Fish Scale) Material in Coastal British Columbia and an Assessment of the Utility of Various Scale Types in Paleofisheries Reconstruction

Total Page:16

File Type:pdf, Size:1020Kb

Fish Scale) Material in Coastal British Columbia and an Assessment of the Utility of Various Scale Types in Paleofisheries Reconstruction Palaeontologia Electronica http://palaeo-electronica.org ATLAS OF COMMON SQUAMATOLOGICAL (FISH SCALE) MATERIAL IN COASTAL BRITISH COLUMBIA AND AN ASSESSMENT OF THE UTILITY OF VARIOUS SCALE TYPES IN PALEOFISHERIES RECONSTRUCTION R. Timothy Patterson, Cynthia Wright, Alice S. Chang, Leslie A. Taylor, Patrick D. Lyons, Audrey Dallimore, and Arun Kumar R. Timothy Patterson. Ottawa-Carleton Geoscience Center and Department of Earth Sciences, Carleton University, Ottawa, Ontario, K1S 5B6 CANADA. Cynthia Wright. Institute of Ocean Sciences, Fisheries and Oceans Canada, 9860 West Saanich Rd., Sid- ney, BC, V8L 4B2, CANADA Alice S. Chang. Ottawa-Carleton Geoscience Center and Department of Earth Sciences, Carleton Univer- sity, Ottawa, Ontario, K1S 5B6 CANADA. Leslie A. Taylor. Department of Earth Sciences, Carleton University, Ottawa, Ontario, K1S 5B6, CANADA. Patrick D. Lyons. Department of Earth Sciences, Carleton University, Ottawa, Ontario, K1S 5B6, CAN- ADA. Audrey Dallimore. Ottawa-Carleton Geoscience Center and Department of Earth Sciences, Carleton Uni- versity, Ottawa, Ontario, K1S 5B6 CANADA. Arun Kumar. Department of Earth Sciences, Carleton University, Ottawa, Ontario, K1S 5B6, CANADA. ABSTRACT Squamatological (fish scale) material from 48 common species found in coastal waters of British Columbia is presented. Fish-scale remains of extant species are well- preserved in Holocene core sediments in various anoxic basins along the coast of Brit- ish Columbia. These remains are of considerable value in assessing natural variation in fish populations over time. Comparative micrographs of modern fish scales as well as an assessment of their preservation potential is provided. Photographs of various scales preserved in the sedimentary record (e.g., herring, rockfish, sardines, surfperch) are provided and discussed in the context of the taphonomic alteration that typically occurs after burial. This monograph—the first atlas of fish-scale material available for the northeast Pacific—will help resolve identification problems for future fish taxono- mists, paleoceanographers, and fisheries-oriented researchers. Key words: fish scales, squamatology, paleoceanography, Holocene, British Columbia, NE Pacific Ocean. Patterson, R. Timothy, Cynthia Wright, Alice S. Chang, Leslie A. Taylor, Patrick D. Lyons, Audrey Dallimore, and Arun Kumar. 2002. Brit. Columbia Fish-Scale Atlas. Palaeontologia Electronica 4(1):88pp, 12MB; http://palaeo-electronica.org/paleo/2001_2/fish/issue2_01.htm R. TIMOTHY PATTERSON, CYNTHIA WRIGHT, ALICE S. CHANG, LESLIE A. TAYLOR, PATRICK D. LYONS, AUDREY DALLIMORE, AND ARUN KUMAR: BRIT. COLUMBIA FISH-SCALE ATLAS Copyright: Palaeontological Association, 25 January 2002 Submission: 6 March 2001. Accepted: 19 November 2001 INTRODUCTION encompass the entire North American Upwelling Zone (Baumgartner et al., 1992). There has been a resurgence of interest in the We now know that many of the oceanic driv- relationship between fish population dynamics and ers that affect fish population dynamics in the NE oceanographic processes since the highly publi- Pacific (Ware and Thomson, 1991) have greater cized Pacific salmon crisis off the west coast of than decadal scale return times, and since the set- British Columbia and the collapse of the Atlantic tlement history of the region, particularly British cod fishery. A relationship between ”ocean climate” Columbia, is relatively short, available anecdotal changes and fish populations can be inferred, but and commercial fishing records are of limited use in the Canadian context, real data are meager. in assessing long-term variation in fish populations. Shifts in the position and intensity of the Aleutian Therefore, other methodologies are required for Low-Pressure System, (over the northern North this research (Leaman, 1993). The use of osteo- Pacific) exert a major control on fisheries recruit- logical and squamatological (scale) fish remains as ment off British Columbia by influencing stratifica- proxies to estimate paleofish populations was pio- tion and coastal upwelling that can alter plankton neered in the 1960s to better understand clupeid abundance (Brodeur and Ware, 1992). Unfortu- (sardine, herring, anchovy) population dynamics nately, the nature of long-term oscillations in this off the coast of southern California (Soutar, 1966; system and the accompanying effect on fish stocks Soutar and Isaacs, 1969; Soutar and Isaacs, are not known. Thus, the analysis of a long record 1974). Subsequently research has been expanded of fish abundance data and accompanying ocean- all along the coast of the Americas (O’Connell and climate ”regime shifts” in coastal British Columbia Tunnicliffe, 2001), most recently in Effingham Inlet is of strategic value to the Canadian west coast on Vancouver Island (Dallimore, 2001). Effingham fishing industry. For example, the collapse of the Inlet has proven to be an ideal area for this Atlantic cod fishery has been partially linked to research because varved sediments deposited in North Atlantic temperature/climate variation (Smith the quiet and anoxic bottom waters of the con- and Page, 1996). tained basins archive a very well-preserved record Fishery collapses (in addition to the recent of osteological (bone) and squamatological (scale) problems experienced by the salmon fishery) have fish remains and other biologic proxies, such as occurred before on the west coast of North Amer- diatoms, dinoflagellates, and foraminifera (Patter- ica. For example, the northern Pacific sardine fish- son et al., 2000). ery, initiated in the 1920s, began to collapse in the Despite the existing body of research on fish early to mid-1940s. By the early 1950s the central remains available, it has proven surprisingly diffi- Californian fishery had also collapsed, followed by cult to identify fish remains, not because of poor the southern Californian fishery in the 1960s. This preservation, but due to a lack of accessible progressive collapse from north to south was resource material. Most of the few research groups apparently aided by a significant change in the involved in this line of research have collections pelagic habitat in the California Current system and available on hand but there have been relatively no was associated with large-scale climate change in attempts at publishing definitive comparative refer- the Pacific during the 1940s (Francis and Hare, ences, with the exception of a few non illustrated 1994). The gradual return of sardines to waters off keys (see Casteel, 1976, for summary). In this Vancouver Island since 1990 is associated with the paper we aim to rectify this deficiency by present- gradual recuperation of the populations off south- ing a detailed atlas of squamatological material col- ern California (Baumgartner et al., 1992). A grad- lected from living representatives of common ual expansion of the population probably began pelagic fish species found in southern British soon after a large-scale climate shift of the Pacific Columbia coastal waters. In addition, as some in 1977 (Robinson, 1994). Thus, although the his- important types of scales (e.g., sardines, herrings, torical fisheries record is limited for the Pacific and anchovies) become altered and fragmented in coast of North America, sardine populations are the sedimentary record, making identification diffi- known to expand and contract over time-scales of cult, we provide comparative examples of selected several decades or more and over distances that fossilized material obtained from Effingham Inlet (Figure 1). 2 R. TIMOTHY PATTERSON, CYNTHIA WRIGHT, ALICE S. CHANG, LESLIE A. TAYLOR, PATRICK D. LYONS, AUDREY DALLIMORE, AND ARUN KUMAR: BRIT. COLUMBIA FISH-SCALE ATLAS Figure 1. A. Location map of southern British Columbia showing geographic features discussed in this paper. B. Details of Effing- ham Inlet showing location of core where scales were recovered. SCALE CHARACTERISTICS scale characteristics include (1) overall scale shape; (2) position and shape of focus; (3) circuli Most fish have a covering of scales, which can appearance; (4)the appearance of the lateral, ante- be divided into a variety of types, over the outer rior, and posterior fields; and (5) to some extent, surface of their bodies. These types include the thickness/robustness of the scale. plate-like placoid scales of sharks; the diamond- As there is considerable variation in scale shaped ganoid scales of the gars; the thin, smooth, shape even between different areas of the same disk-like cycloid scales of most freshwater fish and individual fish, scale outline is not always the best many marine species; and the ctenoid scales (with indicator for identification (Figure 2; Casteel, 1972; ctenii—small projections along the posterior mar- Chikuni, 1968). Size is also generally not a desir- gins) of perches and sunfish (Casteel, 1976). All able characteristic, as scale size varies and over- the species presented in this atlas are referable to lap occurs not only between species and the cycloid and ctenoid types. Distinguishable individuals, but also within a single specimen. Cyc- 3 R. TIMOTHY PATTERSON, CYNTHIA WRIGHT, ALICE S. CHANG, LESLIE A. TAYLOR, PATRICK D. LYONS, AUDREY DALLIMORE, AND ARUN KUMAR: BRIT. COLUMBIA FISH-SCALE ATLAS due to the lack of distinguishing characteristics, species-level assignments for many groups are not possible. The terminology used to describe scales usu- ally refers to topographical features such as sur- face sculpturing or internal variations (Figures 3, 4). Lagler (1947)
Recommended publications
  • FISH LIST WISH LIST: a Case for Updating the Canadian Government’S Guidance for Common Names on Seafood
    FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood Authors: Christina Callegari, Scott Wallace, Sarah Foster and Liane Arness ISBN: 978-1-988424-60-6 © SeaChoice November 2020 TABLE OF CONTENTS GLOSSARY . 3 EXECUTIVE SUMMARY . 4 Findings . 5 Recommendations . 6 INTRODUCTION . 7 APPROACH . 8 Identification of Canadian-caught species . 9 Data processing . 9 REPORT STRUCTURE . 10 SECTION A: COMMON AND OVERLAPPING NAMES . 10 Introduction . 10 Methodology . 10 Results . 11 Snapper/rockfish/Pacific snapper/rosefish/redfish . 12 Sole/flounder . 14 Shrimp/prawn . 15 Shark/dogfish . 15 Why it matters . 15 Recommendations . 16 SECTION B: CANADIAN-CAUGHT SPECIES OF HIGHEST CONCERN . 17 Introduction . 17 Methodology . 18 Results . 20 Commonly mislabelled species . 20 Species with sustainability concerns . 21 Species linked to human health concerns . 23 Species listed under the U .S . Seafood Import Monitoring Program . 25 Combined impact assessment . 26 Why it matters . 28 Recommendations . 28 SECTION C: MISSING SPECIES, MISSING ENGLISH AND FRENCH COMMON NAMES AND GENUS-LEVEL ENTRIES . 31 Introduction . 31 Missing species and outdated scientific names . 31 Scientific names without English or French CFIA common names . 32 Genus-level entries . 33 Why it matters . 34 Recommendations . 34 CONCLUSION . 35 REFERENCES . 36 APPENDIX . 39 Appendix A . 39 Appendix B . 39 FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood 2 GLOSSARY The terms below are defined to aid in comprehension of this report. Common name — Although species are given a standard Scientific name — The taxonomic (Latin) name for a species. common name that is readily used by the scientific In nomenclature, every scientific name consists of two parts, community, industry has adopted other widely used names the genus and the specific epithet, which is used to identify for species sold in the marketplace.
    [Show full text]
  • Review of Selected California Fisheries for 2013
    FISHERIES REVIEW CalCOFI Rep., Vol. 55, 2014 REVIEW OF SELECTED CALIFORNIA FISHERIES FOR 2013: COASTAL PELAGIC FINFISH, MARKET SQUID, GROUNDFISH, HIGHLY MIGRATORY SPECIES, DUNGENESS CRAB, BASSES, SURFPERCH, ABALONE, KELP AND EDIBLE ALGAE, AND MARINE AQUACULTURE CALIFORNIA DEPARTMENT OF FISH AND WILDLIFE Marine Region 4665 Lampson Ave. Suite C Los Alamitos, CA 90720 [email protected] SUMMARY ings of northern anchovy were 6,005 t with an ex-vessel In 2013, commercial fisheries landed an estimated revenue of greater than $1.0 million. When compared 165,072 metric tons (t) of fish and invertebrates from to landings in 2012, this represents a 141% and 191% California ocean waters (fig. 1). This represents an increase in volume and value, respectively. Nearly all increase of almost 2% from the 162,290 t landed in 2012, (93.6%; 5,621.5 t) of California’s 2013 northern anchovy but still an 11% decrease from the 184,825 t landed catch was landed in the Monterey port area. Landings of in 2011, and a 35% decline from the peak landings of jack mackerel remained relatively low with 892 t landed; 252,568 t observed in 2000. The preliminary ex-vessel however, this represents a 515% increase over 2012 land- economic value of commercial landings in 2013 was ings of 145 t. $254.7 million, increasing once again from the $236 mil- Dungeness crab ranked as California’s second largest lion generated in 2012 (8%), and the $198 million in volume fishery with 14,066 t landed, an increase from 2011 (29%). 11,696 t landed in 2012, and it continued to dominate as Coastal pelagic species (CPS) made up four of the the highest valued fishery in the state with an ex-vessel top five volume fisheries in 2013.
    [Show full text]
  • BONY FISHES 602 Bony Fishes
    click for previous page BONY FISHES 602 Bony Fishes GENERAL REMARKS by K.E. Carpenter, Old Dominion University, Virginia, USA ony fishes constitute the bulk, by far, of both the diversity and total landings of marine organisms encoun- Btered in fisheries of the Western Central Atlantic.They are found in all macrofaunal marine and estuarine habitats and exhibit a lavish array of adaptations to these environments. This extreme diversity of form and taxa presents an exceptional challenge for identification. There are 30 orders and 269 families of bony fishes presented in this guide, representing all families known from the area. Each order and family presents a unique suite of taxonomic problems and relevant characters. The purpose of this preliminary section on technical terms and guide to orders and families is to serve as an introduction and initial identification guide to this taxonomic diversity. It should also serve as a general reference for those features most commonly used in identification of bony fishes throughout the remaining volumes. However, I cannot begin to introduce the many facets of fish biology relevant to understanding the diversity of fishes in a few pages. For this, the reader is directed to one of the several general texts on fish biology such as the ones by Bond (1996), Moyle and Cech (1996), and Helfman et al.(1997) listed below. A general introduction to the fisheries of bony fishes in this region is given in the introduction to these volumes. Taxonomic details relevant to a specific family are explained under each of the appropriate family sections. The classification of bony fishes continues to transform as our knowledge of their evolutionary relationships improves.
    [Show full text]
  • Fish Passage and Injury Risk at a Surface Bypass of a Small-Scale Hydropower Plant
    sustainability Article Fish Passage and Injury Risk at a Surface Bypass of a Small-Scale Hydropower Plant Josef Knott, Melanie Mueller, Joachim Pander and Juergen Geist * Aquatic Systems Biology Unit, Department of Ecology and Ecosystem Management, Technical University of Munich, Mühlenweg 22, 85354 Freising, Germany; [email protected] (J.K.); [email protected] (M.M.); [email protected] (J.P.) * Correspondence: [email protected]; Tel.: +49-816-171-3767 Received: 14 October 2019; Accepted: 29 October 2019; Published: 30 October 2019 Abstract: In contrast to the efforts made to develop functioning fishways for upstream migrants, the need for effective downstream migration facilities has long been underestimated. The challenge of developing well-performing bypasses for downstream migrants involves attracting the fish to the entrance and transporting them quickly and unharmed into the tailrace. In this study, the acceptance of different opening sizes of a surface bypass as well as the injuries which fish experience during the passage were examined. Overall bypass acceptance was low compared to the turbine passage. There was no significant difference in the number of downstream moving fish between the small and the large bypass openings. Across all fish species, no immediate mortality was detected. Severe injuries such as amputations or bruises were only rarely detected and at low intensity. Scale losses, tears and hemorrhages in the fins and dermal lesions at the body were the most common injuries, and significant species-specific differences were detected. To increase bypass efficiency, it would likely be useful to offer an alternative bottom bypass in addition to the existing surface bypass.
    [Show full text]
  • CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
    ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies.
    [Show full text]
  • Cleaning Symbiosis Among California Inshore Fishes
    CLEANING SYMBIOSIS AMONG CALIFORNIA INSHORE FISHES EDMUNDS. HOBSON' ABSTRACT Cleaning symbiosis among shore fishes was studied during 1968 and 1969 in southern California, with work centered at La Jolla. Three species are habitual cleaners: the seAoriF, Ozyjulis californica; the sharpnose seaperch, Phanerodon atripes; and the kelp perch, Brachyistius frenatus. Because of specific differences in habitat, there is little overlap in the cleaning areas of these three spe- cies. Except for juvenile sharpnose seaperch, cleaning is of secondary significance to these species, even though it may be of major significance to certain individuals. The tendency to clean varies between in- dividuals. Principal prey of most members of these species are free-living organisms picked from a substrate and from midwater-a mode of feeding that favors adaptations suited to cleaning. Because it is exceedingly abundant in a variety of habitats, the seiiorita is the predominant inshore cleaning fish in California. Certain aspects of its cleaning relate to the fact that only a few of the many seiioritas present at a given time will clean, and that this activity is not centered around well-defined cleaning stations, as has been reported for certain cleaning fishes elsewhere. Probably because cleaners are difficult to recognize among the many seiioritas that do not clean, other fishes.generally do not at- tempt to initiate-cleaning; rather, the activity is consistently initiated by the cleaner itself. An infest- ed fish approached by a cleaner generally drifts into an unusual attitude that advertises the temporary existence of the transient cleaning station to other fish in need of service, and these converge on the cleaner.
    [Show full text]
  • Vii Fishery-At-A-Glance Night Smelt Scientific Name: Spirinchus Starksi Range
    Fishery-at-a-Glance Night Smelt Scientific Name: Spirinchus starksi Range: Night Smelt are distributed coast-wide from southeast Alaska to Point Arguello, Santa Barbara County. Habitat: Night Smelt occur in the surf and in depths from the surface to approximately 400 feet (122 meters). Size (length and weight): Night Smelt measure less than 6 inches total length (140 millimeters) weighing to 11 grams. Males are slightly longer and heavier than females. Life span: Night Smelt are short lived and believed to reach a maximum of 2 to 3 years. Reproduction: Spawning occurs in the surf along open coast coarse sand beaches from January to September. Eggs are fertilized in the wash of the surf, adhere to sand grains, and sink. Hatching occurs in approximately 2 weeks. Prey: Night Smelt feed on small crustaceans—primarily gammarid amphipods and mysid shrimp. Predators: Night Smelt provide forage for a wide range of predators, including Striped Bass, Redtail Surfperch, salmon, Harbor Seals, California Sea Lions, terns, gulls, and cormorants. Fishery: Commercial and recreational fisheries are shore-based. Area fished: Historically, fishing occurred from Moss Landing, Monterey County to the Oregon border. Currently, fishing occurs from San Mateo County to Del Norte County. Fishing season: Fishing occurs during the spawning season—January to September. Fishing gear: Fishermen fish from shore using A-frame dip nets. Market(s): Landed fish are sold for human consumption and aquarium food. Current stock status: No formal stock assessments exist for Night Smelt. Although catch rates have increased on average since the early 2000s, it is undetermined if this increase in the index is due to increased abundance or changes in fishermen behavior.
    [Show full text]
  • 2017-2018 Enclosure Sampling Data
    These data were collected for SK Grant NA16NMF4270254 between June 26, 2017, and June 15, 2018. The data include fish sampling within enclosure and fyke nets deployed within the East Bay region of North Humboldt Bay, California. Note that there are various worksheets within this Excel Spreadsheet, which describe the various control and treatment sites associated with the fish sampling. The data collected at each site is consistent and described under the "Project Data" section. Disclaimer: These data and related items of information have not been formally disseminated by NOAA, and do not represent any agency determination, view, or policy. WORKSHEETS: Sheet Label Description Eelgrass_Control Fish sampling results from the enclosure net deployed within the eelgrass without Eelgrass_Culture Fish sampling results from the enclosure net deployed within the eelgrass with culture Mudflat_Control Fish sampling results from the enclosure net deployed within the mudflat without Mudflat_Culture Fish sampling results from the enclosure net deployed within the mudflat with culture Eelgrass_Control_Fyke Fish sampling results from the fyke net deployed within the eelgrass without culture Eelgrass_Culture_Fyke Fish sampling results from the fyke net deployed within the eelgrass with culture PROJECT DATA: Category Description Sampling Date Date of net deployment Family Family taxonmic level associated with fish identification Scientific name of the fish species, identified to the lowest Scientific Name Species taxonomic level possible Common Name Common
    [Show full text]
  • Lecture 6 – Integument ‐ Scale • a Scale Is a Small Rigid Plate That Grows out of an Animal’ S Skin to Provide Protection
    Lecture 6 – Integument ‐ Scale • A scale is a small rigid plate that grows out of an animal’s skin to provide protection. • Scales are quite common and have evolved multiple times with varying structure and function. • Scales are generally classified as part of an organism's integumentary system. • There are various types of scales according to shape and to class of animal. • Although the meat and organs of some species of fish are edible by humans, the scales are usually not eaten. Scale structure • Fish scales Fish scales are dermally derived, specifically in the mesoderm. This fact distinguishes them from reptile scales paleontologically. Genetically, the same genes involved in tooth and hair development in mammals are also involved in scale development. Earliest scales – heavily armoured thought to be like Chondrichthyans • Fossil fishes • ion reservoir • osmotic control • protection • Weighting Scale function • Primary function is protection (armor plating) • Hydrodynamics Scales are composed of four basic compounds: ((gmoving from inside to outside in that order) • Lamellar bone • Vascular or spongy bone • Dentine (dermis) and is always associated with enamel. • Acellular enamel (epidermis) • The scales of fish lie in pockets in the dermis and are embeded in connective tissue. • Scales do not stick out of a fish but are covered by the Epithelial layer. • The scales overlap and so form a protective flexible armor capable of withstanding blows and bumping. • In some catfishes and seahorses, scales are replaced by bony plates. • In some other species there are no scales at all. Evolution of scales Placoid scale – (Chondricthyes – cartilagenous fishes) develop in dermis but protrude through epidermis.
    [Show full text]
  • First Records of the Night Smelt, Spirinchus Starksi, in the Salish Sea
    First Records of the Night Smelt, Spirinchus starksi, in the Salish Sea, Washington Author(s): Melanie M Paquin , Anna N Kagley , Kurt L Fresh , and James W Orr Source: Northwestern Naturalist, 95(1):40-43. 2014. Published By: Society for Northwestern Vertebrate Biology DOI: http://dx.doi.org/10.1898/NWN13-05.1 URL: http://www.bioone.org/doi/full/10.1898/NWN13-05.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/ page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non- commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. 40 NORTHWESTERN NATURALIST 95(1) NORTHWESTERN NATURALIST 95:40–43 SPRING 2014 FIRST RECORDS OF THE NIGHT SMELT, SPIRINCHUS STARKSI, IN THE SALISH SEA, WASHINGTON MELANIE MPAQUIN,ANNA NKAGLEY,KURT LFRESH, AND JAMES WORR Key words: COI, distribution, genetics, (frozen or preserved in ethanol) from 11 S. starksi Longfin Smelt, Night Smelt, Osmeridae, Spir- and 5 S. thaleichthys were obtained from the inchus starksi, Spirinchus thaleichthys, Washing- Northwest Fisheries Science Center (NWFSC) ton and the University of Washington Fish Collec- tion (UW).
    [Show full text]
  • Mechanics of Composite Elasmoid Fish Scale Assemblies and Their
    journal of the mechanical behavior of biomedical materials 19 (2013) 75–86 Available online at www.sciencedirect.com www.elsevier.com/locate/jmbbm Mechanics of composite elasmoid fish scale assemblies and their bioinspired analogues Ashley Browninga, Christine Ortizb,n, Mary C. Boycea,n aDepartment of Mechanical Engineering, 77 Massachusetts Ave, Massachusetts Institute of Technology, Cambridge, MA, USA bDepartment of Materials Science and Engineering, 77 Massachusetts Ave, Massachusetts Institute of Technology, Cambridge, MA, USA article info abstract Article history: Inspired by the overlapping scales found on teleost fish, a new composite architecture Received 28 July 2012 explores the mechanics of materials to accommodate both flexibility and protection. These Received in revised form biological structures consist of overlapping mineralized plates embedded in a compliant 5 November 2012 tissue to form a natural flexible armor which protects underlying soft tissue and vital Accepted 11 November 2012 organs. Here, the functional performance of such armors is investigated, in which the Available online 24 November 2012 composition, spatial arrangement, and morphometry of the scales provide locally tailored Keywords: functionality. Fabricated macroscale prototypes and finite element based micromechanical Biomimetic models are employed to measure mechanical response to blunt and penetrating indentation Composite loading. Deformation mechanisms of scale bending, scale rotation, tissue shear, and tissue Natural armor constraint were found to govern the ability of the composite to protect the underlying Fish scale substrate. These deformation mechanisms, the resistance to deformation, and the resulting work of deformation can all be tailored by structural parameters including architectural arrangement (angle of the scales, degree of scale overlap), composition (volume fraction of the scales), morphometry (aspect ratio of the scales), and material properties (tissue modulus and scale modulus).
    [Show full text]
  • Order GASTEROSTEIFORMES PEGASIDAE Eurypegasus Draconis
    click for previous page 2262 Bony Fishes Order GASTEROSTEIFORMES PEGASIDAE Seamoths (seadragons) by T.W. Pietsch and W.A. Palsson iagnostic characters: Small fishes (to 18 cm total length); body depressed, completely encased in Dfused dermal plates; tail encircled by 8 to 14 laterally articulating, or fused, bony rings. Nasal bones elongate, fused, forming a rostrum; mouth inferior. Gill opening restricted to a small hole on dorsolat- eral surface behind head. Spinous dorsal fin absent; soft dorsal and anal fins each with 5 rays, placed posteriorly on body. Caudal fin with 8 unbranched rays. Pectoral fins large, wing-like, inserted horizon- tally, composed of 9 to 19 unbranched, soft or spinous-soft rays; pectoral-fin rays interconnected by broad, transparent membranes. Pelvic fins thoracic, tentacle-like,withI spine and 2 or 3 unbranched soft rays. Colour: in life highly variable, apparently capable of rapid colour change to match substrata; head and body light to dark brown, olive-brown, reddish brown, or almost black, with dorsal and lateral surfaces usually darker than ventral surface; dorsal and lateral body surface often with fine, dark brown reticulations or mottled lines, sometimes with irregular white or yellow blotches; tail rings often encircled with dark brown bands; pectoral fins with broad white outer margin and small brown spots forming irregular, longitudinal bands; unpaired fins with small brown spots in irregular rows. dorsal view lateral view Habitat, biology, and fisheries: Benthic, found on sand, gravel, shell-rubble, or muddy bottoms. Collected incidentally by seine, trawl, dredge, or shrimp nets; postlarvae have been taken at surface lights at night.
    [Show full text]