 1 ASAN UNIT 2 Physiography 2 Biotic Communities 2 Resources and Recreation 3 AGAT UNIT 4 Physiography 4 Biotic Communities 4 Resources and Recreation 5 SEASHORE STUDY AREA 6 Physiography 6 Biotic Communities 8 Resources and Recreation 9 Significance 13 LITERATURE CITED 14 FIGURES 17 APPENDIX Table 1 Marine Plants 22 Table 2 Corals 25 Table 3 Gastropods 30 Table 4 Bivalves 34 Table 5 Crustaceans 35 Table 6 Echinoderms 37 Table 7 Fishes 39 MAPS 48 =--- ----=- INTRODUCTION ~ The marine areas of the Guam Seashore Study Area encompass a major l portion of the reef flats of the island from the Nimitz Beach and Taleyfac Bay area southward, including Cocos Lagoon and Cocos Island; 2 and eastward to Ajayan Bay. Of the two discontiguous shorelines of the War in the Pacific National Historical Park, the Asan Unit includes the 2 shore from Adelup Point westward, including Asan Bay and Asan Point, as 2 well as Gapan Islet (Camel Rock). The Agat Unit encompasses the reef 3 flat at Rizal Beach southward to Bangi Point and includes Bangi and Alutom Islands.
    [Show full text]
  • University Microfilms International 300 North Zeeb Road Ann Arbor, Michigan 48106 USA St
    INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along witn adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation.
    [Show full text]
  • Title CRAB PREDATION on GREEN TURTLE (CHELONIA MYDAS
    CRAB PREDATION ON GREEN TURTLE (CHELONIA Title MYDAS) EGGS INCUBATED ON A NATURAL BEACH AND lN TURTLE HATCHERIES Author(s) Ali, Ahmad; Ibrahim, Kamarruddin Proceedings of the 3rd Workshop on SEASTAR2000 (2002): Citation 95-100 Issue Date 2002 URL http://hdl.handle.net/2433/44166 Right Type Conference Paper Textversion publisher Kyoto University 95 CRAB PREDATION ON GREEN TURTLE (CHELONJA MYDAS) EGGS INCUBATED ON A NATURAL BEACH AND IN TURTLE HATCHERIES 1 2 Ahmad Ali and Kamarruddin lbrahim 1 Marine Fisheries Resources Development and Management Department, Southeast Asian Fisheries Development Center, 21080 Chendering, Terenganu, Malaysia. 2 Turtle and Marine Ecosystem Center (TUMEC), Department ofFisheries Malaysia, 23050 Dungun, Terengganu, Malaysia. E-mail: [email protected] ABSTRACT A study of crab predation on green turtle (Chelonia mydas) eggs was conducted on a natural beach of Mak Kepi!, Pulau Redang and at turtle hatcheries in Geliga and Chendor during March - September 2002. The objectives were to quantify crab predation on turtle eggs on natural beach and hatcheries and to determine the effectiveness of plastic mesh fencing for preventing crab predation. A total of 658 nests comprise of those on natural beach (214), hatcheries (429) and experimental plot (15) were investigated. Result showed that mortality of green turtle eggs in the study area due to ghost crab predation is not an important threat as the magnitude of depredation was only 1.3% (range 0.4% - 2.7%). Two species of crabs, i.e., Ocypode ceratophthalmus and Ocypode kuhlii were recorded. The use of 0.5 cm meshed plastic netlon to fence surrounding nests down to 1m deep under sand surface was proven effective in preventing crabs from entering the nests in turtle hatcheries.
    [Show full text]
  • Abundance, Distribution and Ecology of the Tufted Ghost Crab
    Journal of Sea Research 156 (2020) 101832 Contents lists available at ScienceDirect Journal of Sea Research journal homepage: www.elsevier.com/locate/seares Abundance, distribution and ecology of the tufted ghost crab Ocypode cursor (Linnaeus, 1758) (Crustacea: Ocypodidae) from a recently colonized urban T sandy beach, and new records from Sicily (central Mediterranean Sea) ⁎ Francesco Tiralongoa,b, , Giuseppina Messinaa, Sebastiano Marinob, Sebastiano Bellomob, Antonio Vanadiab, Laura Borzìa, Daniele Tibullob,c, Agata Di Stefanoa, Bianca Maria Lombardoa a Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy b Ente Fauna Marina Mediterranea, Avola (SR), Italy c Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123 Catania, Italy ARTICLE INFO ABSTRACT Keywords: The tufted ghost crab, Ocypode cursor, was recorded for the first time on the coast of Sicily mainland in 2009, Protected taxon however no ecological studies were conducted so far. In this study, we provide the first ecological data, based on Beach massive data collection of the ghost crab in Sicily. In particular, we studied the spatio-temporal distribution of Range-expanding species the species in the recently colonized urban beach of Avola. Our results showed that this species' activity is mainly Ionian Sea affected by temperature (crabs were more active during warmer months), while distance from the shoreline Burrows affected size distribution (larger crabs were usually found farther away from the shoreline). Crabs feed on a great variety of food items, and are undergoing northward range expansion. 1. Introduction located at least 1 cm above the water table (Strachan et al., 1999), where they are more protected from storm waves and extreme tides Crabs of the family Ocypodidae are known for their semi-terrestrial (Rodrigues et al., 2016).
    [Show full text]
  • Memoirs 2013 27 May.Vp
    Memoirs of the Queensland Museum | Nature 56 (2) © Queensland Museum 2013 PO Box 3300, South Brisbane 4101, Australia Phone 06 7 3840 7555 Fax 06 7 3846 1226 Email [email protected] Website www.qm.qld.gov.au National Library of Australia card number ISSN 0079-8835 NOTE Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum may be reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Director. Copies of the journal can be purchased from the Queensland Museum Shop. A Guide to Authors is displayed at the Queensland Museum web site www.qm.qld.gov.au A Queensland Government Project Typeset at the Queensland Museum Revision of the genus Ocypode with the description of a new genus, Hoplocypode (Crustacea: Decapoda: Brachyura) Katsushi SAKAI Shikoku University, Tokushima. Email: [email protected] Michael TÜRKAY Forschungsinstitut Senckenberg, Senckenberganlage 25, D-60325 Frankfurt a. M., Germany Email: [email protected] Citation: Sakai, K. & Türkay, M. 2013 06 30. Revision of the genus Ocypode with the description of a new genus, Hoplocypode (Crustacea: Decapoda: Brachyura). Memoirs of the Queensland Museum — Nature 56(2): 665–793. Brisbane. ISSN 0079–8835. ABSTRACT A taxonomic revision of Ocypode Weber, 1795, has resulted in the recognition of a new genus, Hoplocypode containing a single species H. occidentalis (Stimpson, 1860) that is endemic to the East Pacific. Ocypode is now recognised to contain 21 valid species.
    [Show full text]