Linguists Who Use Probabilistic Models Love Them: Quantification

Total Page:16

File Type:pdf, Size:1020Kb

Linguists Who Use Probabilistic Models Love Them: Quantification Linguists Who Use Probabilistic Models Love Them: Quantification in Functional Distributional Semantics Guy Emerson Department of Computer Science and Technology University of Cambridge [email protected] Abstract promising framework for automatically learning Functional Distributional Semantics provides truth-conditional semantics from large datasets. a computationally tractable framework for In previous work (Emerson and Copestake, learning truth-conditional semantics from a 2017b, §3.5, henceforth E&C), I sketched how this corpus. Previous work in this framework has approach can be extended with a probabilistic ver- provided a probabilistic version of first-order sion of first-order logic, where quantifiers are in- logic, recasting quantification as Bayesian in- terpreted in terms of conditional probabilities. I ference. In this paper, I show how the previ- ous formulation gives trivial truth values when summarise this approach in §2 and §3. a precise quantifier is used with vague predi- There are four main contributions of this paper. cates. I propose an improved account, avoid- In §4.1, I first point out a problem with my pre- ing this problem by treating a vague predicate vious approach. Quantifiers like every and some as a distribution over precise predicates. I con- are treated as precise, but predicates are vague. nect this account to recent work in the Rational This leads to trivial truth values, with every triv- Speech Acts framework on modelling generic ially false, and some trivially true. quantification, and I extend this to modelling donkey sentences. Finally, I explain how the Secondly, I show in §4.2–4.4 how this problem generic quantifier can be both pragmatically can fixed by treating a vague predicate as a distri- complex and yet computationally simpler than bution over precise predicates. precise quantifiers. Thirdly, in §5 I look at vague quantifiers and generic sentences, which present a challenge for 1 Introduction classical (non-probabilistic) theories. I build on Model-theoretic semantics defines meaning in Tessler and Goodman(2019)’s account of gener- terms of truth, relative to model structures. In the ics using Rational Speech Acts, a Bayesian ap- simplest case, a model structure consists of a set proach to pragmatics (Frank and Goodman, 2012). of individuals (also called entities). The mean- I show how generic quantification is computation- ing of a content word is a predicate, formalised ally simpler than classical quantification, consis- as a truth-conditional function which maps indi- tent with evidence that generics are a “default” viduals to truth values (either truth or falsehood). mode of processing (for example: Leslie, 2008; Because of this precisely defined notion of truth, Gelman et al., 2015). arXiv:2006.03002v1 [cs.CL] 4 Jun 2020 model theory naturally supports logic, and has be- Finally, I show in §6 how this probabilistic ap- come a prominent approach to formal semantics. proach can provide an account of donkey sen- For detailed expositions, see: Cann(1993); Allan tences, another challenge for classical theories. In (2001); Kamp and Reyle(2013). particular, I consider generic donkey sentences, Mainstream approaches to distributional se- which are doubly challenging, and which provide mantics represent the meaning of a word as a counter-examples to the claim that donkey pro- vector (for example: Turney and Pantel, 2010; nouns are associated with universal quantifiers. Mikolov et al., 2013; for an overview, see: Emer- Taking the above together, in this paper I show son, 2020b). In contrast, Functional Distributional how a probabilistic first-order logic can be asso- Semantics represents the meaning of a word as ciated with a neural network model for distribu- a truth-conditional function (Emerson and Copes- tional semantics, in a way that sheds light on long- take, 2016; Emerson, 2018). It is therefore a standing problems in formal semantics. 2 Generalised Quantifiers 8x picture(x) ! 9z9y tell(y)^story(z)^ARG1(y; x)^ARG2(y; z) Partee(2012) recounts how quantifiers have Figure 1: A first-order logical proposition, representing played an important role in the development of the most likely reading of Every picture tells a story. model-theoretic semantics, seeing a major break- Scope ambiguity is not discussed in this paper. through with Montague(1973)’s work, and cul- minating in the theory of generalised quantifiers every(x) (Barwise and Cooper, 1981; Van Benthem, 1984). Ultimately, model theory requires quantifiers to picture(x) a(z) give truth values to propositions. An example of a logical proposition is given in Fig. 1, with a quan- story(z) 9(y) tifier for each logical variable. This also assumes a neo-Davidsonian approach to event semantics > tell(y) ^ ARG1(y; x) (Davidson, 1967; Parsons, 1990). ^ ARG2(y; z) Equivalently, we can represent a logical propo- Figure 2: A scope tree, equivalent to Fig. 1 above. Each sition as a scope tree, as in Fig. 2. The truth of the non-terminal node is a quantifier, with its bound vari- scope tree can be calculated by working bottom- able in brackets. Its left child is its restriction, and its up through the tree. The leaves of the tree are log- right child its body. ical expressions with free variables. They can be Quantifier Condition assigned truth values if each variable is fixed as some jR(v) \B(v)j > 0 an individual in the model structure. To assign a truth value to the whole proposition, we work up every jR(v) \B(v)j = jR(v)j through the tree, quantifying the variables one at no jR(v) \B(v)j = 0 1 at time. Once we reach the root, all variables have most jR(v) \B(v)j > 2 jR(v)j been quantified, and we are left with a truth value. Table 1: Classical truth conditions for precise quanti- Each quantifier is a non-terminal node with two fiers, in generalised quantifier theory. children – its restriction (on the left) and its body (on the right). It quantifies exactly one variable, 3 Generalised Quantifiers in Functional called its bound variable. Each node also has free Distributional Semantics variables. For each leaf, its free variables are ex- Functional Distributional Semantics defines a actly the variables appearing in the logical expres- probabilistic graphical model for distributional se- sion. For each quantifier, its free variables are the mantics. Importantly (from the point of view of union of the free variables of its restriction and formal semantics), this graphical model incorpo- body, minus its own bound variable. For a well- rates a probabilistic version of model theory. formed scope tree, the root has no free variables. This is illustrated in Fig. 3. The top row defines Each node in the tree defines a truth value, given a a distribution over situations, each situation being fixed value for each free variable. an event with two participants.1 This generalises The truth value for a quantifier node is defined a model structure comprising a set of situations, based on its restriction and body. Given values for as in classical situation semantics (Barwise and the quantifier’s free variables, the restriction and Perry, 1983). Each individual is represented by a body only depend on the quantifier’s bound vari- pixie, a point in a high-dimensional space, which able. The restriction and body therefore each de- represents the features of the individual. Two in- fine a set of individuals in the model structure – dividuals could be represented by the same pixie, the individuals for which the restriction is true, and and the space of pixies can be seen as a conceptual the individuals for which the body is true. We can space in the sense ofG ardenfors¨ (2000, 2014). write these as R(v) and B(v), respectively, where v denotes the values of all free variables. 1For situations with different structures (multiple events or different numbers of participants), we can define a family Generalised quantifier theory says that a quan- of such graphical models. Structuring the graphical model tifier’s truth value only depends on two quantities: in terms of semantic roles makes the simplifying assumption the cardinality of the restriction jR(v)j, and the that situation structure is isomorphic to a semantic depen- dency graph such as DMRS (Copestake et al., 2005; Copes- cardinality of the intersection of the restriction and take, 2009). In the general case, the assumption fails. For body jR(v) \B(v)j. Table 1 gives examples. example, the ARG3 of sell corresponds to the ARG1 of buy. ARG1 ARG2 Quantifier Condition X Y Z some P (b j r; v) > 0 2 X every P (b j r; v) = 1 no P (b j r; v) = 0 most (b j r; v) > 1 Tr; X Tr; Y Tr; Z P 2 2 f?; >g V Table 2: Truth conditions for precise quantifiers, in terms of the conditional probability of the body given Figure 3: Probabilistic model theory, as formalised in the restriction (and given all free variables). These con- Functional Distributional Semantics. Each node is a ditions mirror Table 1. random variable. The plate (box in bottom row) de- notes repetition of nodes. Top row: pixie-valued random variables X, Y , Z to- one pixie for each free variable. Intuitively, the gether represent a situation composed of three individ- truth of a quantified expression depends on how uals. They are jointly distributed according to the se- likely B is to be true, given that R is true.3 mantic roles ARG1 and ARG2. Their joint distribution Truth conditions for quantifiers can be defined can be seen as a probabilistic model structure. in terms of (b j r; v), as shown in Table 2. For Bottom row: each predicate r in the vocabulary V has P a probabilistic truth-conditional function, which can be these precise quantifiers, the truth value is deter- applied to each individual.
Recommended publications
  • Aristotle's Illicit Quantifier Shift: Is He Guilty Or Innocent
    Aristos Volume 1 Issue 2 Article 2 9-2015 Aristotle's Illicit Quantifier Shift: Is He Guilty or Innocent Jack Green The University of Notre Dame Australia Follow this and additional works at: https://researchonline.nd.edu.au/aristos Part of the Philosophy Commons, and the Religious Thought, Theology and Philosophy of Religion Commons Recommended Citation Green, J. (2015). "Aristotle's Illicit Quantifier Shift: Is He Guilty or Innocent," Aristos 1(2),, 1-18. https://doi.org/10.32613/aristos/ 2015.1.2.2 Retrieved from https://researchonline.nd.edu.au/aristos/vol1/iss2/2 This Article is brought to you by ResearchOnline@ND. It has been accepted for inclusion in Aristos by an authorized administrator of ResearchOnline@ND. For more information, please contact [email protected]. Green: Aristotle's Illicit Quantifier Shift: Is He Guilty or Innocent ARISTOTLE’S ILLICIT QUANTIFIER SHIFT: IS HE GUILTY OR INNOCENT? Jack Green 1. Introduction Aristotle’s Nicomachean Ethics (from hereon NE) falters at its very beginning. That is the claim of logicians and philosophers who believe that in the first book of the NE Aristotle mistakenly moves from ‘every action and pursuit aims at some good’ to ‘there is some one good at which all actions and pursuits aim.’1 Yet not everyone is convinced of Aristotle’s seeming blunder.2 In lieu of that, this paper has two purposes. Firstly, it is an attempt to bring some clarity to that debate in the face of divergent opinions of the location of the fallacy; some proposing it lies at I.i.1094a1-3, others at I.ii.1094a18-22, making it difficult to wade through the literature.
    [Show full text]
  • Scope Ambiguity in Syntax and Semantics
    Scope Ambiguity in Syntax and Semantics Ling324 Reading: Meaning and Grammar, pg. 142-157 Is Scope Ambiguity Semantically Real? (1) Everyone loves someone. a. Wide scope reading of universal quantifier: ∀x[person(x) →∃y[person(y) ∧ love(x,y)]] b. Wide scope reading of existential quantifier: ∃y[person(y) ∧∀x[person(x) → love(x,y)]] 1 Could one semantic representation handle both the readings? • ∃y∀x reading entails ∀x∃y reading. ∀x∃y describes a more general situation where everyone has someone who s/he loves, and ∃y∀x describes a more specific situation where everyone loves the same person. • Then, couldn’t we say that Everyone loves someone is associated with the semantic representation that describes the more general reading, and the more specific reading obtains under an appropriate context? That is, couldn’t we say that Everyone loves someone is not semantically ambiguous, and its only semantic representation is the following? ∀x[person(x) →∃y[person(y) ∧ love(x,y)]] • After all, this semantic representation reflects the syntax: In syntax, everyone c-commands someone. In semantics, everyone scopes over someone. 2 Arguments for Real Scope Ambiguity • The semantic representation with the scope of quantifiers reflecting the order in which quantifiers occur in a sentence does not always represent the most general reading. (2) a. There was a name tag near every plate. b. A guard is standing in front of every gate. c. A student guide took every visitor to two museums. • Could we stipulate that when interpreting a sentence, no matter which order the quantifiers occur, always assign wide scope to every and narrow scope to some, two, etc.? 3 Arguments for Real Scope Ambiguity (cont.) • But in a negative sentence, ¬∀x∃y reading entails ¬∃y∀x reading.
    [Show full text]
  • Discrete Mathematics, Chapter 1.4-1.5: Predicate Logic
    Discrete Mathematics, Chapter 1.4-1.5: Predicate Logic Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 1.4-1.5 1 / 23 Outline 1 Predicates 2 Quantifiers 3 Equivalences 4 Nested Quantifiers Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 1.4-1.5 2 / 23 Propositional Logic is not enough Suppose we have: “All men are mortal.” “Socrates is a man”. Does it follow that “Socrates is mortal” ? This cannot be expressed in propositional logic. We need a language to talk about objects, their properties and their relations. Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 1.4-1.5 3 / 23 Predicate Logic Extend propositional logic by the following new features. Variables: x; y; z;::: Predicates (i.e., propositional functions): P(x); Q(x); R(y); M(x; y);::: . Quantifiers: 8; 9. Propositional functions are a generalization of propositions. Can contain variables and predicates, e.g., P(x). Variables stand for (and can be replaced by) elements from their domain. Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 1.4-1.5 4 / 23 Propositional Functions Propositional functions become propositions (and thus have truth values) when all their variables are either I replaced by a value from their domain, or I bound by a quantifier P(x) denotes the value of propositional function P at x. The domain is often denoted by U (the universe). Example: Let P(x) denote “x > 5” and U be the integers. Then I P(8) is true. I P(5) is false.
    [Show full text]
  • The Comparative Predictive Validity of Vague Quantifiers and Numeric
    c European Survey Research Association Survey Research Methods (2014) ISSN 1864-3361 Vol.8, No. 3, pp. 169-179 http://www.surveymethods.org Is Vague Valid? The Comparative Predictive Validity of Vague Quantifiers and Numeric Response Options Tarek Al Baghal Institute of Social and Economic Research, University of Essex A number of surveys, including many student surveys, rely on vague quantifiers to measure behaviors important in evaluation. The ability of vague quantifiers to provide valid information, particularly compared to other measures of behaviors, has been questioned within both survey research generally and educational research specifically. Still, there is a dearth of research on whether vague quantifiers or numeric responses perform better in regards to validity. This study examines measurement properties of frequency estimation questions through the assessment of predictive validity, which has been shown to indicate performance of competing question for- mats. Data from the National Survey of Student Engagement (NSSE), a preeminent survey of university students, is analyzed in which two psychometrically tested benchmark scales, active and collaborative learning and student-faculty interaction, are measured through both vague quantifier and numeric responses. Predictive validity is assessed through correlations and re- gression models relating both vague and numeric scales to grades in school and two education experience satisfaction measures. Results support the view that the predictive validity is higher for vague quantifier scales, and hence better measurement properties, compared to numeric responses. These results are discussed in light of other findings on measurement properties of vague quantifiers and numeric responses, suggesting that vague quantifiers may be a useful measurement tool for behavioral data, particularly when it is the relationship between variables that are of interest.
    [Show full text]
  • Propositional Logic, Truth Tables, and Predicate Logic (Rosen, Sections 1.1, 1.2, 1.3) TOPICS
    Propositional Logic, Truth Tables, and Predicate Logic (Rosen, Sections 1.1, 1.2, 1.3) TOPICS • Propositional Logic • Logical Operations • Equivalences • Predicate Logic Logic? What is logic? Logic is a truth-preserving system of inference Truth-preserving: System: a set of If the initial mechanistic statements are transformations, based true, the inferred on syntax alone statements will be true Inference: the process of deriving (inferring) new statements from old statements Proposi0onal Logic n A proposion is a statement that is either true or false n Examples: n This class is CS122 (true) n Today is Sunday (false) n It is currently raining in Singapore (???) n Every proposi0on is true or false, but its truth value (true or false) may be unknown Proposi0onal Logic (II) n A proposi0onal statement is one of: n A simple proposi0on n denoted by a capital leJer, e.g. ‘A’. n A negaon of a proposi0onal statement n e.g. ¬A : “not A” n Two proposi0onal statements joined by a connecve n e.g. A ∧ B : “A and B” n e.g. A ∨ B : “A or B” n If a connec0ve joins complex statements, parenthesis are added n e.g. A ∧ (B∨C) Truth Tables n The truth value of a compound proposi0onal statement is determined by its truth table n Truth tables define the truth value of a connec0ve for every possible truth value of its terms Logical negaon n Negaon of proposi0on A is ¬A n A: It is snowing. n ¬A: It is not snowing n A: Newton knew Einstein. n ¬A: Newton did not know Einstein.
    [Show full text]
  • Formal Logic: Quantifiers, Predicates, and Validity
    Formal Logic: Quantifiers, Predicates, and Validity CS 130 – Discrete Structures Variables and Statements • Variables: A variable is a symbol that stands for an individual in a collection or set. For example, the variable x may stand for one of the days. We may let x = Monday, x = Tuesday, etc. • We normally use letters at the end of the alphabet as variables, such as x, y, z. • A collection of objects is called the domain of objects. For the above example, the days in the week is the domain of variable x. CS 130 – Discrete Structures 55 Quantifiers • Propositional wffs have rather limited expressive power. E.g., “For every x, x > 0”. • Quantifiers: Quantifiers are phrases that refer to given quantities, such as "for some" or "for all" or "for every", indicating how many objects have a certain property. • Two kinds of quantifiers: – Universal Quantifier: represented by , “for all”, “for every”, “for each”, or “for any”. – Existential Quantifier: represented by , “for some”, “there exists”, “there is a”, or “for at least one”. CS 130 – Discrete Structures 56 Predicates • Predicate: It is the verbal statement which describes the property of a variable. Usually represented by the letter P, the notation P(x) is used to represent some unspecified property or predicate that x may have. – P(x) = x has 30 days. – P(April) = April has 30 days. – What is the truth value of (x)P(x) where x is all the months and P(x) = x has less than 32 days • Combining the quantifier and the predicate, we get a complete statement of the form (x)P(x) or (x)P(x) • The collection of objects is called the domain of interpretation, and it must contain at least one object.
    [Show full text]
  • Quantifiers and Dependent Types
    Quantifiers and dependent types Constructive Logic (15-317) Instructor: Giselle Reis Lecture 05 We have largely ignored the quantifiers so far. It is time to give them the proper attention, and: (1) design its rules, (2) show that they are locally sound and complete and (3) give them a computational interpretation. Quantifiers are statements about some formula parametrized by a term. Since we are working with a first-order logic, this term will have a simple type τ, different from the type o of formulas. A second-order logic allows terms to be of type τ ! ι, for simple types τ and ι, and higher-order logics allow terms to have arbitrary types. In particular, one can quantify over formulas in second- and higher-order logics, but not on first-order logics. As a consequence, the principle of induction (in its general form) can be expressed on those logics as: 8P:8n:(P (z) ^ (8x:P (x) ⊃ P (s(x))) ⊃ P (n)) But this comes with a toll, so we will restrict ourselves to first-order in this course. Also, we could have multiple types for terms (many-sorted logic), but since a logic with finitely many types can be reduced to a single-sorted logic, we work with a single type for simplicity, called τ. 1 Rules in natural deduction To design the natural deduction rules for the quantifiers, we will follow the same procedure as for the other connectives and look at their meanings. Some examples will also help on the way. Since we now have a new ele- ment in our language, namely, terms, we will have a new judgment a : τ denoting that the term a has type τ.
    [Show full text]
  • Vagueness and Quantification
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutional Research Information System University of Turin Vagueness and Quantification (postprint version) Journal of Philosophical Logic first online, 2015 Andrea Iacona This paper deals with the question of what it is for a quantifier expression to be vague. First it draws a distinction between two senses in which quantifier expressions may be said to be vague, and provides an account of the distinc- tion which rests on independently grounded assumptions. Then it suggests that, if some further assumptions are granted, the difference between the two senses considered can be represented at the formal level. Finally, it out- lines some implications of the account provided which bear on three debated issues concerning quantification. 1 Preliminary clarifications Let us start with some terminology. First of all, the term `quantifier expres- sion' will designate expressions such as `all', `some' or `more than half of', which occurs in noun phrases as determiners. For example, in `all philoso- phers', `all' occurs as a determiner of `philosophers', and the same position can be occupied by `some' or `more than half of'. This paper focuses on simple quantified sentences containing quantifier expressions so understood, such as the following: (1) All philosophers are rich (2) Some philosophers are rich (3) More than half of philosophers are rich Although this is a very restricted class of sentences, it is sufficiently repre- sentative to deserve consideration on its own. In the second place, the term `domain' will designate the totality of things over which a quantifier expression is taken to range.
    [Show full text]
  • Neofregeanism and Quantifier Variance∗
    NeoFregeanism and Quanti er Variance∗ Theodore Sider Aristotelian Society, Supplementary Volume 81 (2007): 201–32 NeoFregeanism is an intriguing but elusive philosophy of mathematical exis- tence. At crucial points, it goes cryptic and metaphorical. I want to put forward an interpretation of neoFregeanism—perhaps not one that actual neoFregeans will embrace—that makes sense of much of what they say. NeoFregeans should embrace quanti er variance.1 1. NeoFregeanism The neoFregeanism of Bob Hale and Crispin Wright is an attempt to resuscitate Frege’s logicism about arithmetic. Its goal is to combine two ideas. First: platonism about arithmetic. There really do exist numbers; numbers are mind- independent. Second: logicism. Arithmetic derives from logic plus de nitions. Thus, arithmetic knowledge rests on logical knowledge, even though its object is a realm of mind-independent abstract entities. 1.1 Frege on arithmetic Let us review Frege’s attempt to derive arithmetic from logic plus de nitions. “Arithmetic” here means second-order Peano arithmetic. “Logic” means (im- predicative) second-order logic.2 The “de nition” is what is now known as Hume’s Principle: Hume’s Principle F G(#x:F x=#x:Gx Eq(F,G)) 8 8 $ ∗Matti Eklund’s work connecting neoFregeanism to questions about the ontology of material objects (2006b, 2006a) sparked my interest in these topics. Thanks to Matti for helpful comments, and to Frank Arntzenius, Deniz Dagci, Kit Fine, John Hawthorne, Eli Hirsch, Anders Strand, Jason Turner, Dean Zimmerman, attendees of the 2006 BSPC conference (especially Joshua Brown, my commentator), and participants in my Spring 2006 seminar on metaontology.
    [Show full text]
  • Code Obfuscation Against Abstraction Refinement Attacks
    Under consideration for publication in Formal Aspects of Computing Code Obfuscation Against Abstraction Refinement Attacks Roberto Bruni1, Roberto Giacobazzi2;3 and Roberta Gori1 1 Dipartimento di Informatica, Universit`adi Pisa 2 Dipartimento di Informatica, Universit`adi Verona 3 IMDEA SW Institute, Spain Abstract. Code protection technologies require anti reverse engineering transformations to obfuscate pro- grams in such a way that tools and methods for program analysis become ineffective. We introduce the concept of model deformation inducing an effective code obfuscation against attacks performed by abstract model checking. This means complicating the model in such a way a high number of spurious traces are generated in any formal verification of the property to disclose about the system under attack. We transform the program model in order to make the removal of spurious counterexamples by abstraction refinement maximally inefficient. Because our approach is intended to defeat the fundamental abstraction refinement strategy, we are independent from the specific attack carried out by abstract model checking. A measure of the quality of the obfuscation obtained by model deformation is given together with a corresponding best obfuscation strategy for abstract model checking based on partition refinement. Keywords: Code obfuscation, verification, model checking, refinement 1. Introduction 1.1. The scenario Software systems are a strategic asset, which in addition to correctness deserves security and protection. This is particularly critical with the increase of mobile devices and ubiquitous computings, where the traditional black-box security model, with the attacker not able to see into the implementation system, is not adequate anymore. Code protection technologies are increasing their relevance due to the ubiquitous nature of modern untrusted environments where code runs.
    [Show full text]
  • Logical Quantifiers
    Logical Quantifiers 1. Subjects and Predicates: Here is an argument: 1. Chad is a duck. 2. All ducks are rabbits. 3. Therefore, Chad is a rabbit. We saw in unit one that this is a VALID argument (though it’s not sound). But, what would the sequent of this argument look like? Remember, in unit two we said that each letter must represent a STATEMENT—i.e., a string of words that can either be true or false. But, then, each line of the argument above is a different atomic statement. For instance, “Chad is a duck” is not a compound statement—it doesn’t have any simpler statements that it could be broken down into. (e.g., “Chad” is not a statement. It is just a name. It cannot be true or false.) So, would the sequent look like this? Sequent? D , A Ⱶ R But, how would one go about deriving “R” from “D” and “A”? The answer is that, in Propositional Logic, we cannot. Somehow, we need to be able to dig deeper, and be able to express the PARTS of propositions. That’s what this unit is about. In this unit, we will learn a new language: The language of Predicate Logic. Take a look at statement (1): “Chad is a duck.” It has a subject and a predicate. A subject of a sentence is the thing that some property or class is being attributed to, the predicate is the property or class that is being attributed to the subject. In this unit, we’re no longer going to use capital letters to represent atomic statements.
    [Show full text]
  • Interpreting Scope Ambiguity
    INTERPRETING SCOPE AMBIGUITY IN FIRST AND SECOND LANGAUGE PROCESSING: UNIVERSAL QUANTIFIERS AND NEGATION A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN LINGUISTICS MAY 2009 By Sunyoung Lee Dissertation Committee: William O’Grady, Chairperson Kamil Ud Deen Amy Schafer Bonnie Schwartz Ho-min Sohn Shuqiang Zhang We certify that we have read this dissertation and that, in our opinion, it is satisfactory in scope and quality as a dissertation for the degree of Doctor of Philosophy in Linguistics. DISSERTATION COMMITTEE Chairperson ii © Copyright 2009 by Sunyoung Lee iii ACKNOWLEDGEMENTS Although working on the dissertation was never an easy task, I was very fortunate to have opportunities to interact with a great many people who have helped to make this work possible. First and foremost, the greatest debt is to my advisor, William O’Grady. He has been watching my every step during my PhD program throughout the good times and the difficult ones. He was not only extraordinarily patient with any questions but also tirelessly generous with his time and his expertise. He helped me to shape my linguistic thinking through his unparalleled intellectual rigor and critical insights. I have learned so many things from him, including what a true scholar should be. William epitomizes the perfect mentor! I feel extremely blessed to have worked under his guidance. I am also indebted to all of my committee members. I am very grateful to Amy Schafer, who taught me all I know about psycholinguistic research.
    [Show full text]